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1. Introduction 

The atmospheric fluxes in the boundary layer at large Reynolds numbers are assumed to be 

a superposition of periodic perturbations and non-periodic behavior that can obey an 

irregular state and variable motion that is referred as turbulence. Turbulence can be 

observed in time series of meteorological variables (wind velocity, for example). The 

analysis of these series presents a self-similarity structure, [1]. So, the wind velocity can be 

seen as a fractal magnitude. Fractal Dimension (FD) is an artifice that shows in some way 

the complexity of the time series and the variability degree of the physical magnitude 

including. Fractal dimensions will is correlated with the characteristic parameters of the 

turbulence. The non-integer values of the FD are assigned to time series which exhibit a self–

similarity geometry and which show that structure on all length scales. In general, turbulent 

flows allowed us to recognize the coexistence of structure and randomness, they are a set of 

solution that are not unique or depend sensitively on initial conditions [2]. The structures of 

these flows are related with fractal geometry. 

A structure or time series is said to be self–similar if it can be broken down into arbitrarily 

small pieces, each of which is a small replica of the entire structure. There is a way measure 

this degree of complexity by means of FD. The concept of dimension is no easy to understand 

probably to determine what dimension means and which properties have been one of the big 

challenges in Mathematics. In addition, mathematicians have come up with some tens of 

different notions of dimension: topological dimension, Hausdorf dimension, fractal dimension, 

box-counting dimension, capacity dimension, information dimension, Euclidean dimension, 

and more [3, 4]. They are all related. We focus in the fractal dimension of these series by means 

of dividing its structure onto a grid with size L, and counting the number of grid boxes which 

contain some of the structure of series, N. This number will be depending on the size L. To 
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obtain the FD it is needed to represent in a diagram the logarithm of N against the logarithm of 

the reciprocal of L (log (N(L)) versus log (1/L)). Then, the slope of the better linear fit or the 

linear regression between them corresponds to the searched fractal dimension or box-counting 

dimension. This dimension proposes a systematic measurement of degree of similarity or 

complexity of wind series. Various works have approached the problem of calculating the 

dimension associated with time series [5, 6].   

In this Chapter it is going to study the Fractal Dimension (FD) of u and w fluctuations of 

time series of velocity recorded close to the ground, it is to say, into the low Planetary 

Boundary Layer, more specifically into the Surface Layer, closer to the ground and where 

the dynamic influence is predominant.  The main aim is to seek physical quantities included 

in turbulent flows that correlate better with FD.  Nevertheless, thermal, dynamical and 

combined parameters will be explored to complete the Chapter. The central idea is that the 

kind of stability controls the turbulent fluxes and it is showing in the values of the FD also. 

Differences of potential temperatures between two levels make the Surface Layer or the Low 

PBL unstable or stable depending on its sign. Shears in the wind produce dynamical 

instability making it easier the mix of properties, physical variables and mass. In neutral 

conditions mixture is completed and turbulence is well developed. The values of Fractal 

Dimension must be in accordance with the turbulent level.  

It has been calculated the fractal dimension, d (Kolmogorov capacity or box-counting 

dimension) of the time series of the velocity component fluctuations u’ and w’ ( u’ = u - U,  

w’ = w - W) with U the horizontal mean velocity, both in the physical space (velocity-time) 

[2]. It has been studied the time evolution of the fractal dimension of the u’ and w’ 

components (horizontal and vertical) of wind velocity series during several days and three 

levels above the ground (5.8 m, 13.5 m, 32 m). 

This study is focused on the simplest boundary layer kind, over a flat surface. So, we could 

assume that the flow to be horizontally homogeneous. Its statistical properties are 

independent of horizontal position; they vary only with height and time [1, 7, 8]. The 

experimental data have been taken in a flat terrain with short uniform vegetation. It allows 

us to take on this approximation of horizontal homogeneity and on this context we focus 

this study on variation of fractal dimension of the horizontal and vertical components of the 

velocity of flow turbulent in the diurnal cycle versus to a variety of turbulent parameters: 

difference of potential temperatures in the layers 50-0.22 m and 32 – 5.8 m, Turbulent Kinetic 

Energy, friction velocity and Bulk Richardson number. 

It has been observed that there is a possible correlation between the fractal dimension and 

different turbulent parameters, both from dynamical and thermal origin: turbulent kinetic 

energy, friction velocity, difference of temperature between the extreme of the layer studied 

close to the surface (∆T50-0.22m). Finally, it has been analysed the behaviour of fractal 

dimension versus stability evaluated from the Richardson number. 

The knowledge of turbulence and its relationships with fractal dimension and some 

turbulent parameters within the Planetary Boundary Layer (PBL) can help us   understand 

how the atmosphere works.  
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2. Data 

The data analysed was recorded in the experimental campaign SABLES-98 at the Research 

Centre for the Lower Atmosphere (CIBA in the Spanish acronyms), located in Valladolid 

province (Spain). SABLES-98 was an extensive campaign of measures in the PBL with a 

large number of participant teams and took place from 10th to 27th September 1998 [9]. 

The experimental site is located around 30km NW from Valladolid city, in the northern 

Iberian Plateau, on a region known as Montes Torozos, which forms a high plain of nearly 

200 km2 elevated above the plateau. The surrounding terrain is quite flat and 

homogeneous, consisting mainly on different crop fields and some scattered bushes. The 

Duero river flows along the SE border of the high plain, and two small river valleys, 

which may act as drainage channels in stable conditions, extends from the lower SW 

region of the plateau.  

The main instrumentation available at CIBA is installed on the 100m meteorological 

tower, and includes sonic and cup anemometers, platinum resistance thermometers, wind 

vanes, humidity sensors, etc. Other instruments are spread in minor masts and ground 

based in order observes the main meteorological variables of the PBL. In this work we 

study five minute series from the sonic anemometers (20 Hz) installed at 5.8 (~ 6), 13.5 

(~13) and 32m were used to evaluate the fractal dimension and turbulent parameters. 

These series have been obtained once we have carried out the necessary transformation to 

get the mean wind series in short intervals, namely 5 minutes, to ensure the consistent 

properties of turbulence [10]. 

We focus this study in a period of eight consecutive days (from 14 to 21 September 1998) 

in which have been analyzed every records of the velocity fluctuations. The synoptic 

conditions were controlled by a high pressure system which produces thermal convection 

during the daily hours and from moderate to strong stable stratification during the nights. 

The evolution of wind speed, Bulk Richardson number (Rib), Turbulent Kinetic Energy 

(TKE), friction velocity (u* ), potential temperature difference between 32m and 5.8m, and 

the temperature difference near surface but in an deeper layer (50-0.22 m, named invT50-

0.22, in reference to thermal inversion), with fractal dimension of velocity u and w 

component fluctuations at three levels above the ground (5.8 m, 13.5 m, 32 m) are 

analysed. 

3. Methodology 

The turbulent flows show very high irregularity for wind velocity time series. They 

present a self–similarity structure, it is to say, that for different scales the structure of  

the variables remains similar, as it is shown in Fig. 1. This property of the turbulent flows 

is related with the Fractal Dimension, since the irregularity is a common characteristic. 

Their non-integer values can help us analyze how the irregularity of the sign is, as well as 

of its geometry. As the bigger the values of FD, the more irregularity and random is the 

flow.  
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Figure 1. a) Variation of wind speed versus time from 14 to 21 September 1998, at 5.8 m and 32 m. b) If 

we zoom red window, in figure c), it is observed that the structure of this flow is similar over all scales 

of magnification. 

In this section we describe the methodology applied to calculate the Fractal Dimension d 

(Kolmogorov capacity or box-counting dimension) [11].The more precise definition of the 

fractal dimension are in Hausdorff’s work, become later known as Hausdorff dimension 

[12]. This dimension is not practical in the sense that it is very difficult to compute even in 

elementary examples and nearly impossible to estimate in practical applications. The box-

counting dimension simplifies this problem, being an approximation of the Hausdorff 

dimension and is calculated approximately by = lim→ log ( )log  (1) 

N(L) is the number of  the boxes of side L necessary to cover the different points that have 

been registered in the physical space (velocity-time) [13]. As L  0 then N(L) increases, N 

meets the following relation:  

 ( ) ≅        (2) 

 log ( ) = log log  (3) 

By means of least – square fitting of representation of log N(L) versus log L, it has been 

obtained of the straight line regression given by equation (3), as is shown in Fig 2. The 

fractal dimension d will come given by the slope of this equation. 

4. Stability of stratification and turbulence 

The origin of turbulence cannot be easily determined, but it is know that both the dynamic 

and the thermal effects contribute strongly to turbulence by producing a breakdown of 

streamlined flow in a previously nonturbulent movement. The dynamical effects are 

represented by wind shear production and the thermal ones make differences of density in 

the fluid giving rise to hydrostatic phenomena and buoyance. 
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Figure 2. Example of linear regression between number of boxes not empty and length side of the box. 

The slope (d) is the fractal dimension, d =1.21 ± 0.02 for the example case.  

The Richardson number is a parameter that includes both dynamic and thermal effects to 

measure the degree of stratification stability in the low Atmosphere. The static stability 

parameter, = ( ⁄ )( ⁄ ( )), only takes in mind the buoyancy, i.e., the thermal effects. 

Nevertheless, a ratio between s and squared wind shear	( )⁄ , gives a nondimensional 

product more appropriate for to calculate the stability. This ratio is known as gradient 

Richardson number. For the most practical cases a needed numerical approximation will be 

introduced below.  

In the low Planetary Boundary Layer the atmosphere responds to changes in stratification 

stability brought about by the heating and cooling of the ground. We search the  

behaviour or relation between the Fractal Dimension and a parameter to establish a proper 

measure of stability in the surface layer. One of the most widely used indicator of stability 

close to the ground in atmospheric studies is the Bulk Richardson number RiB, a 

nondimensional parameter representing the ration of the rate of production or destruction 

of turbulence by buoyancy to that by wind shear strain is caused by mechanical forces in the 

atmosphere: 

 
2( )B

zg

u
Ri



 




 (4) 

where g is the gravity acceleration and ̅ the average potential temperature a the reference 

level, the term 
g


is referred to as the buoyancy  parameter. RiB is positive for stable 

stratification, negative for unstable stratification and approximate to zero for neutral 

stratification, [10, 14, 15]. The way to calculate this number is following: 
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1. Calculate the mean potential temperatures at height z = 32 m, and the close surface z = 

5.8 m, namely 32  and  5.8  respectively. Being  32 5.8     . 

2.  Obtain zu  the module mean wind velocity at height z = 32 m and z = 5.8 m, denoted   

32u and 5.8u   respectively, where 32 5.8u u u   . 

Once obtained the values of  , u  and z  by means of the Eq. 4 calculate the Bulk 

Richardson number in a layer 32m to 5.8m. The mean properties of the flow in this layer as 

the wind speed and temperature experience their sharpest gradients. In order to know the 

influence of the kind of stratification over de fractal structure of the flow in the PBL, we 

going to analyse the behaviour of FD and its possible changes versus the parameter RiB, as 

the better parameter of stability obtained from the available data.  

5. Results 

In this section we present the variation of the Fractal Dimension of the u’, horizontal, and w’, 

vertical, components of the velocity fluctuations along the time at the three heights of the 

study: 5.8 m, 13.5 m and 32 m. We observe that these variations in the three heights are 

similar. The daily cycle during the period of study is clearly shown in Fig. 3. No significant 

different values are observed in levels, but a light increasing seems outstanding in diurnal 

time at the lower level (red line corresponds to 5.8m above the ground). Two components, u’ 

and w’, present no differences in the time evolution. 

As is shown in the Fig. 3, it is observed that the variation interval values of the fractal 

dimension range between 1.30 and nearly to 1.00. During the diurnal hours the fractal 

dimension is bigger than at night. A subtle question that concerns us is to what owes this. A 

possible explanation is that fractal dimension is related with atmospheric stability and, by 

the same reason, with the turbulence. It is well known that intensity of the turbulence grows 

as solar radiation increase, producing instability close the ground. In other hand, it is 

observed that Fractal Dimension is lightly inferior for stable stratification. We shall come 

back to this matter forward. In the nights a strong stability atmospheric usually exists, so the 

fractal dimension is usually smaller than during the diurnal hours.  

5.1. Potential temperature and fractal dimension 

This section concerns with the exam of the relation between the potential temperature 

differences and the Fractal Dimension. Potential temperature is a very useful variable in the 

Planetary Boundary Layer that can be replace the observed temperature in the vertical 

thermal structure, since an air parcel rises or goes down adiabatically at potential 

temperature constant. A vertical profile of potential temperature uniform represents a 

neutral stratification or it is called as adiabatic atmosphere. 

Next, we show the variation of potential temperature at heights z = 32 m and z = 5.8 m along 

the time in Fig. 4. The features shown in this figure need some comment. The potential 

temperature at height z = 5.8 m is bigger than to 32 m in the nights. It is a characteristic of 
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the nocturnal cooling that produces inversion. During the noon the potential temperatures 

decrease slightly with height. It is corresponding to instable conditions in the surface layer 

and we have a possible mixture of both mechanical and convective turbulence [16]. 

However, the evolution of potential temperature from minimum value until maximum is 

identical for the two levels in every day studied. It is the consequence of neutral situation 

with efficient mix during the morning.  

 

Figure 3. The variation of the Fractal Dimension (FD) versus time present an analogous  behavior for the 

u’ and w’ component fluctuations ((a) and (b), respectively) at the 3 levels, showing the influence of the 

diurnal cycle. 

In the Figure 4, it is clear to observe the diurnal cycle, observing a strong thermal inversion 

during the nights that is starting after noon and increasing uniformly to reach the maximum 

value.  The main differences between potential temperatures are observed under inversion 

condition as a result of the separation among layers because the strong stratification.  

In the Fig. 5, it is shown the fractal dimension at three heights and the difference of potential 

temperature between 50 and 0.22 m. In this study we will name it as thermal inversion 

because positive values correspond to actually inversion, in terms of potential temperature 

(invT50-0.22). The layer 0.22 to 50 m is more extensive than the stratum defined by the levels of 

the sonic anemometers covering a deep part of the PBL and likely the whole Surface Layer. 

Besides the instruments to measure the invT are others different of the sonic anemometers 

which can to give a temperature by the speed of the sound measured also in they. This has 

an evident benefit in the results. 

It is observed that fractal dimension correlates in opposed way with the difference of 

potential temperatures in the layer between 50 and 0.22 m. The more stable conditions are 

coincident with the bigger values of fractal dimension. In strong thermal inversions the 

fractal dimensions are lower. Although this good correlation is observed in the figure, we 

can justify it by mean of a least–squares fitting between the data in the different temporal 

intervals corresponding to the variables analyzed.  
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Figure 4. Time series of potential temperature at 32 and 5.8 m along the complete period of study. 

 

Figure 5. Fractal dimension of component fluctuations u’ and w’ and the thermal inversion in layer 

between 0.22 and 50 m versus time at three heights: z=5.8 m, z=13 m and z=32 m  

As it is observed in the Fig. 6, we show the linear regression in two temporal intervals 

corresponding to the first 24 hours -from 06 UTC of first day to 06 UTC of the second day- 

and at night interval from 18 UTC to 06 UTC. The values obtained of the correlation 

coefficient are very good, in the first case R = -0.925, in the second one R = -0.707. It is 

observed a better correlation during 24 hours than the night hours because the variation 

of the invT and FD are wider along all day. The fractal dimension is bigger during the day 

time than during the night, outstanding a strong inversion at night hours. We could 

achieve similar results in others temporal intervals of the two variables analysed in the 
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period study. These results are obtained for fluctuations of w’ component of velocity at 

height z = 5.8 m. Similar results are obtained for other two heights z =13 m and z = 32 m, 

also for fluctuations of u’ component, along of the mean wind direction at three heights 

studied. 

In order to extent the study to all days of the experimental campaign it has been analysed 

the relation between the Fractal Dimension and the difference of potential temperatures 

using averages of FD in defined intervals of invT. Figure 7 presents the cloud of the points 

for all values measured in 5 minutes interval for FD and InvT with the average and the error 

bars based on standard deviation. Both u’ as w’ have similar behaviour respect the variation 

of invT. In these cases FD is calculate for the lowest level, i. e. 5.8 m (6m labelled in the 

figure). An analogous shape of the cloud of points and identical results can be obtained if 

the potential temperature differences when the stratum 32-5.8m has been used. It is not 

shown in this Chapter because repetitive. 

 

Figure 6. As it is observed the fit is very good in the temporal intervals with r satisfactory, it is showed 

the linear regression between the fractal dimension and la difference of the temperature between two 

levels in the periods of 24 h and 18-06h ( (a) and (b) respectively). 

It is observed that in two components a similar behaviour. Fractal Dimension have bigger 

values in unstable and near neutral conditions (negative and close to zero invT), reaching 

fractal dimension average near 1.15 value for the interval from -1 to 1 K of temperature 

differences. For strong inversion (> 1 K) the fractal dimension becomes smaller, around 1.05. 

The presented figures and values can be extent to FD of u’ and w’ fluctuations at others two 

heights z = 13 m and z = 32 m with similar results. 

Finally, the good relation between FD and invT has been valued by mean a linear regression 

shown in Figure 8, where it has been used the average value of the scatter plot in Figure 7. It 

is notable the negative slope (- 0.029 –in the corresponding units -) of the regression and the 

high correlation coefficient, R = -0.93.  
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Figure 7. Scatter diagram of FD versus InvT50-0.22. It is observed a similar behavior of the fractal 

dimension with the inversion of temperature, which is evaluated by difference of potential temperature 

at 50 – 0.22m layer. Average points and error bars are shown for a better understanding. 

 

Figure 8. Linear regression of the FD against invT, using the average values from the cloud of points in 

Fig 7. Negative slope and the high correlation coefficient show a good correlation. 

5.2. Turbulent Kinetic Energy and fractal dimension 

The Turbulent Kinetic Energy (TKE) correspond to the quantity of energy associated to the 

movement of the turbulent flow and it is evaluated from the variances of the components of 

velocity: ,    and   . TKE is given by Eq. 5, in terms of energy per unit mass [15]. 

 
 2 2 21

' ' '
2

TKE u v w    (5) 

In this Section we will examine the relationship between TKE and Fractal Dimension of the 

fluctuations u’ and w’. Before incoming to study with certain details of this relationship, it 
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would be interesting to relate the TKE to different kind of atmospheric stability. The 

budgets of TKE in the instable, stable and neutral conditions near the surface are next 

summarized. 

In the stable case, the production of the TKE by shear is not sufficient to balance the 

dissipation energy at all levels and production by buoyancy is not happening. So, 

turbulence decay and TKE decrease along the time. In neutral conditions near the surface in 

agreement with the observations suggest that exists a near balance between shear 

production and viscous dissipation [14, 17]. In this case, a strong shear wind is normally 

present in the low atmosphere. In the unstable layer, convective case, vertical gradients of w 

are bigger than the vertical gradients of u and v, the TKE production is mainly due to 

buoyancy and transport from other levels. Turbulence is supported by thermal effects in the 

case of instability [17]. 

 

Figure 9. Variation of Fractal dimension and Energy kinetic turbulent versus time for u  (upper-left 

panel) and w (lower-left) component of wind velocity at height z = 5.8 m. Scattered diagram of the 

fractal dimension and TKE with averages values and error bars (right panels). 

As results it has found that an strong correlation between the dynamic magnitude, the 

Turbulent Kinetic Energy, and the Fractal Dimension exists. Figs. 9 and 10, in the left panels, 

show the evolution of the FD and TKE along the time for all days studied at two levels (5.8m Fig 

9 and 13m in Fig 10). Diurnal cycle is also observed like in the study of invT in previous sections. 

This first result is in agreement with the normal variation of the turbulence between the day time 

and night time. Values of TKE are similar at two levels analyzed which may be interpreted as 
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turbulence is development into the stratum in a uniform way. Right panels, in the Figs. 9 and 10, 

is showing the scatter plot of FD and TKE values for all data used. Averaged of FD for arbitrary 

intervals of TKE together its error bars are also represented. It is observed a continuous 

increasing of the Fractal Dimension when the TKE grows, both for the u’ and w’ fluctuations. The 

maxima values of the kinetic energy are 2 m2 s-2, in average, at heights z =5.8 m,  z =13 m and z = 

32m (do not shown) corresponds to maxima values of mean FD. Differences may be observed for 

FD among the figures. For u’ components at 5.8 m present the highest values of FD (around 1.20 

± 0.05) while in the remainder cases w’ in two levels and u’ at 13m the maximum of FD are nearly 

to 1.15.  The relation studied does not seem linear, but FD increases very fast for small values of 

TKE and it has a light increasing of  FD beyond of 1 m2/s2.  

In order to investigate the correlation between FD and TKE, we were tried a linear 

regression for two different time interval, at first, from 06 UTC to 24 UTC of the initial day, 

including the period of day time and early night. In this record the variation of FD is 

maximum. Figure 11a presents the scatter plot and the linear regression obtaining an R2 

coefficient of 0.698 that can be to consider satisfactory in spite of the shape of the cloud of 

points. The second period valued corresponds to the third day of the experiments from 48 

UTC to 60 UTC, i.e., from midnight to noon. The scatter plot (Fig. 11b) presents similarity 

with the previous one, a cumulated group closes to the zero of TKE and there is spread 

points of higher values of FD for bigger TKE. The determination coefficient = 0.689 

seems similar to the other period. Analogous results are obtained for u’ component.   

 

Figure 10. Variation of Fractal dimension and Energy kinetic turbulent versus time for u and w 

component of wind velocity at height z= 13 m. Diagram of fractal dimension and TKE with error bars 
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5.3. Friction velocity and fractal dimension 

In the atmosphere the relevant turbulent velocity scale is the surface friction velocity u* 

which includes the vertical momentum flux related by Eq. 6. 

 
   

1/4
2 2

* ' ' ' 'u u w v w
     
   (6) 

Friction velocity is also a turbulent parameter that measures the shearing stress into the 

surface layer, = = ∗ . It is considered constant in whole Surface Layer. So, it is an 

important dynamic property of the vertical structure of the lower atmosphere. Friction 

velocity can be obtained from vertical profile of average horizontal component of the wind 

but also by mean of Eq. 6, based in turbulent fluxes.  

 

Figure 11. Linear regression between fractal dimension w component and TKE at height z=5.8 m. It is 

shown the correlation coefficient in the two temporal intervals analyzed. 

 

Figure 12. Average points according defined interval of TKE of Fractal Dimension of vertical 

component fluctuations at 13 m level. Coefficient of correlation, R = 0.8872, is shown together the right 

of regression. 
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Under neutral conditions an extended model of vertical profiles of wind is the known 

logarithm profile:  = ∗ ln , where k is the Von Karman constant ( 0.4) and  is 

called the roughness length depending on the terrain. In the case of this study a very high 

rate of measurement of three components of velocity is available; therefore vertical flux of 

momentum is utilized here. 

In this section we study as the Fractal Dimension behaves versus the friction velocity. The 

friction velocity u*, presents maxima at day time closed to noon in every levels studied (5.8 

and 13m) and minima at night. This maxima and minima are in concordance with the 

variation of FD in an analogous way to TKE treated in the last section (see Fig 13 a, c). The 

scatter plot for FD for w’ component at the same levels and u* is showing in Fig 13b and d; it 

indicates an acceptable correlation between them. FD increase according to growing of u*. 

Again, a linear regression has been tried in order to quantify this correlation. Points in Fig 14 

correspond to average values of FD of vertical components fluctuations against friction 

velocity. The positive slope and a good coefficient of correlation (R = 0.961) are outstanding 

results since they improve the ones in the TKE. This trend is observed in the u’ and w’ 

components at three heights studied. 

 

Figure 13. a) and c) Fractal dimension of fluctuation of w component at 5.8 m and 13 m (blue) and 

Friction Velocity at the same height (green). b and d) Fractal dimension versus Friction Velocity. 
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Figure 14. Linear regression of FD calculated for w’ wind component versus friction velocity obtained 

from vertical fluxes of momentum (Eq. 6). The regression coefficients are presented (R = 0.9614). 

5.4. Bulk Richardson number and fractal dimension 

In this last Sub-section of results we try to investigate the relation between Fractal 

Dimension and the atmospheric stability in the Planetary Boundary Layer. We utilize the 

dynamic and thermal parameter denoted Bulk Richardson number, RiB, discussed in Section 

4, and presented as a numerical approximation of the gradient Richardson number, Ri. The 

RiB value enables us to judge the atmospheric stability or, better named, the stability of 

stratification in the lower atmosphere. When Ri is small with any sign, the air flow is a pure 

shear flow driven by dynamic forces and we can say that layer is neutrally stratified. If Ri is 

near zero corresponding to neutrally stable boundary layer, one in which parcels displaced 

up and down adiabatically maintain exactly the same density as the surrounding air and 

thus experience no net buoyancy forces. 

When Ri is large the air flow is driven by buoyancy. Positive values of Ri correspond with 

stable conditions and buoyancy forces keep out vertical displacement and mixing become 

less active. At the contrary, negatives and large Ri is in instability, where the thermal effects 

are doing air move vertically and fluctuations of wind components happen. Under 

instability turbulence increase and mixing of atmospheric properties: momentum, energy 

and mass (concentration of the components) are more efficient.  

Thus, we go to exam whether the parameter Fractal Dimension can be an appropriated 

index to classify the atmospheric stratification. As it is already explained the numerical 

approximation used here is the RiB (Eq. 4). The main difficulty in the use of this parameter is 

the fact of which is not robust, since small shear in the wind produce values extremes of RiB, 

both positive and negative. In order to avoid such situations it has been remove of the study 

cases with RiB < -5 (convective) and RiB > 1.5 (strong stability, hard inversion). The time series 

of RiB along the complete period of study is drawn in Figure 15a. Can be see how negative 

values of RiB are in day time and positive or near-zero are far away of the central day.  
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The Fractal Dimension versus Bulk Richardson number shows a different behavior depending 

on the kind of stability as is shown in the Fig. 15b. That is, in strong instability it is observed 

mean values of the Fractal Dimension  almost constant,  around 1.15, but increasing when we 

are going to RiB = 0 (near neutral stratification). In neutral conditions the Fractal Dimension is 

maximum and decreases quickly for stable conditions. This result agrees with the relationships 

found for the potential temperature differences in the Fig. 7 and the temperature differences in 

the layer 50 – 0.22 m (Fig. 5). This behavior is similar at three heights studied.  

 

Figure 15. a) Bulk Richardson Number evaluated from the 32 - 5.8 m layer, along the whole period of 

study, where extreme values have been removed (-5< RiB< 1.5).  b) Scatter plot of Fractal Dimension 

versus Bulk Richardson number; the maxima values of FD are in positive of RiB  close to zero, and 

minima correspond to strong stability. 

 

Figure 16. Linear regression of a set points, average FD in RiB intervals for the stable regime at height 13 m. 

Behavior of FD according stability must be carry out separately in both kind of stability, as it 

was say before, instability give near constant values of Fractal Dimension except in quasi-

neutrality, but in stability conditions, variation of FD it is clearly observed. In Fig. 16 it is 

shown the linear regression of mean values of the set points in stable stratification of the 

scatter plot of the Fig 13. As a result of that fit, can be conclude FD decrease as stability 
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increase, note the negative slope, but the coefficient of correlation is weaker than in dynamic 

analysis cases (r = 0.751).  

Maxima values of FD in near-neutral stratification it is supported for the results in the study 

of TKE or friction velocity, where enhance of dynamical effects gave a rising of the Fractal 

Dimension. 

6. Conclusions 

This Chapter has treated about the influence of the atmospheric conditions, dynamics and 

thermal, over the fractal structure of the wind near the ground. The results that have been 

obtained in the work presented along the Chapter, lead to main following conclusions: 

- An easy method for obtain the Fractal Dimension of velocity component fluctuation in 

the PBL has been carried out. It has been based in the Kolmogorov capacity or box-

counting dimension concept.   

- In the 5.8 - 32 m layer studied the Fractal Dimension is greater when the differences of 

potential temperature are negative (instable), reaching maxima values at differences 

near to zero (near-neutral stratification), and with positive values (stable stratum) the 

Fractal Dimension is lightly inferior. This result is according to behavior of the thermal 

inversion in the stratum 0.22 - 50 m. 

- There exist an increasing of the Fractal Dimension there exists with the growing of the 

two dynamic magnitudes studied: Turbulent Kinetic Energy and friction velocity. The 

behavior of TKE and friction velocity are similar at three heights analyzed. The values 

of Fractal Dimension with these dynamics parameters are maxima at day time, close to 

noon, and minima at night according to the turbulence variation in the daily cycle. 

- The Fractal Dimension is depending on kind of stratification. For negative values of 

Bulk Richardson number FD keeps approximately constant but in stability FD decrease 

quickly with RiB. An acceptable correlation between FD and Bulk Richardson Number 

has been observed for positives RiB. In the neutral conditions the Fractal Dimension 

reach its maximum.   

Finally, it can conclude that dynamical origin of the turbulence has a more clear relation 

than the thermal origin with the fractal structure of the wind, but both are important.   
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