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1. Introduction 

The origin of theoretical plates for electrophoresis in general sense has been obtained from 

the work of Giddings¹. Giddings has derived the following equation for the number of 

theoretical plates. 

 
2

ext

N
RT





 (1) 

where coefficient Ө=unity when molecular diffusion acts alone and exceed unity when other 

process contributes. R=gas constant and T=temperature and ext =chemical potential 

conventionally substution of ext ZFV   into eqn.(1) gives for the number of theoretical 

plates. 
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ZFV
N

RT
  (2) 

For an ideal process, in which Ө=1 and T=298K,this equation reduces 

 N 20ZV  (3) 

where we have used the Faraday constant F=96500 coulombs/mol. This voltage drops V in 

the range of 100-10000 v with charge number Z=1 capable of yielding 2000-200000 

theoretical plates, a range comparable to that found in chromatographic system. Jorgenson 

and Lukacs², also in their land mark paper provided a theory for capillary zone 
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electrophoresis (CZE) in which they proposed two fundamental equations for resolution 

and migration time. Resolution and number of theoretical plates are the focus of this work. 

This is how number of theoretical plates are derived for capillary zone electrophoresis and 

used in resolution equation by Jorgenson and Lukacs² by starting with Gidding number of 

theoretical plates. 

 
2

ZFV
N

RT
  (4) 

V=potential across capillary is substituted by EX where E=electric field and X=length of the 

capillary. Z=charge number for ion is assumed to be 1, hence 

 
2

FFX
N

RT
  (5) 

 [ ( ) ]eo ep ABX t v v   (6) 

Eqn.6 where )

1
( [( ) ( ) ]

2ABep ep A ep Bv v v   is substituted by X in eq.(5). t is the time it takes the 

analyte travels across the capillary and eov is the electroosmotic velocity ( )ep Av  and ( )ep Bv  

are the electrophoretic velocity of two analytes A and B with close electrophoretic velocities. 

By substitution of equation(6) into equation (5) one obtains 

 [( ) [ ( ) ]]
2 eo ep AB

E
N Et v v

RT
   (7) 

There is mistake occurs in Jorgenson and Lukacs work², t in eqn. (7) is replaced by eqn.(8), 

this is the case when electroomosis is absent. 

 
ep

X
t

v
  (8) 

By making this mistake substitution eqn (8) , what has been obtained by Jorgenson and 

Lukacs for N , eqn.(2) is 

 [( )[( ) ( ) ]]
2 eo ep AB

ep

F X
N E v v

RT v
   (9) 

E, X, is the V, voltage across the capillary and epv  the electrophoretic velocity of the analyte 

and eov  the electroosmotic flow in the capillary are substituted in eqn.(9) by epE  and eoE  

where ep  and eo  are the electrophoretic and electroosmotic mobilities and E is the electric 

field. By this substitution the following eqn.(10) is obtained for N  
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eo ep AB
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FV
N

RT

 




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By using Einstain relation eqns.(11) and (12) we substitute for ep from eqn.(12) 

 
ep

D RT

F
  (11) 

 ep

FD

RT
   (12) 

Where D is the Diffusion constant of the analyte by this substitution and simplification 

eqn.13 is obtained 

 [ ( ) ]
2 eo ep AB

V
N

D
    (13) 

This is the equation for the number of theoretical plates the Jorgenson and Lukacs use to 

obtain the resolution equation. N is driven by mistake². The resolution equation is given by 

them  

 
( ) ( )

.
( ) 4

ep A ep B

s
eo ep AB

N
R

 

 





 (14) 

substituting eqn.(13) for N into eqn.(14), the resolution can be expressed as  

 
1/2

(( ) ( ) )
.

( ( ) ) 4 2

ep A ep B

s

eo ep AB

V
R

D

 

 





 (15) 

The above eqn.(15) is the same equation that was obtained by Jorgenson and Lukacs². 

This equation is incorrect. In the present work equation for resolution which is cosidered 

correct equation is proposed. 

2. Theory 

According to Gidding’s theory¹ the evaluation of the ultimate capabilities of zone 

electrophoresis is possible. To calculate the number of theoretical plates and separable zone 

achieveable in ideal zone electrophoresis, the electrostatic force exerted on a mole of charged 

particles on electric field of strength E is  

 Force ZFE f   (16) 

where z=net charge of a single particle in proton units and F=Faraday constant the negative 

chemical potential drop across the separation path. 
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 ext fX    (17) 

In which X´ is the distance where f, force applied in capillary eletrophoresis. For 

conventional mode of capillary zone electrophoresis, electroosmotic and electrophoretic 

velocities are in opposite direction. This conventional mode is similar to tread mill and 

electric stairs where the moveing object has two movements one walking and the other one 

movement of the stairs. 

There X´ in eqn. (17) is not the length of capillary, it is effective distance where the electric 

force which is applied is greater than the length of capillary is called  

 ext fX    (18) 

Then by substituting eqn.(18) into eqn.(1) , the eqn.(19) for the number of theoretical plates 

results. 

 
2

fX
N

RT


  (19) 

X´=effective length which looks like a treadmill, the solute is like a person which can run for 

miles on the mill but actually he has stayed stationary, f=FE force is Faraday constant times 

electric field. By substituting force in eqn. (19) one gets 

 
2

F
N EX

RT
  (20) 

By definition, the effective distance the analyte travels under the force of electric field, X´ 

divided by the relation times, t, is equivalent to electrophoretic ( )ep ABv  velocity , ( )ep ABv , as 

the following 

 ( )ep AB

X
v

t


  (21) 

Where )

1
( [( ) ( ) ]

2ABep ep A ep Bv v v   

By the help of eqn.(21) X´ can be substituted into eqn.(20). Now eqn.(22) can be rewritten to 

include electrophoretic velocity. 

 ( )( )
2 ep AB

F
N v Et

RT
  (22) 

Replacing the electrophoretic velocity variable with the product of electrophoretic mobility 

and electric field ep epv E  yields the following expression: 

 2[( )[( ) ]
2 ep AB

F
N E t

RT
  (23) 
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In order to observe the dependence, efficiency has on capillary length and electroosmosis, a 

substitution for the time variable in eqn.(21) is made. Net displaccment of the analyte or 

capillary length, X, is related to the retention time, t as shown  

 [ ) ( ) ]eo ep ABN t v v   (24) 

Rearragement of eqn.(24) given eqn.(25) 

 
( )eo ep AB

X
t

v v



 (25) 

substituting eqn.(25) into eqn.(20) yields the expression, 

 
( )

[ ]
2 ( )

ep AB

eo ep AB

vF
N XE

RT v v



 (26) 

By making additional substitution for electrophoretic and electroosmotic velocity produced, 

( )AB ep ABv E  and eo eov E  , a final equation for efficiency is  

 
( )

( )( )
2 ( )

ep AB

eo ep AB

F
N XE

RT



 



 (27) 

plate height is the ratio of effective length X´ to efficiency N is 

 
X

H
N


  (28) 

Substituting equation into eqn.(28) yields an expression for plate height. 

 
2RT

H
FE

  (29) 

This interesting result shows that the theoretical plate height is independent of 

electroosmotic flow when it is based on the effective distance the analyte travels rather than 

the capillary length. Instead, plate height has a simple inverse relation with the electric field 

strength. 

Fig .1 Shows the invers relation between theoretical plate height and electric field strength. 

Electric field strength is the voltage across two ends of capillary divided by the length of 

capillary. 

Equation for resolution: Based width resolution is the quantitative measure of ability to 

separate two analytes. For two adjacent peaks with similar elution times, peak showed be 

nearly identical: 

 A B ABW W W   (30) 
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Figure 1. Theoretical plate height versus electric field for CZE. 

where 
1

( )
2AB A BW W W  . 

Assuming eqn.(30) is true, resolution for species A and B expressed in terms of their 

retention times and the peak base width for either species². 

 
( ) ( )R B R A

s
AB

t t
R

W


  (31) 

The conventional expression for separation can be written with parameters related to either 

species A or B, shown here using the retention time and peak base width for species B². 

 2( )
16[ ]R B

AB

t
N

W
  (32) 

By combining eqns. (31) and (32) an equation for chromatography is produced that 

expresses resolution in terms of efficiency and retention time4. 
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( ) ( )

[ ]
4 ( )

R B R A
s

R AB

t tN
R

t


  (33) 

The resolution time variable Rt  and the efficiency N are eliminated by inserting eqns.(25) 

and (26) into eqn.(33) for the analyte B: 

 1/2
( ) ( ) ( )

[( )( ) ] [ ]
32 ( ) ( )

ep AB ep A ep B

eo ep AB eo ep AB

v v vF
R XE

RT v v v v




 
 (34) 

when electrophoretic velocity, epv , is replaced with epE  and applied patential, V is 

substituted for XE one obtains the following equation for the resolution: 

 1/2

3/2

( ) ( ) ( )
[ ] [ ]

32 ( ( ) )

ep AB ep A ep B

s

eo ep AB

FV
R

RT

  

 





 (35) 

In order to make a comparison between new resolution eqn.(35) obtained in present work and 

Jorgenson Lukacs equation for resolution eqn.(15) could be transformed to the following 

equation by using Einstein relation relating diffustion constant to mobility 
D RT

F
  and  

 1/2

1/2

( ) ( )
[ ] [ ]
32 ( ) ( ( ) )

ep A ep B

s
ep AB eo ep AB

FV
R

RT

 

  





 (36) 

Jorgenson and Lukacs equation (eqn.36) and new derived Ghowsi equation(eqn.38) for 

resolution are given as  

 1/2

3/2

( ) ( )
[ ] [ ]
32 ( ) ( ( ) )

ep A ep B

s
ep AB eo ep AB

FV
R

RT

 

  





 (37) 

This interesting observation that for the absence of electrosmotic flow in Jorgenson and 

Lukacs equation the resolution eqn.36 is converted to 

 1/2
( ) ( )

[ ] [ ]
32 ( )

ep A ep B

s
ep

FV
R

RT

 




  (38) 

The other resolution equation obtained in present work Ghowsi’s eqn.(35) with presence of 

electroosmotic flow sR is converted to  

 1/2
( ) ( )

[ ] [ ]
32 ( )

ep A ep B

s
ep AB

FV
R

RT

 




  (39) 

It is interesting that only for this case when electroosmosis is absent the resolution equation 

of Jorgenson and Lukacs eqn.(15) with the help of Einstein relation is equal to Ghowsi’s 

derived equation eqn.(38) at present for capillary zone electrophoresis. 
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3. Micellar electrokinetic capillary chromatography (MECC) 

By converting figure of Merits in MECC to electrochemical parameters5 and pursuing similar 

procedure we applied to capillary electrophoresis and using effective length³ solute travels rather 

than length of capillary and then converting the resolution equation in terms of chromatography 

parameters new equation for resolution could be found which is published in another paper7. 

4. Optimization of micellar electrokinetic capillary chromatography 

(MECC) as a nano separation technique using three dimensional and two 

dimensional plottings of characteristic equations 

Feyman with the lecture of plenty of room at the bottom at an American Physical Society at 

Caltech on December 29, 1959 considered the possibility of direct manipulation of individual 

atoms as a more powerful forms of synthetic chemistry than those used at the time . In 

conventional chromatography there are two phases involved one is the stationary phase and one 

is the mobile phase6. Terabe et al proposed Micellar Electrokinetic Capillary Chromatography8, 

MECC, which has the smallest pseudo stationary phase within nano range called micelle. 

The very high strength of separation comes from these nano sized materials. That is why we 

call this technique MECC. 

5. Nano separation technique 

There are several work which have been done to final the optimum conditions of this Nano 

Separation Technique5,8-10. 

In all optimization characteristic equation is the focus. 

What is the characteristic equation? 

In column chromatography the resolution equation is given as6  

 
1/2 1

. .
4 1s

N k
R

k








 (40) 

Where k´ is the capacity factor, α is the selectivity and N is the number of theoretical plates. 

Terabe8 et al proposal MECC for the first time and they proposed the resolution equation for 

MECC: 

 
1/2 1 /1

. . .
4 1 1 /

o mc
s

o mc

t tN k
R

k t t







 
 (41) 

Where N,α and k´ were already defined , a new term is appearing in equation (41) for 

resolution is 
1 /

1 /
o mc

o mc

t t

t t




. In this term k´ is the capacity factor and ot and mct are retention 
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times of the aqueous and micellar phases respectively. The characteristic equation for MECC 

to optimize is from equation(41): 

 
1 /

( , / ) .
1 1 ( / )

o mc
o mc

o mc

t tk
f k t t

k t t k


 

  
 (42) 

This characteristic equation has two variables k´ and the ratio /o mct t . In a recent work a 

new model for the MECC using a model based on effective length solute migrated as a 

similar to tread mill case were proposed7. Based an this model 

 1/2 1/2 3/2 1 ( / )1 1
[( ) / 4] ( )[ ][ ] .

4 1 1 ( / )
o mc

s ep B pseudo
o mc

t tk
R D RT N

k t t k







  
 (43) 

Variables of this equations were defined in the previous work7. The characteristic equation 

of sR  for equation (43) is the last two terms. 

 3/2 1 /
( , / ) ( ) .( )

1 1 ( / )
o mc

o mc
o mc

t tk
f k t t

k t t k


 

  
 (44) 

In a comparison between the characteristic equation (42) obtained by Terabe8 and the 

characteristic equation obtained based on the new model7,equation(44) , the difference is the 

power of ( )
1

k

k


 

term where in equation (42) the power of this term is 1 and in equation (44) 

the power of this term is 3/2. The rest of these two equations (42) and (44) are the same. 

There are two other characteristic equations need to be obtained. For the first time J. P. Foley 

obtained an equation for a compromise between resolution and the migration time. He 

introduced /s RR t . Rt  is given in Terabe’s work8 as 

 
1

[ ]
1 ( / )R o

o mc

k
t t

t t k





 (45) 

Two characteristic equations for /s RR t  are obtained one is for Terabe sR equation (41) and 

the other one is for sR  in equation (43). The two characteristic equations for /s RR t  are 

given as below correspondingly. 

 
2

( , / ) .(1 )
(1 )

o
o mc

mc

tk
f k t t

tk


  


 (46) 

 
5/2

( , / ) .(1 )
(1 )

o
o mc

mc

tk
f k t t

tk


  


 (47) 

6. Two dimensional and tree dimensional plots of characteristic equations 

In present work by the help of modern technology of computer and three dimensional 

software of Dplot direct access to the plot of characteristic equations (42) and (44) are possible. 
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Figure 2 shows the three dimensional plot of characteristic equation (42) obtained by Terabe8 

et al. 

 

Figure 2. Three dimensional plot of Terabe’s characteristic equation for resolution of MECC. 

In this work ( , / )o mcf k t t  is a function of two independent variables k´ and /o mct t .k´ is 

changing between 1 to 10 and /o mct t  changes between 0.1 to 1. In figure 2 the surface of the 

three dimensional plot shows maximums. The greatest maximum occurs at 

max max( , / ) 0.51o mcf k t t  . 

These maximums are local maximums. 

In figure 3 the characteristic equation (44) based an proposal thread mill model7 is plotted. This 

plot shows no local maximums but there is a single maximum occurs at / 0o mct t  ,k´=10 

where ( , / ) 2.25o mcf k t t  . Similar information could be obtained for equation (42) from level 

curves plotted by Dplot software presented at this work fig.4. This two dimensional plot is the 

image of three dimensional plot on the surface of the plan / 0.1o mct t   , k´=1. 

Similar information could be obtained for equation (44) from level curves plotted by Dplot 

software presented at this work fig.5. This two dimensional plot is the image of three 

dimensional plot on the surface of the plane / 0.1o mct t  ,k´=1. 

Foley’s characteristic equation / 0.1o mct t   (46) has also been plotted three dimensionally 

figure 6 and two dimensionaly level curves figure 7. The information obtained from either 

these two plots is as following. Maximum ( , / ) 0.225o mcf k t t  occurs at / 0.1o mct t  ,k´=1 

and minimum ( , / ) 0o mcf k t t  occurs at / 1o mct t  ,k´=1. 
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Figure 3. Three dimensional plot of Ghowsi’s characteristic equation for resolution of MECC. 

 

Figure 4. Two dimensional plot, level curves, of Terabe’s characteristic equation for resolution of MECC. 
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Figure 5. Two dimensional plot , level curves , of Ghowsi’s characteristic equation for resolution of MECC. 

 

Figure 6. Three dimensional plot, Foley’s characteristic equation for resolution per unit time /s RR t . 
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Figure 7. Two dimensional plot, level curves, of Foley’s characteristic equation for resolution per unit 

time /s RR t . 

Ghowsi’s characteristic equation (47) has also been plotted three dimensionally figure 8 and 

two dimensional level curves figure 9. The information obtained from either these two plots 

is the following: Maximum ( , / ) 0.16o mcf k t t   occurs at / 0.1o mct t  , k´=2 and minimum 

( , / ) 0o mcf k t t   occurs at / 1o mct t  ,k´=1. 
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Figure 8. Tree dimensional plot of Ghowsi’s characteristic equation for resolution per unit time /s RR t . 

 

Figure 9. Two dimensional plot level curves of Ghowsi’s characteristic equation for resolution per unit 

time /s RR t . 
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7. Conclusion 

The fundamental eqn.12 for the number of theoretical plates has been used to obtain 

resolution equation by Jorgenson eqn.14. The number of theoretical plates equation in 

previous work by Jorgenson is wrong, automatically makes the resolution equation 

wrong. 

With the consideration that length X in eqn. 17 is the distance where force is applied in 

capillary electrophoresis, number of theoretical plates which depends on eqn.17 is 

discussed. 

Another equation is the result obtained in eqn.28 which indicates the new result based on 

effective length. In comparison with eqn.12 Jorgenson equation different eqn.26 has been 

used to obtain eqn.34 which is the new resolution equation. Similar procedure could be 

applied to obtain the number of theoretical plates for effective length for MECC and the 

new resolution equation could be obtained too. This work for MECC was shown in 

reference 7. 

In present work eight graph are presented as characteristic equations of MECC. Four of 

them are three dimensional and four of them are two dimensionals. It is very interesting 

observation that the Terabe’s et al characteristic equation shows local maximums in three 

dimensional plots but the three dimensional plot of characteristic equation obtained by us 

based on thead mill model shows no local maximums on the surface of three dimensional 

plot. 
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