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1. Introduction

Heat convection occurs in natural and industrial processes due to the presence of temperature
gradients which may appear in any direction with respect to the vertical, which is determined
by the direction of gravity. In this case, natural convection is the fluid motion that occurs
due to the buoyancy of liquid particles when they have a density difference with respect
the surrounding fluid. Here, it is of interest the particular problem of natural convection
between two horizontal parallel flat walls. This simple geometry brings about the possibility
to understand the fundamental physics of convection. The results obtained from the research
of this system may be used as basis to understand others which include, for example, a more
complex geometry and a more complex fluid internal structure. Even though it is part of our
every day life (it is observed in the atmosphere, in the kitchen, etc.), the theoretical description
of natural convection was not done before 1916 when Rayleigh [53] made calculations under
the approximation of frictionless walls. Jeffreys [27] was the first to calculate the case including
friction in the walls. The linear theory can be found in the monograph by Chandrasekhar [7].
It was believed that the patterns (hexagons) observed in the Bénard convection (see Fig. 1,
in Chapter 2 of [7] and the references at the end of the chapter) were the same as those of
natural convection between two horizontal walls. However, it has been shown theoretically
and experimentally that the preferred patterns are different. It was shown for the first time
theoretically by Pearson [45] that convection may occur in the absence of gravity assuming
thermocapillary effects at the free surface of a liquid layer subjected to a perpendicular
temperature gradient. The patterns seen in the experiments done by Bénard in the year
1900, are in fact only the result of thermocapillarity. The reason why gravity effects were
not important is that the thickness of the liquid layer was so small in those experiments that
the buoyancy effects can be neglected. As will be shown presently, the Rayleigh number,
representative of the buoyancy force in natural convection, depends on the forth power of
the thickness of the liquid layer and the Marangoni number, representing thermocapillary
effects, depends on the second power of the thickness. This was not realized for more than
fifty years, even after the publication of the paper by Pearson (as seen in the monograph
by Chandrasekhar). Natural convection may present hexagonal patterns only when non
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4 Viscoelasticity — From Theory to Biological Applications

Boussinesq effects [52] occur, like temperature dependent viscosity [57] which is important
when temperature gradients are very large. The Boussinesq approximation strictly assumes
that all the physical parameters are constant in the balance of mass, momentum and energy
equations, except in the buoyancy term in which the density may change with respect to
the temperature. Any change from this assumption is called non Boussinesq approximation.
When the thickness of the layer increases, gravity and thermocapillary effects can be included
at the same time [40]. This will not be the subject of the present review. Here, the thickness of
the layer is assumed large enough so that thermocapillary effects can be neglected.

The effects of non linearity in Newtonian fluids convection were taken into account by Malkus
and Veronis [33] and Veronis [65] using the so called weakly non linear approximation, that is,
the Rayleigh number is above but near to the critical Rayleigh number. The small difference
between them, divided by the critical one, is used as an expansion parameter of the variables.
The patterns which may appear in non linear convection were investigated by Segel and Stuart
[57] and Stuart [61]. The method presented in these papers is still used in the literature. That
is, to make an expansion of the variables in powers of the small parameter, including normal
modes (separation of horizontal space variables in complex exponential form) of the solutions
of the non linear equations. With this method, an ordinary non linear differential equation
(or set of equations), the Landau equation, is obtained for the time dependent evolution of
the amplitude of the convection cells. Landau used this equation to explain the transition to
turbulent flow [31], but never explained how to calculate it. For a scaled complex A(t), the
equation is:

”;‘? =rA—|A]* A. (1)
In some cases, the walls are considered friction free (free-free case, if both walls have no
friction). One reason to make this assumption is that the nonlinear problem simplifies
considerably. Another one is that the results may have relevance in convection phenomena
in planetary and stellar atmospheres. In any way;, it is possible that the qualitative results
are similar to those of convection between walls with friction, mainly when the interest is
on pattern formation. This simplification has also been used in convection of viscoelastic
fluids. To describe the nonlinear envelope of the convection cells spatial modulation, it is
possible to obtain a non linear partial differential equation by means of the multiple scales
approximation [3], as done by Newell and Whitehead [39] and Segel [56]. This equation is
called the Newell-Whitehead-Segel (NWS) equation. For a scaled A(X,Y,T), it is:
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Here, X, Y and T are the scaled horizontal coordinates and time, respectively. In the absence of
space modulation it reduces to the Landau Equation 1. It is used to understand the non linear
instability of convection flow. However, it has been found that this equation also appears in
the description of many different physical phenomena. The non linear stability of convection
rolls depends on the magnitude of the coefficients of the equation. If the possibility of the
appearance of square or hexagonal patterns is of interest, then the stability of two coupled or
three coupled NWS equations have to be investigated. They are obtained from the coupling
of modes having different directions (see [22] and [23]).



Viscoelastic Natural Convection 5

The shear stress tensor of Newtonian fluids have a linear constitutive relation with respect
to the shear rate tensor. The constitutive equation of that relation has as constant of
proportionality the dynamic viscosity of the fluid, that is

Tij = 21]oejj. 3)

\, 1 aZ}i aU]
61]—§<a—xj+a_xi)/ (4)

Any fluid whose stress tensor has a different constitutive relation, or equation, with respect
to the shear rate tensor is called non Newtonian. That relation might have an algebraic
or differential form. Here, only natural convection of viscoelastic fluids will be discussed
[4, 9] as non Newtonian flows. These fluids are defined by constitutive equations which
include complex differential operators. They also include relaxation and retardation times.
The physical reason can be explained by the internal structure of the fluids. They can be
made of polymer melts or polymeric solutions in some liquids. In a hydrostatic state, the
large polymeric chains take the shape of minimum energy. When shear is applied to the
melt or solution, the polymeric chains deform with the flow and then they are extended or
deformed according to the energy transferred by the shear stress. This also has influence
on the applied shear itself and on the shear stress. When the shear stress disappears, the
deformed polymeric chains return to take the form of minimum energy, carrying liquid with
them. This will take a time to come to an end, which is represented by the so called retardation
time. On the other hand, there are cases when shear stresses also take some time to vanish,
which is represented by the so called relaxation time. It is possible to find fluids described by
constitutive equations with both relaxation and retardation times. The observation of these
viscoelastic effects depend on different factors like the percentage of the polymeric solution
and the rigidity of the macromolecules.

Here, the shear rate tensor is

A simple viscoelastic model is the incompressible second order fluid [10, 16, 34]. Assuming
T;; as the shear-stress tensor, the constitutive equation is:

Tjj = 210¢ij + 4Pejrex; + 27%;]‘. (5)
and DP; DP; v, 9y
Dt = Dt Py, oy, T “
for a tensor P;; and where
% = % + Uka%, @)

is the Lagrange or material time derivative. The time derivative in Equation 6 is called the
lower-convected time derivative, in contrast to the following upper convected time derivative
DRy _ DRy, 9ok _pp 9%
Dt Dt ik ax] ik axi’

8)



6 Viscoelasticity — From Theory to Biological Applications

and to the corrotational time derivative

DPZ-]- DP;;
ot = pp T WikPhj — Pixwrj, )
where the rotation rate tensor is
1 ( dv; a?J]
—— =t £ 2T N 1

wl] 2 (aX] axi ( 0)

These time derivatives can be written in one formula as
ot = pr T WikP — Piwij—a (eikij + Pikekj) , (11)

where the time derivatives correspond to the upper convected for a = 1, the corrotational
for a = 0 and the lower convected for a = —1, respectively [47]. These time derivatives are
invariant under a change of reference frame. In Equations 3 and 5 7 is the viscosity and in
Equation 5 B and -y are material constants. The second order model Equation 5 has limitations
in representing fluid motion. It is an approximation for slow motion with small shear rate
[4]. Linear and nonlinear convection of second order fluids has been investigated by Davalos
and Manero [12] for solid walls under the fixed heat flux boundary condition. The same fluid
has been investigated looking for the possibility of chaotic motion (aperiodic and sensitive to
initial conditions [28]) by [58] for the case of free boundaries and fixed temperature boundary
condition.

The Maxwell model [4] is used to describe motion where it is possible to have shear stress
relaxation. The constitutive equation of this model is:

D;j
Tij + /\Ttl] = 21706,']'. (12)

where A is the relaxation time. A characteristic of this equation is that for A small the fluid
nearly behaves as Newtonian. For large A it tends to behave as an elastic solid as can
be seen if ¢;; is considered as the time derivative of the strain. In the limit of very large
A, the approximate equation is integrated in time to get Hook’s law, that is, the stress is
proportional to the strain. This constitutive equation has three versions, the upper convected,
the lower convected and the corrotational Maxwell models, depending on the time derivative
selected to describe the fluid behavior. The natural convection of the Maxwell fluid has been
investigated by Vest and Arpaci [66] for free-free and solid-solid walls with fixed temperature.
Sokolov and Tanner [59] investigated the linear problem of the Maxwell fluid, among other
viscoelastic fluids, using an integral form of the stress tensor. The non linear problem has been
investigated for free-free boundaries by Van Der Borght et al. [64], using the upper convected
time derivative. Brand and Zielinska [5] show that nonlinear traveling waves appear for
different Prandtl numbers in a convecting Maxwell fluid with free-free walls. The Prandtl
number Pr is the ratio of the kinematic viscosity over the thermal diffusivity. The chaotic
behavior of convection of a Maxwell fluid has been investigated by Khayat [29]. The effect of
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the thickness and thermal conductivity of the walls has been taken into account in the linear
convection of a Maxwell fluid by Pérez-Reyes and Davalos-Orozco [46].

The Oldroyd’s fluid model [4, 41] includes, apart from a relaxation time, a retardation time.
The linear version of this model is called the Jeffreys model (but the non linear model is
sometimes called by this name). The constitutive equation is

Dr; Dej;
Tl] + /\W = 2770 <€1] + /\1 Dt ) (13)
where A; is the retardation time. Notice that when Ay = 0 this contitutive equation reduces
to that of a Maxwell fluid. Therefore, a number of papers which investigate the convection
in Oldroyd fluids also include results of the Maxwell fluid. When A = 0, the equation
reduces to that of the second-order fluid with a zero coefficient 7. Linear convection of
Oldroyd fluids has been investigated by Green [21], Takashima [62], Kolkka and Ierley [30],
Martinez-Mardones and Pérez-Garcia [35] and Davalos-Orozco and Vazquez-Luis [14] for
free upper surface deformation. Nonlinear calculations of the Oldroyd fluid where done
tirst by Rosenblat [55] for free-free boundaries. The non linear problem of solid-solid and
solid-free boundaries was investigated by Park and Lee [43, 44]. Nonlinear problems were
investigated by Martinez-Mardones et al. for oscillatory and stationary convection [36], to
study the stability of patterns in convection [37] and to investigate the convective and absolute
instabilities by means of amplitude equations [38].

The following section presents the balance equations suitable for natural convection. Section
3 is an introduction to Newtonian fluids convection. The Sections 4, 5, and 6 correspond
to reviews of convection of second-order, Maxwell and Oldroyd fluids, respectively. Finally,
some conclusions are given in the last Section 7.

2. Equations of balance of momentum, mass and energy

Here, the basic equations of balance of momentum, mass and energy for an incompressible
fluid are presented. In vector form, they are

Ju*
3 [a:l* +(u" V*W] =-V'p +V T +pg (14)
Vrout =0 (15)
oT* * * * *2 sk
pCy 3 + (u* -V T = XpV™T (16)

The dimensional variables are defined as follows. p is the density, u* = (u*,v*,w") is the
velocity vector, p* is the pressure, T* is the stress tensor which satisfies one of the constitutive
equations presented above. T* is the temperature, Cy is the specific heat at constant volume
and Xr is the heat conductivity of the fluid. Use is made of V* = (d/0x*,0/dy*,0/0z*). g

(0,0, —g) = —gk is the vector of the acceleration of gravity with g its magnitude and k a unit
vector in the direction opposite to gravity. Equation 15 means that the fluid is incompressible
and that any geometric change of a fluid element volume in one direction is reflected in the
other the directions in such a way that the volume is preserved according to this equation.
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If the thickness and conductivity of the walls are taken into account, the temperature in each
wall satisfies the equation
oT;,

PWCVW atzv = va*ZT{;v (17)
where Ty is the temperature of one of the walls (T, for the lower wall and Ty; for the upper
wall). pyw, Cyw and Xyy are the density, specific heat at constant volume and heat conductivity
of one of the walls (o7, Cyr, Xpw for the lower wall and py;, Cyyy, Xyw for the upper wall).
The variables are subjected to boundary conditions. The velocity has two types of conditions:
for friction free walls and for solid walls with friction. They are, respectively:

nu' =0 and n-V'u"=n-V0" =0 at z"=zyandz" =z +d free boundary (18)

u'=0 at z"=2z] and z" =2z]+d solid boundary

where n is the unit normal vector to one of the walls, z; is a particular position of the lower
wall in the z-axis and d is the thickness of the fluid layer. The conditions in the first line of
Equation 18 mean that the fluid can not penetrate the wall and that the wall does not present
any shear due to the absence of friction. The condition of the second line means that the fluid
sticks to the wall due to friction.

The temperature satisfies the boundary conditions of fixed temperature and fixed heat at the
walls, respectively,

T"=Ty at z"=2z{ and z"=2z]+d fixed temperature (19)

n-V*T*:}q(—O at z" =z] and z" =z +d fixed heat flux
F

where g is a constant heat flux normal and through one of the walls.

If the thickness and heat conductivity of the walls are taken into account, the temperature has
to satisfy the conditions
Tf =Tg, at z' = ZT —dr, (20)

T} =Tay at z"=z]+d+dy
T; =T, Xnp-V'T"=np-V'T; at z"=2z]
T =T Xyny -V'T"=ny-V'T} at z*=z{+d

where X; = Xpw/Xr and Xy = Xyw/Xrp. Tpr and T4y are the temperatures below the
lower wall and above the upper wall. d; and dy; are the thicknesses of the lower and the
upper walls, respectively. The normal unit vectors to the upper and lower walls are ny and
np. The two conditions in the third and forth lines of Equation 20 mean the continuity of
temperature and the continuity of the heat flux between the fluid and each wall, respectively.

The equations and boundary conditions can be made non dimensional by means of
representative magnitudes for each of the dependent and independent variables. For example,
the distance is scaled by the thickness of the fluid layer d or a fraction of it, the time is
scaled with d?/x, where the thermal diffusivity is k. = Xr/poCy, the velocity with «/d, the
pressure and the stress tensor with pgx?/d?. py is a representative density of the fluid. The
temperature is made non dimensional with a characteristic temperature difference or with
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a quantity proportional to a temperature difference. The time can also be scaled with d?/v,
where the kinematic viscosity is v = 179/ pg and the velocity with v/d. Then, the pressure and
the stress tensor can be scaled in two ways, by means of pgxv/d? or by pov? /d?. The difference

stems on the importance given to the mass diffusion time d? /v or to the heat diffusion time
d? /x.

It is assumed that before a perturbation is applied to the Equations 14 to 16 the system is in a
hydrostatic state and that the variables satisfy

0= —V'P§ +poll —ar (T —Th) g e1)

V2T =0 (22)

The solution of these two equations will be the main pressure Py and the main temperature
profile Tj of the system before perturbation. Here, py is a reference density at the reference
temperature T which depends on the boundary conditions. at is the coefficient of volumetric
thermal expansion of the fluid. These two solutions of Equations 21 and 22 are subtracted from
Equations 14 to 16 after introducing a perturbation on the system. In non dimensional form,
the equations of the perturbation are

1 [/ou N
ﬁ<§+(u-V)u)——Vp+V-T+R6k (23)
V.ou=0 (24)
20 L,
5+ V) o—u-k=v2 (25)
K aGW_ 2

The non dimensionalization was based on the heat diffusion time and the scaling of the
pressure and shear stress with poxv/d?. u, p, T, 6 and 6y are the perturbations of velocity,
pressure, shear stress, fluid temperature and walls temperature (61, and 6;; for the lower and
upper walls), respectively. R = garATd® /vk is the Rayleigh number and Pr = v/x is the
Prandtl number. AT is a representative temperature difference. xyy is the thermal diffusivity
of one of the walls (k. for the lower wall and «; for the upper wall).

The last term in the left hand side of Equation 25 appears due to the use of the linear
temperature solution of Equation 22. If the temperature only depends on z* in the form
Ty = a1z* + by, this solution is introduced in a term like u* - V*T(j. Here, a1 is a constant which
is proportional to a temperature difference or an equivalent if the heat flux is used. In these
equations, the Boussinesq approximation has been taken into account, that is, in Equations
14 to 16 the density was assumed constant and equal to py everywhere except in the term
pg where it changes with temperature. The other parameters of the fluid and wall are also
assumed as constant. These conditions are satisfied when the temperature gradients are small
enough.

The constitutive Equations 3, 5, 12, 13 are perturbed and also have to be made non
dimensional. For the perturbation shear stress tensor 7;; and shear rate tensor ¢;;, they are

Tij = Ze,-j. (27)
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t = 2epi+ ABeyey; + 2T oo (28)
ij = <tij iktkj Dt
. L% = D¢ 29
T,]—i— Dr ejj- (29)
T"—f—L% =2 e--+LEDeij . (30)
ij Dt g Dt

where B = pr/ovd, T = yx/pvd?, L = Ax/d?> and E = A{ /A < 1.

The boundary conditions of the perturbations in non dimensional form are
n-u=0 and n-Vu=n-Vo=0 at z=2zy and z=1z1+1 free boundary (31)

u=0 at z=2zy and z=2z1+1 solid boundary
0=0 at z=2zy and z=2z1+1 fixed temperature (32)
n-V0=0 at z=2zy and z=2z1+1 fixed heat flux

6p =0 at z=12z1— D (33)
Oy =0 at z=2z+1+ Dy
0p =60, Xinp-VO=np -V at z=2
Ou=06, Xyny-VO0=ny -VOy at z=z1+1

Here, Dy and Dy; are the ratios of the thickness of the lower and upper walls over the fluid
layer thickness, respectively. The meaning of the conditions Equation 32 is that the original
temperature and heat flux at the boundary remain the same when 6 = 0 and n - V6 = 0. The
same can be said from the first two Equations 33, that is, the temperature below the lower wall
and the temperature above the upper wall stay the same after applying the perturbation.

3. Natural convection in newtonian fluids

The basics of natural convection of a Newtonian fluid are presented in this section in order to
understand how other problems can be solved when including oscillatory and non linear flow.
The section starts with the linear problem and later discuss results related with the non linear
equations. The system is a fluid layer located between two horizontal and parallel plane walls
heated from below or cooled from above. Gravity is in the z-direction. As seen from Equations
23 to 25, the linear equations are

1 au_ 2 ~
V-u=0 (35)
%
S —w=v2 (36)

In Equation 34 use has been made of Equations 3, 4 and 35. The first boundary conditions
used will be those of free-free and fixed temperature at the wall [7]. These are the simplest
conditions which show the qualitative behavior of convection in more complex situations.
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To eliminate the pressure from the equation it is necessary to apply once the curl operator to
Equation 34. This is the equation of the vorticity and its vertical component is independent
from the other components of the vorticity vector. Applying the curl one more time, it is
possible to obtain an equation for the vertical component of the velocity independent of the
other components. The last and the first equations are

1 avzw o 4 2
Az
2 vy, 9)

Here, Vi = (9%/9%x,9%/9%y) is the horizontal Laplacian which appears due to the unit vector
k in Equation 34. The third component of vorticity is defined by {7 = [V x u],. The three
components of { are related with the three different elements of the rotation tensor Equation
10 multiplied by 2.

These Equations 37, 38 and 36 are partial differential and their variables can be separated in
the form of the so called normal modes

f(x,y,2,t) = F(z)exp (ikex + ikyy + ot) (39)

F(z) is the amplitude of the dependent variable. The wavevector is defined by k = (ky, ky),
ky and ky are its x and y-components and its magnitude is ‘% = k. When the flow is time

dependent, ¢ = s + iw where s is the growth rate and w is the frequency of oscillation. Then,
using normal modes and assuming that the system is in a neutral state where the growth rate
is zero (s = 0), the equations are

iw [ d2 42 2
d2
iwZ = (ﬁ — k2> Z (41)
. d2 )
‘;—VZV + ik U +ikyV = 0 (43)

The last equation is the equation of continuity and U and V are the z- dependent amplitudes
of the x and y-components of the velocity. ®, W and Z are the z-dependent amplitudes of
the temperature and the vertical components of velocity and vorticity, respectively. If the heat
diffusion in the wall is taken into account with a temperature amplitude ®y, Equation 26

becomes
iw @y = <dz - k2) ® (44)
Kw W= dz2 w

11
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In normal modes the boundary conditions Equations 31 to 33 change into those for the
amplitude of the variables. They are

d*W dz
W=0 |, ?—0 , E_O at z=0 and z=1 free boundary (45)
aw .
W=0 |, E:O , Z=0 at z=0 and z=1 solid boundary
©=0 at z=0 and z=1 fixed temperature (46)
d
g =0 at z=0 and z=1 fixed heat flux
O =0 at z=-Dg (47)
Ou=0 at z=14+Dy
d® dOp
@L—@, XLE—W at z=0
d® dOy
Ou=0, Xu o at oz

where the two free boundary conditions n - Vu = n - Vv = 0 where replaced by d>W /dz? = 0
using the z-derivative of the continuity Equation 43 and the x and y-components of the solid
boundary condition u = 0 are replaced by dw/dz = 0 using Equation 43. The conditions of
the z-component of vorticity Z are obtained from its definition using the x and y-components
of the boundary condition u = 0 for a solid wall and the derivative for the free wall. Notice
that in the linear problem, in the absence of a source of vorticity (like rotation, for example)
for all the conditions investigated here, the vorticity Z = 0. Vorticity can be taken into account
in the non linear problem (see for example Pismen [49] and Pérez-Reyes and Davalos-Orozco
[48]). Equations 40 and 42 are independent of the vorticity Z. They can be combined to give

The first boundary conditions used will be those of Equations 45 and 46 of free-free and
fixed temperature at the wall [7]. These are the simplest conditions, important because they
allow to obtain an exact solution of the problem and may help to understand the qualitative
behaviour of convection in more complex situations. Using Equations 40 and 42 evaluated at
the boundaries, these conditions can be translated into:

W=D?w=D*w=Dw=... and ©=D?0=D*0®=D0=... (49)
where D = d/dz. These are satistied by a solution
W = Asin(nmnz) (50)

Here, 1 is an integer number and A is the amplitude which in the linear problem can not be
determined. In this way, substitution in Equation 48 leads to an equation which can be written
as

R= k12 (nzrcz +k2) {(nzrcz +k2>2 - Cl‘)ﬂ +k12 (nzrcz +k2)2 <1 + IL) iw (1)
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The Rayleigh number must be real and therefore the imaginary part should be zero. This
condition leads to the solution w = 0. That is, under the present boundary conditions, the
flow can not be oscillatory, it can only be stationary. Thus, the marginal Rayleigh number for
stationary convection is

R = k1—2 <n27'c2 +k2>3 (52)
From this equation it is clear that n represents the modes of instability that the system may
show. If the temperature gradient is increased, the first mode to occur will be that with n = 1.
Here, the interest is to calculate the lowest magnitude of R with respect to k because it is
expected that the mode n = 1 will appear first for the wavenumber that minimizes R. Thus,
taking the derivative of R with respect to k and solving for k, the minimum is obtained for

k=rm/Vv2 (53)

This critical wavenumber is substituted in Equation 52 to obtain the critical Rayleigh number
for free-free walls and fixed temperature

27
R= Zn4 = 657.51 (54)

This may be interpreted as the minimum non dimensional temperature gradient needed for
the beginning of linear convection. The space variables were made non dimensional using
the thickness of the layer. Therefore, the result of Equation 53 shows that, under the present
conditions, the size (wavelength) of the critical convection cells will be A = 2v/2d.

Now, the solid-solid conditions and the fixed temperature conditions are used. In this case too,
it has been shown that convection should be stationary [7]. The problem is more complicated
and numerical methods are needed to calculate approximately the proper value problem for
R. From Equation 48 and w = 0 the equation for W is :

&2 3
<— —k2) W+ RE*W =0 (55)
dz?

Due to the symmetry of the boundary conditions it is possible to have two different solutions.
One is even and the other is odd with respect to boundary conditions located symmetrically
with respect to the origin of the z-coordinate. Thatis, whenzy = —1/2. Assume W o exp(mz)
in Equation 55 to obtain

(m2 - k2)3 L RZ =0 (56)

This is a sixth degree equation for m (or a third degree equation for m?) which has to be solved
numerically. The solutions for Equation 55 can be written as

W = Alemlz + Aze_mlz + Ag,emzz + A4€_mzz + A5€m3Z + A6€_m3z (57)

one of this coeficients A; has to be normalized to one. The m;’s contain the proper values R and
k. Three conditions for W are needed at each wall. They are W = DW = D*W — 2k?D?W at
z = £1/2. The last one is a result of the use of the condition for ® in Equation 40 with w = 0.
As an example of the even and odd proper value problem, the evaluation of the conditions of

13



14 Viscoelasticity — From Theory to Biological Applications

W at z = +£1/2 will be presented. They are

m m

0= Ale% + Aze_T1 + Ag,emT2 + Age 2

m

+Ase? + Age” 7 (58)

NS

m Wl3

0= Ale_% +A26m71 +A3€_%2 +A4€% + A5€_73 + Age 2

Addition and subtraction of both conditions give, respectively
L m M Iits
0 =2 (A1 + Ag) cosh ( : ) +2 (A3 + Ay) cosh : ) +2 (A5 + Ag) cosh ( . ) 69

0= 2 (A1 — Ag) sinh (1) +2 (43 — Ag) sinit (22 ) +2 (45 — Aq)sinh (22)

The same can be done with the other boundary conditions. The important point is that two
sets can be separated, each one made of three conditions: one formed by the addition of the
conditions and another one made of the subtraction of the conditions, that is, the even and the
odd modes of the proper value problem. It has been shown numerically [7] that the even mode
gives the smaller magnitude of the marginal proper value of the Rayleigh number. The odd
mode gives a far more larger value and therefore it is very stable in the present conditions of
the problem. However, there are situations where the odd mode can be the first unstable one
(see Ortiz-Pérez and Déavalos-Orozco [42] and references therein). Recently, Prosperetti [51]
has given a very accurate and simple formula for the marginal Rayleigh number by means of
an improved numerical Galerkin method. That is

1 (1% + k)5 (sinh(k) + k)
R=1 ((712 + k2)2(sinh(k) 4 k) — 16n2kcosh(k/2)2> (60)

The marginal curve plotted from this equation gives a minimum R = 1715.08 at k = 3.114.
These critical values are very near to those calculated by means of very accurate but complex
numerical methods. The accepted values are R = 1707.76 at k = 3.117 [7]. From the critical
wavenumber it is possible to calculate the size (wavelength) of the cell at onset of convection.
That is, A = 27td/3.117, which is smaller than that of the free-free case. This is due to the
friction at the walls. Walls friction also stabilizes the system increasing the critical Rayleigh
number over two and a half times the value of the free-free case.

Linear convection inside walls with fixed heat flux has been investigated by Jakeman [26].
Hurle et al. [25] have shown that the principle of exchange of instabilities is valid for a number
of thermal boundary conditions, that is, oscillatory convection is not possible and w = 0,
including the case of fixed heat flux. Jakeman [26] used a method proposed by Reid and
Harris [7, 54] to obtain an approximate solution of the proper value of R. This is a kind
of Fourier-Galerkin method [17, 18]. From the expresion obtained, the critical Rayleigh and
wavenumber were calculate analytically by means of a small wavenumber approximation.
The reason is that it has been shown numerically in the marginal curves, that the wavenumber
of the smallest Rayleigh number tends to zero. The critical Rayleigh number for the free-free
case is R = 120 = 5! (k = 0) and for the solid-solid case R = 720 = 6! (k = 0). Itis
surprising that the critical Rayleigh numbers are less than half the magnitude of those of
the fixed temperature case. This can be explained by the form of the temperature boundary
condition, that is D6 = 0. From the condition it is clear that the perturbation heat flux can
not be dissipated at the wall and therefore the perturbation remains inside the fluid layer.
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This makes the flow more unstable and consequently the critical Rayleigh number is smaller.
The linear problem was generalized by Davalos [11] to include rotation and magnetic field,
and obtained explicit formulas for the critical Rayleigh number depending on rotation and
magnetic field and a combination of both. Notice that the method by Reid and Harris [54] is
very effective and it is still in use in different problems of convection. However, as explained
above, it has been improved by Prosperetti [51].

The nonlinear problem for the fixed heat flux approximation has been done by Chapman and
Proctor [8]. They improved the methods of calculation with respect to previous papers. The
method to obtain a nonlinear evolution equation is to make an scaling of the independent
and dependent variables taking into account that, if the Rayleigh number is a little far
above criticality (weak nonlinearity), the wavenumber of the convection cell is still small.
Consequently, the motion will be very slow because the cell is very large. Then, the scaling
used in the nonlinear Equations 23 to 25 is as follows

9 9 9 9 9 40

R=Rc+p*e, p=0(1), o =es, = a=Car

(61)

They solve a two-dimensional problem using the stream function by means of which the
velocity vector field satisfies automatically Equation 24. The velocity with the scaling is
defined as u = (99 /0z,0, —edyp/0X). The stream function is also scaled as iy = e¢. The
expansion of the functions in terms of € is

9:90(X,Z,T)+6292(X,z,r)+--- cp:4>0(X,Z,T)+624>2(X,Z,T)—|—--- (62)

The reason for this expansion is that the substitution of the scaling in Equations 23 to 25 only
shows even powers of €. The problem is solved in different stages according to the orders of €
subjected to the corresponding scaled boundary conditions. The critical value of R is obtained
from a solvability condition at O(e?). Notice that they locate the walls at z = 41 and obtain
R. = 15/2 and R, = 45 for the free-free and the solid-solid cases, respectively. If the definition
of the Rayleigh number includes the temperature gradient it depends on the forth power of
the thickness of the layer. Therefore, the Rayleigh number defined here is sixteen times that
defined by Chapman and Proctor [8]. The evolution equation is obtained as a solvability
condition at O(e*). That is, with 8y = (X, 1)
af \?
(&%)

2 52 4 52

% + ‘u_ ﬂ + B ]/l_ ﬂ + Ci

oT RC 0X2 RC oXx4 0X
This equation is valid for free-free and solid-solid boundary conditions and the constants B
and C have to be calculated according to them. Chapman and Proctor found that the patterns
of convection cells are rolls but that they are unstable to larger rolls. Therefore, the convection
will be made of only one convection roll. An extension of this problem was done by Proctor
[50] including the Biot number Bi in the thermal boundary conditions. The Biot number is a
non dimensional quantity that represents the heat flux across the interface between the fluid
and the wall. The fixed heat flux boundary condition is obtained when the Bi is zero. When
Bi is small but finite, the critical convection cells are finite and therefore more realistic.

=0 (63)
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The effect of the thickness and heat conductivity of the wall on natural convection has been
investigated by Cericier et al. [6]. The goal is to be able to obtain more realistic critical values
of the Rayleigh number and wavenumber. Here it is necessary to use the thermal conditions
Equations 22 and 33 for the main temperature profile and the perturbation of temperature,
respectively. The main temperature profile is linear with respect to z but is more complex
due to the presence of terms which depend on all the new extra parameters coming from
the geometry and properties of the walls. From Equation 33 it is possible to calculate a new
condition which only has the amplitude of the fluid temperature perturbation. In the present
notation it has the form

q q
DO— ——F——F—0=0 at z=0 DO O=0 at z=1, (64
X tanh (qDL) oz ’ + Xytanh (un) oz (69
where the coefficients of ® in both conditions might be considered the Biot numbers of each
wall. Here, g = V'k? + icw. Now there are four new parameters which influence the convective
instability, the heat conductivities ratio X; and X;; and the thicknesses ratio D; and Dy.
Assuming that X = X; = Xy and d = Dy = Dy the problem has some simplification.

Figure 1 shows results for the case when the properties of both walls are the same. Notice
that when X increases the critical values in both figures change from the fixed temperature
case to the fixed heat flux case. The results are similar to those of Cericier et al. [6] and were
plotted using a formula calculated from a low order Galerkin approximation. It is important to
observe that in the middle range of X the thickness of the walls play a relevant roll producing
large differences between the critical values, for fixed X.

The problem of surface deformation in convection requires lower conditions for free or solid
walls and an upper condition of a free deformable surface. The stationary linear problem was
first investigated by V. Kh. Izakson and V. I. Yudovich in 1968 and their work is reviewed
in [19]. The stationary problem with rotation and a variety of thermal boundary conditions
was investigated by Déavalos-Orozco and Lépez-Mariscal [13]. The problem of oscillating
convection was first investigated by Benguria and Depassier [2]. They found that when
the wall is solid, due to the restriction R/PrG < 1 (discussed presently) it is not possible
for oscillatory convection to have a smaller critical Rayleigh number than that of stationary
convection with surface deformation. Therefore, only the free wall case presents oscillatory
convection as the first unstable one. G = gd>/v? is the Galileo number, representative of the
surface restoration due to the gravitational force. The deformation of the surface is due to
a pressure difference which is balanced by the shear stresses at the fluid surface, that is, the
dimensional zero stress jump at the surface

(p* —poo)nf =Tpn; at z¥ =z +d+n"(xt). (65)

When the surface is flat the pressure condition is p* — peo = 0 (no pressure jump), where peo
is the pressure of the ambient gas whose viscosity is neglected. This problem requires the
kinematic boundary condition of the surface deformation which in two-dimensions and in
non dimensional form is

_ 97 0

w= o U at z=z1+1+15(xt) (66)
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Figure 1. Critical Rayleigh number and wavenumber vs conductivities ratio for two thicknesses ratio

which means that a fluid particle remains on the fluid interface and that the time variation of
the convected surface deflection moves with the same vertical velocity as that of the fluid
particle. 7 is an extra dependent variable representing the amplitude of the free surface
deformation. The non dimensional normal and tangent vectors are defined as

n— (_’]\/7"1) (67)
t= (1;\’;") (68)

where N = (12 +1)!/2 and the subindexes mean partial derivative. Other conditions, like
Equations 18 to 20, defined using the normal and tangential vectors to the free deformable
surface have to be modified with the definitions given in Equations 67 and 68. Equation 66
has to be multiplied by n to obtain the normal stress boundary condition and by t to calculate
the tangential stress boundary condition. Here, the problem is assumed two-dimensional, but
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when it is three-dimensional it is necessary to define another tangential vector to the surface,
perpendicular to both n and t. The problem simplifies if zy = —1 and the boundary conditions
at the free surface are set at z = 7 (x, t). For the linear problem 7 (x,t) is assumed small. This
gives the possibility to make a Taylor expansion of the variables at the free surface, that is,
around z = 0, and simplify the boundary conditions. From this expansion, it is found that the
fixed heat flux and the fixed temperature conditions remain the same in the linear problem.
In two-dimensional flow it is possible to use the stream function. In this case, as a result of
the expansion and use of normal modes, the kinematic, tangential stress and normal stress
boundary conditions, respectively, are

iwn+ikY =0 at z=0 (69)
(D*+R)¥=0 at z=0 (70)

iwD3Y  iw 5 W 5
c _E(?)k +E>D‘P—k Pr¥ =0 at z=0 (71)

Y is the amplitude of the stream function. The approximations done here are only valid
when the Galileo number satisfies R/PrG < 1. The reason is that the density and the
temperature perturbations, related by p’ = (R/PrG)8, should be p’ < 8 in order to satisfy the
Boussinesq approximation, which, among other things, neglects the variation of density with
temperature in front of the inertial term of the balance of momentum equation. Consequently,
the approximation is valid when the critical Rayleigh numbers satisfy Rc < PrG. In the
stationary problem the new parameter is in fact PrG due to the condition Equation 71 (see
[19],[13]). However, in the oscillatory problem, Pr is an independent parameter, as seen in
Equation 48, but it appears again in the condition Equation 71. Notice that in the limit of
PrG — oo condition Equation 71 reduces to that of a flat wall. Then, the product PrG has two
effects when it is large: 1) it works to guarantee the validity of the Boussinesq approximation
under free surface deformation and 2) it works to flatten the free surface deformation.

The problem of oscillatory convection was solved analytically by Benguria and Depassier
[2] when it occurs before stationary convection, that is, when the flat wall is free with fixed
temperature and the upper deformable surface has fixed heat flux. They found that the cells
are very large and took the small wavenumber limit. The critical Rayleigh number is R, = 30
and k. = 0.

Nonlinear waves for the same case of the linear problem, have been investigated by Aspe
and Depassier [1] and by Depassier [15]. In the first paper, surface solitary waves of the
Korteweg-de Vries (KdV) type were found. In the other one, Depassier found a perturbed
Boussinesq evolution equation to describe bidirectional surface waves.

4. Natural convection in second-order fluids

The methods used in natural convection of Newtonian fluids can also be used in non
Newtonian flows. Linear and non linear natural convection of second order fluids was
investigated by Siddheshwar and Sri Krishna [58]. They assumed the flow is two-dimensional
and used the free-free and fixed temperature boundary conditions. Here, the constitutive
Equation 5 is used in the balance of momentum equation.
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For the linear problem use is made of normal modes. The amplitudes of the stream function
and the temperature are assumed of the form sin n7tz which satisfies the boundary conditions.
As before, the substitution in the governing equations leads to the formula for the marginal
Rayleigh number of a second order fluid

R= g (w2 +2) [ (1)’ = & (140 (w2 +.2) )] 7

k2 Pr = Pr

Here, Q = v/pod? is the elastic parameter. The Rayleigh number is real and the imaginary
part should be zero. The only way this is possible is that w = 0. Therefore, the flow can not
be oscillatory and this reduces to Equation 52 for the marginal Rayleigh number and to the
critical one of a Newtonian fluid for free-free convection, that is, Rc = 2774 /4 atkc = 7w//2.
By means of the energy method for the linear problem, Stastna [60] has shown that, in the
solid-solid case and fixed temperature at the walls, the convection can not be oscillatory and
w = 0. Therefore, again the linear critical Rayleigh number and wavenumber are the same as
those of the Newtonian fluid.

S (n2n2 +k2>2 {1 L Q (n27r2 +k2)] iw

In their paper, Siddheshwar and Sri Krishna [58] also investigated the possibility of chaotic
behaviour to understand the role played by the elastic parameter Q. They use the doble
Fourier series method of Veronis [65] to calculate, at third order, a nonlinear system of Lorenz
equations [32] used to investigate possible chaotic behavior in convection. In particular, the
form selected by Lorenz for the time dependent amplitudes of the stream function and the
temperature are

Y(x,z,t) = X(t) sinkx sin 7tz (73)

O(x,z,t) = Y(t)coskx sintz + Z(t) sin 27z

which satisfy the boundary conditions. These are used in the equations to obtain the nonlinear
coupled Lorenz system of equations for the amplitudes X(t), Y(t) and Z(t)

X (t)

T 11X (t) +q2Y (1), (74)
‘“;_gt) = g3X(£) + QY (1) + gsX (D Z(1),
dz(t

7) =q6Z(t) +q7X(H)Y(t),

where the g; (1 = 1,--- ,7) are constants including parameters of the problem. According to
[58] the elastic parameter Q appears in the denominator of the constants g, and g5. In the
system of Equations 74 the variables can be scaled to reduce the number of parameters to
three. The results of [58] show that random oscillations occur when the parameters Q and Pr
are reduced in magnitude. Besides, they found the possibility that the convection becomes
chaotic for the magnitudes of the parameters investigated.

When the walls are solid and the heat flux is fixed, results of the nonlinear convective
behaviour of a second-order fluid have been obtained by Davalos and Manero [12]. They used
the method of Chapman and Proctor [8] to calculate the evolution equation that describes the
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instability. A small wavenumber expansion is done like that of Equation 61 and62. However,
in contrast to [8], their interest was in a three-dimensional problem and instead of using the
stream function, use was made of a function defined by u = V x V x ([)IAc. The boundary
condition of this function ¢ at the walls is ¢ = 0. It is found, by means of the solvability
condition at first order, that the critical Rayleigh number is the same as that of the Newtonian
case, that is, Rc = 720 at k¢ = 0 and that convection can not be oscillatory. At the next
approximation level, the solvability condition gives the evolution equation for the nonlinear
convection. The result was surprising, because it was found that the evolution equation is
exactly the same as that of the Newtonian fluid, that is, Equation 63 but in three-dimensions.
The only difference with Newtonian fluids will be the friction on the walls due to the second
order fluid. As explained above, the flow under the fixed heat flux boundary condition
is very slow and the convection cell is very large. Therefore, this result may be related
with the theorems of Giesekus, Tanner and Huilgol [20, 24, 63] which say that the creeping
flow of a second-order incompressible fluid, under well defined boundary conditions, is
kinematically identical to the creeping flow of a Newtonian fluid. The results presented here
are a generalization of those theorems for three-dimensional natural convection evolving in
time.

5. Natural convection in Maxwell fluids

In order to investigate the convection of a Maxwell fluid Equations 12 and 29 have to be
used in the balance of momentum equation. The linear problem was investigated by Vest
and Arpaci [66] for both free and solid walls and by Sokolov and Tanner [59] who present an
integral model for the shear stress tensor which represent a number of non Newtonian fluids,
including that of Maxwell. The linear equations in two-dimension use the stream function. In
normal modes they are expressed as:

<D2 e A{j:’) (D2 - k2> ¥ — ikNRO (75)

(D2 V. iw) O = ik¥ (76)

where N = (1+iwL) is a complex constant which depends on the viscoelastic relaxation time
and the frequency of oscillation.

The combination of these two equations gives:

<D2 e %) (D2 e iw) <D2 - k2) ¥+ KANRY =0 (77)

The free-free linear problem of [66] is illustrative. Assuming that the amplitudes are
proportional to sinnmz, the Equation 77 is transformed into a complex algebraic equation
for w

—iw® — WA +iwAy+ A3 =0 (78)

where

Ay = [L(nznz—l—kz)-l-l}, AZ:FJFPr(nZanZ) Lsz] (79)

L 22+ k2
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In Equation 75 the real and imaginary parts have to be zero. Then
jw (~w?+ A2) =0, —w?Ai+ A3 =0 (80)

There are two possibilities. 1) From the first w = 0 and from the second Az = 0. 2) From
the first w # 0 with w? = A, and from the second, after substitution of w, AjA, — Az = 0.
From 1), A3 gives the marginal stationary Rayleigh number for different modes n. The critical
value for mode n = 1 has already been given above. From 2), the marginal Rayleigh number
for oscillatory convection can be calculated for different modes n. Vest and Arpaci show
that, when the relaxation time parameter has a magnitude large enough, it is possible to
have oscillatory convection as the first unstable one, with R¢ smaller than that of stationary
convection. Also, they show that an increase of Pr decreases considerably Rc making
convection very unstable. A similar behavior at criticality can be found for the solid-solid
case. However, the solution is far more complex because it has to be solved numerically
ensuring that the proper value of the Rayleigh number is real. The frequency is obtained form
the numerical solution of the imaginary part and it is substituted into the real part, which
still contains the frequency. The marginal Rayleigh number is obtained from the real part.
Variation of the wavenumber leads to the minimum of the Rayleigh number, the critical one,
with its corresponding wavenumber and frequency. The conclusions obtained by Vest and
Arpaci [66] are that the solid-solid case is more stable than the free-free case but qualitatively
the response to the parameters L and Pr is similar.

The problem of a viscoelastic fluid layer with free and deformable surface will be discussed in
detail in the section for Oldroyd fluid convection. The Maxwell fluid case is included in that
problem.

The effect of the thickness and thermal conductivity of the walls on linear convection of a
Maxwell fluid layer was investigated by Pérez-Reyes and Davalos-Orozco [46]. They found
that, by making some algebra, those effects can be included in a kind of Biot number which
appears in the thermal boundary conditions of the upper and lower walls. The difference
with respect to the Newtonian problem is that here it is necessary to calculated numerically
the frequency of oscillation in the same way as explained in the last paragraph for the
solid-solid case. The number of parameters in the equations increased and therefore the
ratio x/xy which appears in the heat diffusion Equation 26 of the walls is assumed equal
to one. Besides, it is supposed that the ratios of conductivities and thicknesses of the upper
and lower walls are the same. With this in mind, some results are presented in Fig. 2.
Notice that in the figures F is used instead of L, for the relaxation time, and that D is used
instead of d. Note that here the curves of R¢ increase with X instead of decreasing as in
the Newtonian case for both magnitudes of D. Then, in this case it is easier to reach a
codimension-two point where stationary convection competes with oscillatory convection to
be the first unstable one. In the figure, the dashed lines correspond to stationary convection.
This codimension-two point depends on the Prandtl number. When Pr increases there is a
magnitude after which oscillatory convection is always the first unstable one (see [46]). In
contrast, for other magnitudes of the relaxation time the behavior is similar to that of the
Newtonian fluid (see Fig. 1) but with far more smaller magnitudes of R, as seen in Fig. 3.
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Thus, the oscillatory flow is very unstable for the new magnitude of F = 100. It is of interest
to observe the different reaction the flow instability has with respect to X and D for both
magnitudes of F.
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Figure 2. Pr=1 and F=0.1. A) Critical Rayleigh number vs X. B) Critical wavenumber vs X

Nonlinear convection of a Maxwell fluid was investigated by Van Der Borght [64] using
the ideal free-free boundary conditions. They calculated the heat dissipation of nonlinear
stationary hexagonal convection cells by means of the Nusselt number. It was found that,
for a given Rayleigh number, viscoelasticity effects only produce a slightly higher Nusselt
number than Newtonian convection. Nonlinear traveling waves in a Maxwell fluid were
investigated by Brand and Zielinska [5] using free-free boundary conditions. They obtain
one Landau equation for stationary convection and other one for oscillatory convection (see
Equationl). They found that standing waves are preferred over traveling waves for Pr < 2.82
at a codimension-two point. They also investigated the wave modulation in space by means
of an equation similar to Equation 2 but of higher nonlinear order. Irregular and sensitive
to initial conditions behavior of a convecting Maxwell fluid was investigated by Khayat [29]
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Figure 3. Pr=1 and F=100. A) Critical Rayleigh number vs X. B) Critical wavenumber vs X

using the free-free boundary conditions. The variables are written in the form of Equations
73, in addition to those of the shear and the two normal stresses. In this way, instead of
three coupled Lorenz Equations 74, he obtains a system of four coupled equations which
include as new time dependent variable, a linear combination of the amplitude of the normal
stresses difference and the shear stress. In the limit L — 0, the new system reduces to that
of Lorenz. He found that above a critical magnitude of the relaxation time L¢ the flow is
oscillatory. For an L below the critical one, the route to chaotic motion is different from that
of a Newtonian fluid, even in the case where L is very small. Viscoelasticity produces chaos
when the Newtonian fluid still is non chaotic.

6. Natural convection in Oldroyd fluids

The Maxwell model of viscoelastic fluids presented above, shows an extreme (violent)
mechanical behavior in comparison to other models. Mainly, this occurs when the relaxation
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time is large and the flow shows a more elastic behavior. The most elementary correction to
this model is the Oldroyd fluid model which includes the property of shear rate retardation.
That means that the fluid motion relaxes for a time interval even after the shear stresses have
been removed. The representative magnitude of that time interval is called retardation time.
This characteristic moderates the mechanical behavior of the Oldroyd fluid. The equations of
motion require the constitutive Equation 13 or 30 (in non dimensional form). The ratio of the
retardation time over the relaxation time E appears as an extra parameter which satisfies E < 1
(see [4], page 352). Notice that when E = 0 the Maxwell constitutive equation is recovered.
Therefore, for very small E the behavior of the Oldroyd fluid will be similar to that of the
Maxwell one.

The linear problem requires the same Equations 75 to 77, but here N = (1 +iwL) /(1 +iwLE).
The convection with free-free boundary conditions was investigated by Green [21] who
obtained an equation similar to Equation 78. In the same way, from the solution of the real
and imaginary parts, it is possible to calculate the marginal Rayleigh number and frequency of
oscillation. In this case it is also possible to find a magnitude of L and E where the stationary
and oscillatory convection have the same Rayleigh numbers, the codimension-two point. The
Prandtl number plays an important role in this competition to be the first unstable one. The
solid-solid problem was solved numerically by Takashima [62]. He shows that the critical
Rayleigh number is decreased by an increase of L and increased by an increase of E. The
numerical results show that an increase of Pr decreases drastically the magnitude of R¢ for
the Maxwell fluid, but it is not very important when E > 0. Oscillatory convection is the first
unstable one after a critical magnitude L is reached, which depends on the values of Pr and
E. For small Pr, L¢ is almost the same for any E. However, for large Pr the L for the Maxwell
fluid is notably smaller than that of the Oldroyd fluid. This fluid was also investigated by
Sokolov and Tanner [59] using an integral model. In contrast to the papers presented above,
Kolkka and Ierley [30] present results including the fixed heat flux boundary condition. They
also give some corrections to the results of Vest and Arpaci [66] and Sokolov and Tanner
[59]. The qualitative behavior of convection with fixed heat flux is the same, for both free-free
and solid-solid boundaries, but with important differences in the magnitude of Rc. The
codimension-two point also occurs for different parameters. Interesting results have been
obtained by Martinez-Mardones and Pérez-Garcia [35] who calculated the codimension-two
points with respect to L and E for both the free-free and the solid-solid boundary conditions.
Besides, they calculated the dependance these points have on the Prandtl number. They show
that for fixed E, the L of codimension-two point decreases with Pr.

When natural convection occurs with an upper free surface it is every day experience to see
that the free surface is deforming due to the impulse of the motion of the liquid coming
in the upward direction. The assumption that the free surface is deformable in the linear
convection of an Oldroyd viscoelastic fluid was first investigated by Davalos-Orozco and
Vazquez-Luis [14]. Under this new condition, the description of linear convection needs
the same Equations 75 to 77 and N = (1 +iwL)/(1 + iwLE). However, the free boundary
conditions have to change because the surface deformation produces new viscous stresses due
to viscoelasticity. The problem is assumed two-dimensional and the stream function appears
in the boundary conditions of the upper free deformable surface. The mechanical boundary
conditions Equations 69 and 70 are the same. However, the normal stress boundary condition
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Equation 71 changes into

GN G

iwD3Y  iw [(3k*  iw
N Pr

_+_)ny_k2m:o at z=0 (81)

which includes the viscoelastic factor N. Note that here the reference frame locates the free
surface at z = 0, that is z; = —1. The advantages of doing this were explained above. The
thermal boundary conditions remain the same. Numerical calculations were done for free and
solid lower walls. In both cases, the fixed temperature boundary condition was used in the
lower wall and the fixed heat flux boundary condition was used in the upper surface. In all the
calculations the Prandtl number was set equal to Pr = 1. The goal was to compare with the
paper by Benguria and Depassier [2]. Under these conditions, the results were first compared
with those of the Newtonian flat surface solid-free convection (Rcg = 669, kcg = 2.09 see [2]),
the Newtonian deformable surface oscillatory solid-free convection (Roy = 390.8, kcs = 1.76
see [2]) and with the viscoelastic (Oldroyd and Maxwell) flat surface solid-free convection
(presented in the figures with dashed lines). The results were calculated for different Galileo
numbers G. However, here only some sample results are presented (see [14] for more details).

Figure 4 shows results for the solid-free case with G = 100. The dashed lines are extended
until the stationary curve Rcg = 669 to show points of codimension-two. The curves of
viscoelastic convection with deformable surface (solid lines) always have smaller R¢ than
Ron = 390.8 and than those of the flat surface (dashed lines). When L increases both solid and
dashed curves tend to the same value. Then, surface deformation is irrelevant for very large
L. The Maxwell fluid is always the most unstable one. It was found that when L decreases
below a critical value, R¢ increases in such a way that it crosses above the line Rpy;, reaches a
maximum (around L = 0.03, Rc = 393.19 for E = 0.1 and R = 393.27 for E = 0.01,0.001, 0.0)
and then decreases until it reaches the line Rpy again for very small L. This means that
there is a range of values of L where Rc > Rpy = 390.8. Then, inside this rage, viscoelastic
convection with deformable surface is more stable than that of the Newtonian convection with
deformable surface. The result was verified with different numerical methods (see [14]). This
phenomenon was explained by means of the double role played by the Galileo number as an
external body force on convection (like rotation, see [13]) and as restoring force of the surface
deformation.

In Figure 5 shown are the results of the free-free case for G = 1000, which represents a larger
restoration force of the surface deformation. This results were compared with those of the
Newtonian flat surface free-free convection (Rcg = 384.7, kcg = 1.76 see [2]), the Newtonian
deformable surface oscillatory free-free convection (Rpony = 30.0, kcs = 0.0 see [2]) and with
the viscoelastic (Oldroyd and Maxwell) flat surface free-free convection (presented in the
tigures with dashed lines). The behavior of the curves is similar but, except for very small
E (nearly Maxwell fluid) and large L, it is found that G has no influence on the instability of
the free-free convection under the present conditions. The curve of the Maxwell fluid is the
more unstable. The jumps found in the curves of k¢ are also explained due to the dual role
played by G on the instability. The results presented for the solid-free and free-free boundary
conditions show the importance that free surface deformation has on the natural convection
instability of viscoelastic fluids.
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Figure 4. Solid-free case. Curves of criticality for G = 100 and different values of E. The upper
deformable free surface case has solid curves and the undeformable one has dashed curves. A) R,
against I'(here L). B) k. against I (here L).

The nonlinear problem for an Oldroyd fluid was investigated by Rosenblat [55] for free-free
boundary conditions. He found results for the three time derivatives Equations 6, 8 and 9.
The weakly nonlinear approximation is used where the Rayleigh number is very near to the
critical one. He found conditions for subcriticality and supercriticality calculating an algebraic
quantity K which includes non dimensional parameters of all the fluids investigated. The
conclusion for stationary convection is that the corotational Oldroyd model has subcritical
bifurcation (and therefore is unstable) and that the upper and lower convected Oldroyd
models can not have this bifurcation and are stable, as the Newtonian model. For oscillatory
convection the problem is more complex and it is resolved numerically with plots of L vs
E. However, the results are reviewed as follows. The corotational Oldroyd model has
supercritical bifurcation and is stable. The upper and lower convected Oldroyd models have
subcritical bifurcation and are unstable. A system of four coupled differential equations is
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proposed to investigate chaotic behavior which generalize the Lorenz system of Equations
74. He found the possibility of chaotic behavior. The solid-solid and solid-free boundary
conditions were used by Park and Lee [43, 44]. Important results are that the amplitude
of convection and heat dissipation increase with L and for E small. The rigid walls cause
more easily the subcritical bifurcation than free walls for the same viscoelastic parameters.

27
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They conclude that Oldroyd fluid viscoelastic convection is characterized both by a Hopf
bifurcation (for very large value of L) and a subcritical bifurcation.

Analytical and numerical methods were used by Martinez-Mardones et al. [36] to calculate
the nonlinear critical parameters which lead to stationary convection as well as traveling and
standing waves. By means of coupled Landau amplitude equations Martinez-Mardones et al.
[37] investigated the pattern selection in terms of the viscoelastic parameters. They fix Pr and
E and show that increasing L stationary convection changes into standing waves by means
of a subcritical bifurcation. The convective and absolute instabilities for the three model time
derivatives of the Oldroyd fluid were investigated by Martinez- Mardones et al. [38]. If the
group velocity is zero at say k = kg and the real part of o, s, in Equation 39 is positive, it is
said that the instability is absolute. In this case, the perturbations grow with time at a fixed
point in space. If the perturbations are carried away from the initial point and at that point
the perturbation decays with time, the instability is called convective. By means of coupled
complex Ginzburg-Landau equations (Landau equations with second derivatives in space and
complex coefficients) they investigated problems for which oscillatory convection appears
first. Besides, they investigated the effect the group velocity has on oscillatory convection.
It is found that the conductive state of the fluid layer is absolutely unstable if L > 0 or E > E¢
and therefore, when 0 < E < E, the state is convectively unstable. They also show that there
is no traveling wave phenomena when passing from stationary convection to standing waves.

7. Conclusions

In this chapter many phenomena have been discussed in order to show the variety of
problems which can be found in natural convection of Newtonian and viscoelastic fluids.
One of the goals was to show that the different boundary conditions may give results which
differ considerably from each other. Sometimes, the results are qualitatively the same and
this is taken as an advantage to solve "simpler" problems as those corresponding to the
linear and nonlinear equations with free-free boundary conditions. A change in the setting
of the problem may produce large complications, as in the case of the free-free boundary
conditions, but with one of them being deformable. In this case a new parameter appears,
the Galileo number G, which complicates not only the number of numerical calculations, but
also the physical interpretation of the results, as explained above. As have been shown, the
introduction of viscoelasticity complicates even more the physics of convection. Depending
on the boundary conditions, there can be stationary and oscillatory cells in linear convection.
Nonlinear convection can be stationary but for other magnitudes of the parameters, traveling
and standing waves may appear as the stable fluid motion. The problem is to find the
conditions and magnitudes of the viscoelastic parameters when a particular convection
phenomenon occurs. This is the thrilling part of viscoelastic convection. It is the hope of
the present author that this review may motivate a number of readers to work in this rich area
of research.
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