
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 0

Stroke-Based Cursive Character Recognition

K.C. Santosh and Eizaburo Iwata

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51471

1. Introduction

Human eye can see and read what is written or displayed either in natural handwriting or in
printed format. The same work in case the machine does is called handwriting recognition.
Handwriting recognition can be broken down into two categories: off-line and on-line.

Off-line character recognition – Off-line character recognition takes a raster image from a
scanner (scanned images of the paper documents), digital camera or other digital input
sources. The image is binarised based on for instance, color pattern (color or gray scale) so
that the image pixels are either 1 or 0.

On-line character recognition – In on-line, the current information is presented to the system
and recognition (of character or word) is carried out at the same time. Basically, it accepts a
string of (x, y) coordinate pairs from an electronic pen touching a pressure sensitive digital
tablet.

In this chapter, we keep focusing on on-line writer independent cursive character recognition
engine. In what follows, we explain the importance of on-line handwriting recognition over
off-line, the necessity of writer independent system and the importance as well as scope
of cursive scripts like Devanagari. Devanagari is considered as one of the known cursive
scripts [20, 29]. However, we aim to include other scripts related to the current study.

1.1. Why on-line?

With the advent of handwriting recognition technology since a few decades [3, 31],
applications are challenging. For example, OCR is becoming an integral part of document
scanners, and is used in many applications such as postal processing, script recognition,
banking, security (signature verification, for instance) and language identification. In
handwriting recognition, feature selection has been an important issue [43]. Both structural
and statistical features as well as their combination have been widely used [15, 18]. These
features tend to vary since characters’ shapes vary widely. As a consequence, local structural
properties like intersection of lines, number of holes, concave arcs, end points and junctions
change time to time. These are mainly due to

©2012 Santosh and Iwata, licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Chapter 10

2 Will-be-set-by-IN-TECH

• deformations can be from any range of shape variations including geometric transformation
such as translation, rotation, scaling and even stretching; and

• defects yield imperfections due to printing, optics, scanning, binarisation as well as poor
segmentation.

In the state-of-the-art of handwritten character recognition, several different studies have
shown that off-line handwriting recognition offers less classification rate compared to
on-line [31, 42]. Furthermore, on-line data offers significant reduction in memory and
therefore space complexity. Another advantage is that the digital pen or a digital form on
a tablet device immediately transforms your handwriting into a digital representation that
can be reused later without having any risk of degradation usually associated with ancient
handwriting. Based on all these reasons, one can cite a few examples [7, 13, 32, 45] where
they mainly focus on temporal information as well as writing order recovery from static
handwriting image. On-line handwriting recognition systems provide interesting results.

On-line character recognition involves the automatic conversion of stroke as it is written
on a special digitiser or PDA, where a sensor picks up the pen-tip movements as well as
pen-up/pen-down switching. Such data is known as digital ink and can be regarded as a
dynamic representation of handwriting. The obtained signal is converted into letter codes
which are usable within computer and character-processing applications.

stroke 1 stroke 2

Figure 1. On-line stroke sequences in the form of 2D (x, y) coordinates. In this illustration, initial pen-tip
position is coloured with red and pen-up (final point) is coloured with blue.

The elements of an on-line handwriting recognition interface typically include:

1. a pen or stylus for the user to write with, and a touch sensitive surface, which may be
integrated with, or adjacent to, an output display.

2. a software application i.e., a recogniser which interprets the movements of the stylus across
the writing surface, translating the resulting strokes into digital character.

Globally, it resembles one of the applications of pen computing i.e., computer user-interface
using a pen (or stylus) and tablet, rather than devices such as a keyboard, joysticks or a mouse.
Pen computing can be extended to the usage of mobile devices such as wireless tablet personal
computers, PDAs and GPS receivers.

Historically, pen computing (defined as a computer system employing a user-interface using a
pointing device plus handwriting recognition as the primary means for interactive user input)

176 Advances in Character Recognition

Stroke-Based Cursive Character Recognition 3

predates the use of a mouse and graphical display by at least two decades, starting with the
Stylator [12] and RAND tablet [16] systems of the 1950s and early 1960s.

1.2. Why writer independent?

As mentioned before, on-line handwriting recognition systems provide interesting results
almost over all types scripts. The recognition systems vary widely which can be due to nature
of the scripts employed along with the associated particular difficulties including the intended
applications. The performance of the application-based (commercial) recogniser is used to
determine by its speed in addition to accuracy.

Among many, more specifically, template based approaches have a long standing record [4,
11, 19, 36, 41]. In many of the cases, writer independent recogniser has been made since
every new user does not require training – which is widely acceptable. In such a context, the
expected recognition system should automatically update or adapt the new users once they
provide input or previously trained recogniser should be able to discriminate new users.

1.3. Why Devanagari?

In a few points, interesting scope will be summarised.

1. Pencil and paper can be preferable for anyone during a first draft preparation instead of
using keyboard and other computer input interfaces, especially when writing in languages
and scripts for which keyboards are cumbersome. Devanagari keyboards for instance, are
quite difficult to use. Devanagari characters follow a complex structure and may count up
to more than 500 symbols [20, 29].

2. Devanagari is a script used to write several Indian languages, including Nepali, Sanskrit,
Hindi, Marathi, Pali, Kashmiri, Sindhi, and sometimes Punjabi. According to the 2001
Indian census, 258 million people in India used Devanagari.

3. Writing one’s own style brings unevenness in writing units, which is the most difficult
part to recognise. Variation in basic writing units such as number of strokes, their order,
shapes and sizes, tilting angles and similarities among classes of characters are considered
as the important issues. In contrast to Roman script, it happens more in cursive scripts like
Devanagari.

Devanagari is written from left to right with a horizontal line on the top which is the
shirorekha. Every character requires one shirorekha from which text(s) is(are) suspended.
The way of writing Devanagari has its own particularities. In what follows, in particular,
we shortly explain a few major points associated difficulties.

• Many of the characters are similar to each other in structure. Visually very similar
symbols – even from the same writer – may represent different characters. While it
might seem quite obvious in the following examples to distinguish the first from the
second, it can easily be seen that confusion is likely to occur for their handwritten symbol
counterparts (к, �), (�, �), (�, �), etc.). Fig. 2 shows a few examples of it.

• The number of strokes, their order, shapes and sizes, directions, skew angle etc. are
writing units that are important for symbol recognition and classification. However,
these writing units most often vary from one user to another and there is even no
guarantee that a same user always writes in a same way. Proposed methods should
take this into account.

177Stroke-Based Cursive Character Recognition

4 Will-be-set-by-IN-TECH

к �

� � �

e �

� 	

Figure 2. A few samples of several different similar classes from Devanagari script.

Based on those major aforementioned reasons, there exists clear motivation to pursue research
on Devanagari handwritten character recognition.

1.4. Structure of the chapter

The remaining of the paper is organised as follows. In Section 2, we start with detailing
the basic concept of character recognition framework in addition to the major highlights on
important issues: feature selection, matching and recognition. Section 3 gives a complete
outline of how we can efficiently handle optimal recognition performance over cursive scripts
like Devangari. In this section, we first provide the complete and then validate the whole
process step by step with genuine reasoning and a series of experimental tests over our own
dataset but, publicly available. We conclude the chapter in Section 4.

2. Character recognition framework

Basically, we can categorise character recognition system into two modules: learning and
testing. In learning or training module, following Fig. 3, handwritten strokes are learnt or
stored. Testing module follows the former one. The performance of the recognition system is
depends on how well handwritten strokes are learnt. It eventually refers to the techniques we
employ.

input −→ Handwritten Symbol

⇓

Stroke Pre-processing

⇓

Feature Selection

⇓

Template Formation & Mgmt. ←− using clustering

(cf. Section 3.2), for instance.

Figure 3. Learning strokes from the handwritten symbols. In this illustration, we present a basic concept
to form template via clustering of features of the strokes immediately after they are pre-processed.

178 Advances in Character Recognition

Stroke-Based Cursive Character Recognition 5

Basically, learning module employs stroke pre-processing, feature selection and clustering to
form template to be stored. Pre-processing and feature selection techniques can be varied
from one application to another. For example, noisy stroke elimination or deletion in Roman
cannot be directly extended to the cursive scripts like Urdu and Devanagari. In other
words, these techniques are found to be application dependent due to their different writing
styles. However, they are basically adapted to each other and mostly ad-hoc techniques are
built so that optimal recognition performance is possible. In the framework of stroke-based
feature extraction and recognition, one can refer to [9, 47], for example. It is important to
notice that feature selection usually drives the way we match them. As an example, fixed
size feature vectors can be straightforwardly matched while for non-linear feature vector
sequences, dynamic programming (elastic matching) has been basically used [22, 23, 26, 33].
The concept was first introduced in the 60’s [5]. Once we have an idea to find the similarity
between the strokes’ features, we follow clustering technique based on their similarity values.
The clustering technique will generate templates as the representative of the similar strokes
provided. These stored templates will be used for testing in the testing module. Fig. 4 provides
a comprehensive idea of it (testing module). More specifically, in this module, every test
stroke will be matched with the templates (learnt in training module) so that we can find the
most similar one. This procedure will be repeated for all available test strokes. At the end,
aggregating all matching scores provides an idea of the test character closer to which one in
the template.

training module
...
⇓

input −→ Handwritten Symbol Template

⇓ ⇓

Stroke Pre-processing ⇒ Feature Selection ⇒ Feature Matching

⇓

character’s label −→ output

(via similarity
measure)

Figure 4. An illustration of testing module. As in learning module, test characters are pre-processed and
we present a basic concept to form template via clustering of features of the strokes immediately after
they are pre-processed.

2.1. Preprocessing

Strokes directly collected from users are often incomplete and noisy. Different systems use
a variety of different pre-processing techniques before feature extraction [1, 6, 44]. The
techniques used in one system may not exactly fit into the other because of different writing
styles and nature of the scripts. Very common issues are repeated coordinates deletion [4],
noise elimination and normalisation [10, 17].

Besides pre-processing, in this chapter, we mainly focus on feature selection and matching
techniques.

179Stroke-Based Cursive Character Recognition

6 Will-be-set-by-IN-TECH

2.2. Feature selection

If you have complete address of your friend then you can easily find him/her without an
additional help from other people on the way. The similar case is happened in character
recognition. Here, an address refers to a feature selection. Therefore, the complete or sufficient
feature selection from the provided input is the crucial point. In other words, appropriate
feature selection can greatly decrease the workload and simplify the subsequent design
process of the classifier.

In what follows, we discuss a few but major issues associated with feature selection.

• Pen-flow i.e., speed while writing determines how well the coordinates along the pen
trajectory are captured. Speed writing and writing with shivering hands, do not provide
complete shape information of the strokes.

• Ratios of the relative height, width and size of letters are not always consistent - which is
obvious in natural handwriting.

• Pen-down and pen-up events provide stroke segmentation. But, we do not know which
and where the strokes are rewritten or overwritten.

• Slant writing style or writing with some angles to the left or right makes feature selection
difficult. For example, in those cases, zoning information using orthogonal projection does
not carry consistent information. This means that the zoning features will vary widely as
soon as we have different writing styles.

We repeat, features should contain sufficient information to distinguish between classes, be
insensitive to irrelevant variability of the input, allow efficient computation of discriminant
functions and be able to limit the amount of training data required [24]. However, they vary
from one script to another [6, 27, 28, 44].

initial (pen-down)

end (pen-up)

Figure 5. An illustration of feature selection: pen-tip position and tangent at every pen-tip position
along the pen trajectory.

Feature selection is always application dependent i.e., it relies on what type of scripts (their
characteristics and difficulties) used. In our case, we use a feature vector sequence of any
stroke is expressed as in [28, 36, 40]:

F =
[(

p1, αp1,p2

)
,
(
p2, αp2,p3

)
, . . . ,

(
pl−1, αpl−1,pl

)]
(1)

where, αpl−1,pl
= arctan

(
yl−yl−1

xl−xl−1

)

. Fig. 5 shows a complete illustration.

180 Advances in Character Recognition

Stroke-Based Cursive Character Recognition 7

Our feature includes a sequence of both pen-tip position and tangent angles sampled from
the trajectory of the pen-tip, preserving the directional property of the trajectory path. It
is important to remind that stroke direction (either left – right or right – left) leads to very
different features although they are geometrically similar. To efficiently handle it, we need
both kinds of strokes or samples for training and testing. This does not mean that same writer
must be used.

The idea is somehow similar to the directional arrows that are composed of eight types, coded

from 0 − 7. This can be expressed as,
տ ↑ ր
← ◦ →
ւ ↓ ց

.

However, these directional arrows provide only the directional feature of the strokes or line
segments. Therefore, more information can be integrated if the relative length of the standard
strokes is taken into account [8].

2.3. Feature matching

Besides, discussing on classifiers, we explain how features can be matched to obtain similarity
or dissimilarity values between them.

Matching techniques are often induced by how features are taken or strokes are represented.
For instance, normalising the feature vector sequence into a fixed size vector provides an
immediate matching. On the other hand, features having different lengths or non-linear
features need dynamic programming for approximate matching, for instance. Considering
the latter situation, we explain how dynamic programming is employed.

Dynamic time warping (DTW) allows us to find the dissimilarity between two non-linear
sequences potentially having different lengths [22, 23, 26, 33]. It is an algorithm particularly
suited to matching sequences with missing information, provided there are long enough
segments for matching to occur.

Let us consider two feature sequences

X = {xk}k=1,...,K and

Y = {yl}l=1,...,L

of size K and L, respectively. The aim of the algorithm is to provide the optimal alignment
between both sequences. At first, a matrix M of size K × L is constructed. Then for each
element in matrix M, local distance metric δ(k, l) between the events ek and el is computed
i.e., δ(k, l) = (ek − el)

2. Let D(k, l) be the global distance up to (k, l),

D(k, l) = min

⎡

⎣

D(k − 1, l − 1),
D(k − 1, l),
D(k, l − 1)

⎤

⎦+ δ(k, l)

with an initial condition D(1, 1) = δ(1, 1) such that it allows warping path going diagonally
from starting node (1, 1) to end (K, L). The main aim is to find the path for which the least cost
is associated. The warping path therefore provides the difference cost between the compared
signatures. Formally, the warping path is,

W = {wt}t=1...T ,

181Stroke-Based Cursive Character Recognition

8 Will-be-set-by-IN-TECH

Y

X

(1,1)

(K,L)

showing warping path

(k − 1, l − 1)
(k, l − 1)

(k − 1, l) (k, l)

Figure 6. Classical DTW algorithm – an alignment illustration between two non-linear sequences X and
Y. In this illustration, diagonal DTW-matrix is shown including how back-tracking has been employed.

where max(k, l) ≤ T < k + l − 1 and tth element of W is w(k, l)t ∈ [1 : K] × [1 : L] for
t ∈ [1 : T]. The optimised warping path W satisfies the following three conditions.

c1. boundary condition:
w1 = (1, 1) and wT = (K, L).

c2. monotonicity condition:

k1 ≤ k2 ≤ · · · ≤ kK and l1 ≤ l2 ≤ · · · ≤ lL.

c3. continuity condition:

wt+1 − wt ∈ {(1, 1)(0, 1), (1, 0)} for t ∈ [1 : T − 1].

c1 conveys that the path starts from (1, 1) to (K, L), aligning all elements to each other. c2
forces the path advances one step at a time. c3 restricts allowable steps in the warping path to
adjacent cells, never be back. Note that c3 implies c2.

We then define the global distance between X and Y as,

Δ (X, Y) =
D(K, L)

T
.

The last element of the K × L matrix gives the DTW-distance between X and Y, which is
normalised by T i.e., the number of discrete warping steps along the diagonal DTW-matrix.
The overall process is illustrated in Fig. 6.

Until now, we provide a global concept of using DTW distance for non-linear sequences
alignment. In order to provide faster matching, we have used local constraint on time warping
proposed in [21]. We have w(k, l)t such that l − r ≤ k ≤ l + r where r is a term defining a

182 Advances in Character Recognition

Stroke-Based Cursive Character Recognition 9

reach i.e., allowed range of warping for a given event in a sequence. With r, upper and lower
bounding measures can be expressed as,

Upper bound Uk = max(xk−r : xk+r)

Lower bound Lk = min(xk−r : xk+r).

Therefore, for all i, an obvious property of U and L is Uk ≥ xk ≥ Lk. With this, we can define
a lower bounding measure for DTW:

LB_Keogh(X, Y) =

√
√
√
√
√

K

∑
k=1

⎧

⎨

⎩

(yk − Uk)
2 if yk > Uk

(yk − Lk)
2 if yk < Lk

0 otherwise.

Since this provides a quick introduction of local constraint for lower bounding measure, we
refer to [21] for more clarification.

2.4. Recognition

From a purely combinatorial point of view, measuring the similarity or dissimilarity between
two symbols

S1 =
{

si
1

}

i=1...n
and S2 =

{

s
j
2

}

j=1...m

composed, respectively, of n and m strokes, requires a one by one matching score computation

of all strokes si
1 with all s

j
2. This means that we align individual test strokes of an unknown

symbols with the learnt strokes. As soon as we determine the test strokes associated with the
known class, the complete symbol can be compared by the fusion of matching information
from all test strokes. Such a concept is fundamental under the purview of stroke-based
character recognition.

Overall, the concept may not always be sufficient, and these approaches generally need a
final, global coherence check to avoid matching of strokes that shows visual similarity but do
not respect overall geometric coherence within the complete handwritten character. In other
words, matching strategy that happens between test stroke and templates of course, should
be intelligent rather than straightforward one-to-many matching concepts. However, it in
fact, depends on how template management has been made. In this chapter, this is one of
the primary concerns. We highlight the use of relative positioning of the strokes within the
handwritten symbol and its direct impact to the performance [40].

3. Recognition engine

To make the chapter coherence as well as consistent (to Devanagari character recognition),
it refers to the recognition engine which is entirely based on previous studies or works [36–
40]. Especially because of the structure of Devanagari, it is necessary to pay attention to the
appropriate structuring of the strokes to ease and speed up comparison between the symbols,
rather than just relying on global recognition techniques that would be based on a collection
of strokes [36]. Therefore, [39, 40] develop a method for analysing handwritten characters
based on both the number of strokes and the their spatial information. It consists in four main
phases.

183Stroke-Based Cursive Character Recognition

10 Will-be-set-by-IN-TECH

step 1. Organise the symbols representing the same character into different groups based on
the number of strokes.

step 2. Find the spatial relation between strokes.

step 3. Agglomerate similar strokes from a specific location in a group.

step 4. Stroke-wise matching for recognition.

For more clear understanding, we explain the aforementioned steps as follows. For a specific
class of character, it is interesting to notice that writing symbols with the equal number of
strokes, generally produce visually similar structure and is easier to compare.

In every group within a particular class of character, a representative symbol is synthetically
generated from pairwise similar strokes merging, which are positioned identically with
respect to the shirorekha. It uses DTW algorithm. The learnt strokes are then stored accordingly.
It is mainly focused on stroke clustering and management of the learnt strokes.

We align individual test strokes of an unknown symbols with the learnt strokes having
both same number of strokes and spatial properties. Overall, symbols can be compared by
the fusion of matching information from all test strokes. This eventually build a complete
recognition process.

3.1. Stroke spatial description and its need

The importance of the location of the strokes is best observed by taking a few pairs of
characters that often lead to confusion:

(
↔�), (�↔�), (�↔) etc.

The first character in every pair has visually two distinguishing features: its particular location
of the shirorekha (more to the right) and a small curve in the text. There is no doubt that
one of the two features is sufficient to automatically distinguish both characters. However,
small curves are usually not robust feature in natural handwriting, finding the location of the
shirorekha only can avoid possible confusion. Our stroke based spatial relation technique is
explained further in the following.

To handle relative positioning of strokes, we use six spatial predicates i.e., 2 × 3 relational
regions:

R =

[
top-left (T–L) top (T) top-right (T–R)
bottom-left (B–L) bottom (B) bottom-right (B–L)

]

.

For easier understanding, iconic representation of the aforementioned relational matrix R can
be expressed as,

[
◦ ◦ ◦
◦ ◦ •

]

where black-dot represents the presence i.e., stroke is found to be in the provided bottom-right
region.

184 Advances in Character Recognition

Stroke-Based Cursive Character Recognition 11

To confirm the location of the stroke, we use the projection theory: minimum boundary
rectangle (MBR) [30] model combined with the stroke’s centroid.

Based on [14], we start with checking fundamental topological relations such as disconnected

(DC), externally connected (EC) and overlap/intersect (O/I) by considering two strokes sj and sj′ :

sj =
{

p
j
k

}

k=1...l
and sj′ =

{

p
j′

k′

}

k′=1...l′

as follows,

sj ∩ sj′ =

{

1 if (p
j
k ∩ p

j′

k′ �= ∅) ⇒ EC, O/I
0 otherwise ⇒ DC.

We then use the border condition from the geometry of the MBR. It is straightforward for
disconnected strokes while, is not for externally connected and overlap/intersect configurations. In
the latter case, we check the level of the centroid with respect to the boundary of the MBR. For
example, if a boundary of the shirorekha is above the centroid level of the text stroke, then it is
confirmed that the shirorekha is on the top. This procedure is applied to all of the six previously
mentioned spatial predicates. Note that use of angle-based model like bi-centre [25] and angle
histogram [46] are not the appropriate choice due to the cursive nature of writing.

On the whole, assuming that the shirorekha is on the top, the locations of the text strokes are
estimated. This eventually allows to cross-validate the location of the shirorekha along with
its size, once texts’ locations are determined. Fig. 7 shows a real example demonstrating
relative positioning between the strokes for a two-stroke symbol к. Besides, symbols with
two shirorekhas are also possible to treat. In such a situation, the first shirorekha according to
the order of strokes is taken as reference.

3.2. Spatial similarity based clustering

Basically, clustering is a technique for collecting items which are similar in some way. Items of
one group are dissimilar with other items belonging to other groups. Consequently, it makes
the recognition system compact. To handle this, we present spatial similarity based stroke
clustering.

As mentioned in previous work [39, 40], the clustering scheme is a two-step process.

• The first step is to organise symbols representing a same character into different groups,
based on the number of strokes used to complete the symbol. Fig. 8 shows an example of
it for a class of charactera.

• In the second step, strokes from the specific location are agglomerated hierarchically within
the particular group. Once relative position for every stroke is determined as shown in
Fig. 8, single-linkage agglomerative hierarchical clustering is used (cf. Fig. 10). This means
that only strokes which are at a specific location are taken for clustering. As an example,
we illustrate it in Fig. 9. This applies to all groups within a class.

In agglomerative hierarchical clustering (cf. Fig. 10), we merge two similar strokes and find
a new cluster. The distance computation between two strokes follows Section 2.3. The new
cluster is computed by averaging both strokes via the use of the discrete warping path along
the diagonal DTW-matrix. This process is repeated until it reaches the cluster threshold. The
threshold value yields the number of cluster representatives i.e., learnt templates.

185Stroke-Based Cursive Character Recognition

12 Will-be-set-by-IN-TECH

(a) Two-stroke к

=⇒

(b) MBR + Centroid
model

⇓

(c) Model realisation

Figure 7. Pairwise spatial relation for a two-stroke к [40].

3.3. Stroke number and order free recognition

In natural handwriting, number of strokes as well as their order vary widely. This happens
from one writing to another, even from the same user – which of course exits from different
users. Fig. 11 shows the large variation of stroke numbers as well as the orders.

Once we have organised the symbols (from the particular class) into groups based on the
number of strokes used, our stroke clustering has been made according to the relative
positioning. As a consequence, while doing recognition, one can write symbol with any
numbers and orders because stroke matching is based on relative positioning of the strokes in
which group while it does not need to care about the strokes order.

3.4. Dataset

In this work, as before, publicly available dataset has been employed (cf. Table 1) where a
Graphite tablet (WCACOM Co. Ltd.), model ET0405A-U, was used to capture the pen-tip
position in the form of 2D coordinates at the sampling rate of 20 Hz. The data set is composed
of 1800 symbols representing 36 characters, coming from 25 native speakers. Each writer

186 Advances in Character Recognition

Stroke-Based Cursive Character Recognition 13

(a) Two-strokea

(b) Three-strokea

Figure 8. Relative positions of strokes for a classa in two different groups i.e., two-stroke and
three-stroke symbols.

[
◦ ◦ ◦
• ◦ ◦

]

︸ ︷︷ ︸

1

,

[
◦ ◦ ◦
◦ • ◦

]

︸ ︷︷ ︸

2

,

[
◦ ◦ ◦
◦ • ◦

]

︸ ︷︷ ︸

3
︸ ︷︷ ︸

text clustering

and

[
• ◦ ◦
◦ ◦ ◦

]

︸ ︷︷ ︸

1

,

[
◦ • ◦
◦ ◦ ◦

]

︸ ︷︷ ︸

2

,

[
◦ ◦ •
◦ ◦ ◦

]

︸ ︷︷ ︸

3
︸ ︷︷ ︸

shirorekha clustering

Figure 9. Clustering technique for each class. Stroke clustering is based on the relative positioning. As a
consequence, we have three clustering blocks for text strokes and remaining three for shirorekha.

was given the opportunity to write each character twice. No other directions, constraints, or
instructions were given to the users.

Item Description

Classes of character 36
Users 25
Dataset size 1800
Visibility IAPR tc–11

http://www.iapr-tc11.org

Table 1. Dataset formation and its availability.

3.5. Recognition performance evaluation

While experimenting, every test sample is matched with training candidates and the closest
one is reported. The closest candidate corresponds to the labelled class, which we call
‘character recognition’. Formally, recognition rate can be defined as the number of correctly
recognised candidates to the total number of test candidates.

187Stroke-Based Cursive Character Recognition

14 Will-be-set-by-IN-TECH

distance

0

1

2

3

4

5

6

F1 F2F3 F4 F5 F6 F7 F8

cluster threshold

Figure 10. Hierarchical stroke clustering concept. At every step, features are merged according to their
similarity up to the provided threshold level.

(a) two-stroke к (b) two-stroke к (c) three-stroke к

(d) three-stroke к (e) four-stroke к (f) three-stroke к

Figure 11. Different number of strokes and order for a class к. In this illustration, red-dot refers to the
initial pen-tip position so that it makes easy to realise how many number of strokes to make a complete
symbol. In addition, stroke ordering is different from one to another.

To evaluate the recognition performance, two different protocols can be employed:

1. dichotomous classification and

2. K-fold cross-validation (CV).

In case of dichotomous classification, 15 writers are used for training and the remaining 10 are
for testing. On the other hand, K-fold CV has been implemented. Since we have 25 users for
data collection, we employ K = 5 in order to make recognition engine writer independent.

In K-fold CV, the original sample for every class is randomly partitioned into K sub-samples.
Of the K sub-samples, a single sub-sample is used for validation, and the remaining K − 1
sub-samples are used for training. This process is then repeated for K folds, with each of the
K sub-samples used exactly once. Finally, a single value results from averaging all. The aim
of the use of such a series of rigorous tests is to avoid the biasing of the samples that can be

188 Advances in Character Recognition

Stroke-Based Cursive Character Recognition 15

of # of Avg. Time
Method Mis-recognition Rejection Error % sec.

M1. 33 08 05.0 04
M2. 24 08 03.5 02

Index:
M1. [40].
M2. [40] + [21] and 5-fold CV.

Table 2. Error rates (in %) and running time (in sec. per character). The methods can be differentiated by
the additional use of L_B Keogh tool [21] and the evaluation protocol employed.

possible in conventional dichotomous classification. In contrast to the previous studies [40],
this will be an interesting evaluation protocol.

3.6. Results and discussions

Following evaluation protocols we have mentioned before, Table 2 provides average
recognition error rates. In the tests, we have found that the recognition performance has been
advanced by approximately more than 2%.

Based on results (cf. Table 2), we investigate the recognition performance based on the
observed errors. We categorise the origin of the errors that are occurred in our experiments.
As said in Section 1.3, these are mainly due to

1. structure similarity,

2. reduced and/or very long ascender and/or descender stroke, and

3. others such as re-writing strokes and mis-writing.

Compared to previous work [40], number of rejection does not change while confusions due
to structure similarity has been reduced. This is mainly because of the 5-fold CV evaluation
protocol. Besides, running time has been reduced by more than a factor of two i.e., 2 seconds
per character, thanks to LB_Keogh tool [21].

4. Conclusions

In this chapter, an established as well as validated approach (based on previous studies [36–
40]) has been presented for on-line natural handwritten Devanagari character recognition. It
uses the number of strokes used to complete a symbol and their spatial relations1. Besides, we
have provided the dataset publicly available for research purpose. Considering such a dataset,
the success rate is approximately 97% in less than 2 seconds per character on average. In this
chapter, note that the new evaluation protocol reduces the errors (mainly due to multi-class
similarity) and the optimised DTW reduces the delay in processing – which has been new
attestation in comparison to the previous studies.

The proposed approach is able to handle handwritten symbols of any stroke and order.
Moreover, the stroke-matching technique is interesting and completely controllable. It is
primarily due to our symbol categorisation and the use of stroke spatial information in
template management. To handle spatial relation efficiently (rather than not just based on
orthogonal projection i.e., MBR), more elaborative spatial relation model can be used [35], for

1 Full credit goes to the work presented in [40] where it has comprehensive study on relative positioning of the
handwritten strokes. Once again, to avoid contradictions, this chapter aims to provide coherence as well as consistent
studies on Devanagari character recognition.

189Stroke-Based Cursive Character Recognition

16 Will-be-set-by-IN-TECH

instance. In addition, use of machine learning techniques like inductive logic programming
(ILP) [2, 34] to exploit the complete structural properties in terms of first order logic (FOL)
description.

Acknowledgements

Since the chapter is based on the previous studies, thanks to researchers Cholwich Nattee,
School of ICT, SIIT, Thammasat University, Thailand and Bart Lamiroy, Université de Lorraine
– Loria Campus Scientifique, France for their efforts. Besides, the dataset is partially based on
master thesis: TC-MS-2006-01, conducted in Knowledge Information & Data Management
Laboratory, School of ICT, SIIT, Thammasat University under Asian Development Bank –
Japan Scholarship Program (ADB-JSP).

Author details

K.C. Santosh
INRIA Nancy Grand Est Research Centre, France

Eizaburo Iwata
Universal Robot Co. Ltd., Japan

5. References

[1] Alginahi, Y. [2010]. Preprocessing Techniques in Character Recognition, intech.
[2] Amin, A. [2000]. Prototyping structural description using an inductive learning program,

International Journal of Intelligent Systems 15(12): 1103–1123.
[3] Arica, N. & Yarman-Vural, F. [2001]. An overview of character recognition focused

on off-line handwriting, IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews 31(2): 216 –233.

[4] Bahlmann, C. & Burkhardt, H. [2004]. The writer independent online handwriting
recognition system frog on hand and cluster generative statistical dynamic time warping,
IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3): 299–310.

[5] Bellman, R. & Kalaba, R. [1959]. On adaptive control processes, Automatic Control
4(2): 1–9.

[6] Blumenstein, M., Verma, B. & Basli, H. [2003]. A novel feature extraction technique
for the recognition of segmented handwritten characters, Proceedings of International
Conference on Document Analysis and Recognition, p. 137.

[7] Boccignone, G., Chianese, A., Cordella, L. & Marcelli, A. [1993]. Recovering dynamic
information from static handwriting, Pattern Recognition 26(3): 409 – 418.

[8] Cha, S.-H., Shin, Y.-C. & Srihari, S. N. [1999]. Approximate stroke sequence string
matching algorithm for character recognition and analysis, Proceedings of International
Conference on Document Analysis and Recognition, pp. 53–56.

[9] Chiu, H.-P. & Tseng, D.-C. [1999]. A novel stroke-based feature extraction for
handwritten chinese character recognition, Pattern Recognition 32(12): 1947–1959.

[10] Chun, L. H., Zhang, P., Dong, X. J., Suen, C. Y. & Bui, T. D. [2005]. The role of size
normalization on the recognition rate of handwritten numerals, IAPR TC3 Workshop of
Neural Networks and Learning in Document Analysis and Recognition, pp. 8–12.

[11] Connell, S. D. & Jain, A. K. [1999]. Template-based online character recognition, Pattern
Recognition 34: 1–14.

190 Advances in Character Recognition

Stroke-Based Cursive Character Recognition 17

[12] Dimond, T. [1957]. Devices for reading handwritten characters, Proceedings of the Eastern
Joint Computer Conference, pp. 232–237.

[13] Doermann, D. S. & Rosenfeld, A. [1995]. Recovery of temporal information from static
images of handwriting, International Journal of Computer Vision 15(1-2): 143–164.

[14] Egenhofer, M. & Herring, J. R. [1991]. Categorizing Binary Topological Relations Between
Regions, Lines, and Points in Geographic Databases, Univ. of Maine, Research Report.

[15] Foggia, P., Sansone, C., Tortorella, F. & Vento, M. [1999]. Combining statistical and
structural approaches for handwritten character description, Image and Vision Computing
17(9): 701–711.

[16] Groner, G. [1966]. Real-time recognition of handprinted text, Memorandum
RM-5016-ARPA, The Rand Corporation.

[17] Guerfali, W. & Plamondon, R. [1993]. Normalizing and restoring on-line handwriting,
Pattern Recognition 26(3): 419–431.

[18] Heutte, L., Paquet, T., Moreau, J.-V., Lecourtier, Y. & Olivier, C. [1998]. A
structural/statistical feature based vector for handwritten character recognition, Pattern
Recognition Letters 19(7): 629–641.

[19] Hu, J., Brown, M. K. & Turin, W. [1996]. Hmm based on-line handwriting recognition,
IEEE Transactions on Pattern Analysis and Machine Intelligence 18: 1039–1045.

[20] Jayadevan, R., Kolhe, S. R., Patil, P. M. & Pal, U. [2011]. Offline recognition of devanagari
script: A survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C 41(6): 782–796.

[21] Keogh, E. J. [2002]. Exact indexing of dynamic time warping, Proceedings of 28th
International Conference on Very Large Data Bases, Morgan Kaufmann, pp. 406–417.

[22] Keogh, E. J. & Pazzani, M. J. [1999]. Scaling up dynamic time warping to massive dataset,
European PKDD, pp. 1–11.

[23] Kruskall, J. B. & Liberman, M. [1983]. The symmetric time warping algorithm: From
continuous to discrete, Time Warps, String Edits and Macromolecules: The Theory and
Practice of String Comparison, Addison-Wesley, pp. 125–161.

[24] Lippmann, R. P. [1989]. Pattern classification using neural networks, IEEE Comm.
Magazine 27(11): 47–50.

[25] Miyajima, K. & Ralescu, A. [1994]. Spatial organization in 2D segmented images:
representation and recognition of primitive spatial relations, Fuzzy Sets Systems
65(2-3): 225–236.

[26] Myers, C. S. & Rabiner., L. R. [1981]. A comparative study of several dynamic
time-warping algorithms for connected word recognition, The Bell System Technical
Journal 60(7): 1389–1409.

[27] Namboodiri, A. M. & Jain, A. K. [2004]. Online handwritten script recognition, IEEE
Transactions on Pattern Analysis and Machine Intelligence 26(1): 124–130.

[28] Okumura, D., Uchida, S. & Sakoe, H. [2005]. An hmm implementation for on-line
handwriting recognition - based on pen-coordinate feature and pen-direction feature,
Proceedings of International Conference on Document Analysis and Recognition, pp. 26–30.

[29] Pal, U. & Chaudhuri, B. B. [2004]. Indian script character recognition: a survey, Pattern
Recognition 37(9): 1887–1899.

[30] Papadias, D. & Sellis, T. [1994]. Relation Based Representations for Spatial Knowledge, PhD
Thesis, National Technical Univ. of Athens.

[31] Plamondon, R. & Srihari, S. [2000]. Online and off-line handwriting recognition: a
comprehensive survey, IEEE Transactions on Pattern Analysis and Machine Intelligence
22(1): 63 –84.

191Stroke-Based Cursive Character Recognition

18 Will-be-set-by-IN-TECH

[32] Qiao, Y., Nishiara, M. & Yasuhara, M. [2006]. A framework toward restoration of writing
order from single-stroked handwriting image, IEEE Transactions on Pattern Analysis and
Machine Intelligence 28(11): 1724–1737.

[33] Sakoe, H. [1978]. Dynamic programming algorithm optimization for spoken word
recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing 26: 43–49.

[34] Santosh, K. C., Lamiroy, B. & Ropers, J.-P. [2009]. Inductive logic programming for
symbol recognition, Proceedings of International Conference on Document Analysis and
Recognition, pp. 1330–1334.

[35] Santosh, K. C., Lamiroy, B. & Wendling, L. [2012]. Symbol recognition using spatial
relations, Pattern Recognition Letters 33(3): 331–341.

[36] Santosh, K. C. & Nattee, C. [2006a]. Stroke number and order free handwriting
recognition for nepali, in Q. Yang & G. I. Webb (eds), Proceedings of the Pacific Rim
International Conferences on Artificial Intelligence, Vol. 4099 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 990–994.

[37] Santosh, K. C. & Nattee, C. [2006b]. Structural approach on writer independent nepalese
natural handwriting recognition, Proceedings of the International Conference on Cybernetics
and Intelligent Systems, pp. 1–6.

[38] Santosh, K. C. & Nattee, C. [2007]. Template-based nepali natural handwritten
alphanumeric character recognition, Thammasat International Journal of Science and
Technology 12(1): 20–30.

[39] Santosh, K. C., Nattee, C. & Lamiroy, B. [2010]. Spatial similarity based stroke number
and order free clustering, Proceedings of IEEE International Conference on Frontiers in
Handwriting Recognition, pp. 652–657.

[40] Santosh, K. C., Nattee, C. & Lamiroy, B. [2012]. Relative positioning of stroke based
clustering: A new approach to on-line handwritten devanagari character recognition,
International Journal of Image and Graphics 12(2): 1250016-1–25.

[41] Schenkel, M., Guyon, I. & Henderson, D. [1995]. On-line cursive script recognition using
time delay neural networks and hidden markov models, Machine Vision and Applications
8(4): 215–223.

[42] Tappert, C. C., Suen, C. Y. & Wakahara, T. [1990]. The state of the art in online
handwriting recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence
12(8): 787–808.

[43] ∅ivind Due Trier, Jain, A. K. & Taxt, T. [1996]. Feature extraction methods for character
recognition – a survey, Pattern Recognition 29(4): 641 – 662.

[44] Verma, B., Lu, J., Ghosh, M. & R., G. [2004]. A feature extraction technique for on-line
handwriting recognition, Proceedings of IEEE International Joint Conference on Neural
Networks, pp. 1337–1341.

[45] Viard-Gaudin, C., Lallican, P. M. & Knerr, S. [2005]. Recognition-directed
recovering of temporal information from handwriting images, Pattern Recognition Letters
26(16): 2537–2548.

[46] Wang, X. & Keller, J. M. [1999]. Human-based spatial relationship generalization through
neural/fuzzy approaches, Fuzzy Sets Systems 101(1): 5–20.

[47] Zhou, X.-D., Liu, C.-L., Quiniou, S. & Anquetil, E. [2007]. Text/non-text ink stroke
classification in japanese handwriting based on markov random fields, Proceedings of
International Conference on Document Analysis and Recognition, pp. 377–381.

192 Advances in Character Recognition

