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1. Introduction 

Viscoelasiticity refers to the phenomenon in which a material body, when deformed 

exhibits both elastic (akin to solids)and viscous (akin to liquids) behavior. The body stores 

mechanical energy (elastic behavior) and dissipates it simultaneously(viscous behavior). 

Linear theory of viscoelasticity treats the body as a linear system which when subjected to 

an excitation responds with a response function. If the excitation is a stress, the response 

is a strain and if the excitation is a strain, the response is a stress. Mechanical models 

involving a spring-mass connected to a dashpot have been used to explain the elastic and 

viscous behavior.The mathematical structure of the theory and the spring-dash-pot type 

of mechanical models used and the so called Standard Linear Solid have all been only too 

well known [1-4]. In recent years methods of fractional calculus have been applied to 

develop viscoelastic models especially by Caputo and Mainardi [5,6] , Glockle and 

Nonenmacher [7], and  Gorenflo and Mainardi [8]. A recent monograph by Mainardi[9] 

gives extensive list of references to the literature connecting fractional calculus, linear 

viscoelasticity and wave motion.All these works treat the phenomenon of viscoelasticity 

as a macroscopic phenomenon exhibited by matter treated as an elastic continuum albeit 

including a viscous aspect as well. It should be recognized that matter has an atomic 

structure and is fundamentally discrete in nature. A microscopic approach would 

recognize this aspect and a theoretical model would yield the results for the continuum as 

a limit. 

It is well established that lattice dynamics provides a microscopic basis for understanding a 

host of phenomena in condensed matter physics, including mechanical, thermal, dielectric 

and optical phenomena, which are macroscopic, generally described from the continuum 

point of view. Since the pioneering work of Born and Von Karman [10], lattice dynamics has 

developed into a veritable branch of condensed matter physics. Lucid treatment of various 
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aspects of lattice dynamical theory of condensed matter can be found in renowned treatises 

[11-13]. Of particular interest to the present paper is the work of Askar [14] on the lattice 

dynamical foundations of continuum theories of elasticity, piezoelectricity, viscoelasticity 

and plasticity. 

The objective of the chapter is to develop a lattice dynamical model based on the methods of 

fractional calculus so as to provide a microscopic basis for the theory of viscoelasticity. The 

plan of the chapter is as follows. First a brief review of the mechanical models of 

viscoelasticity is given. This is followed by an account of conventional lattice dynamical 

theory of viscoelaticity based on a model of linear chain of coupled oscillators with 

dissipative elements is given [14]. In the next section, lattice dynamical methods are 

extended to the model of linear chain of coupled fractional oscillators (requiring no 

additional dissipative elements) developed by the authors [15]. The response to sinusoidal 

forcing of the linear chain of fractional oscillators starting from a quiescent state is studied in 

the continuum limit and expressions for phase velocity, absorption and dispersion and 

specific dissipation function are derived. The results are discussed and numerical 

applications are presented in the final section 

2. Mechanical models of viscoelasticity 

According to the linear theory of viscoelasticity, the body may be considered to be a system 

responding linearly to an excitation. A fundamental aspect of the theory both from a 

mathematical and a physical point of view is the response of the system to an excitation 

usually applied as a Heaviside step function. If a unit step of stress σ(t), is applied the 

material responds by undergoing a strain ε(t). The test is called creep test and the material 

function characterizing the response is called the creep compliance and is denoted by J(t). If 

on the other hand, if a unit strain is applied and the system responds with a stress σ(t), the 

test is called a relaxation test and the material function characterizing the system response, 

G(t), is called the relaxation modulus. The creep compliance and the relaxation modulus are 

defined through linear hereditary integrals of the Stieltjes type: 

 0

0

( ) ( ) ( )

( ) ( ) ( )
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Simple mechanical models consisting of springs and dashpots incorporating elastic and 

dissipative functions have been advanced to explain the behaviour of viscoelastic solids and 

a good summary of the models of viscoelasticity can be found in the works of Caputo and 

Mainardi [5,6], Gorenflo and Mainardi[8], and Mainardi[9]. A simple model constituted by a 

spring in parallel with a dashpot, known as the Kelvin-Voigt model is characterized by the 

constitutive relation 
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where /b met =  is referred to as the retardation time. 

A model consisting of a spring in series with a dashpot known as the Maxwell model is 

characterized by the constitutive relation 
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where ast = is referred to as the relaxation time. 

Another model introduced by Zener [4], known as the Standard Linear Solid model is a 

combination of the above two models and is characterized by the constitutive relation 
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and by the material functions 

 
/

/

( ) 1 (a)

( ) (b)

t
g

t
e

J t J e

G t G e

e

s

t

t

c

c

-
+

-
-

é ù= + -ê úë û
= +

 (7) 

Here gJ  and eG are known as the glass compliance and the equilibrium modulus 

respectively, and c+  and c-  are the limiting values of creep for t ¥  and of relaxation 

for 0t =  respectively. 

More recently methods of fractional calculus have been used [5-8] to generalize these 

models leading to the so-called Scott-Blair model characterized by the operator equation 
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The details of the characteristic material functions and their behavior with respect to time 

are discussed in detail in reference [8]. 

3. Lattice dynamical theory of viscoelasticity 

3.1. The elastic continuum 

Consider a one dimensional string of mass density ρ per unit length and E the Young’s 

modulus. If the string is homogeneously stressed and released, elastic forces set up 

vibrations in the string corresponding to elastic waves propagating in the string. The 

equation governing this propagation is given by 9a and these waves propagate with a 

velocity given by 9b 
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The conventional model of lattice dynamics consists of a chain of N identical masses m 

connected by springs of spring constant k, shown in Figure 1. The equation of motion for the 

nth mass is given in the standard notation by 

 

2

1 12

2
2
0 1 12

(2 )

or  (2 )

n
n n n

n
n n n

d u
m k u u u

dt

d u
u u u

dt
w

+ -

+ -

=- - -

=- - -

 (10) 

where nu  is the displacement from the equilibrium position of the nth mass. The right hand 

side represents the elastic restoring force on the nth atom. The atoms n=1 and n= N define 

the boundaries. 

The frequency of oscillation is given by 2
0 /k mw = . 

 

Figure 1. Linear chain of coupled oscillators  

The elastic behavior of a continuous chain in equation (9a) can be obtained from the 

equation of motion of the linear chain of masses connected to each other by springs 

considered above in equation (9). In the limit when the number of masses N and the 

separation between the masses a0, such that the product Na L, a finite length, the linear 

chain of coupled oscillators reduces to a continuous loaded string and is referred to as the 

long wavelength limit.  
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This process of taking the continuum limit is illustrated by considering the term on the right 

hand side of equation (10):  

the factor 

 2
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In the limit of N ¥ and 0a , the chain of atoms can be treated as a continuum and 

( ) ( , )nu t u x t , a continuous function. The term in the brackets can be written as 
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0
a   reduces to the square of the wave velocity. Thus the equation of motion in the limit 

can be written as 
2 2

2

2 2
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c
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¶ ¶
=

¶ ¶
yielding the equation of motion of a continuum, equation 

(9a) 

3.2. Viscoelasticity: Lattice dynamical approach 

In order to develop a theory of viscoelasticity, the model of linear chain of atoms has been 

generalized to include dissipative effects [14] by incorporating dashpots  either in parallel to 

the springs as shown in figure 2 to yield the lattice dynamical version of the Kelvin-Voigt 

model, or the dashpots in series with the springs as shown in figure 3 to yield the lattice 

dynamical version of the Maxwell model. 

 

Figure 2. Kelvin-Voigt model for viscoelasticity 

 

Figure 3. Maxwell model for viscoelasticity 

It has been shown [14] that the models in the continuum limit lead to the stress-strain 

relations 
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respectively for the two models. Harmonic waves are found to propagate with decaying 

amplitude indicating dissipation. The details can be found in reference [14]. 

4. Fractional calculus approach 

In this paper, the lattice dynamical approach is generalized by using the methods of 

fractional calculus, leading to the so-called linear chain of coupled fractional oscillators. 

However, this generalization does not require the dissipative elements, namely the dashpots 

to be explicitly considered, for the dissipation is intrinsic to the fractional oscillators [16-19]. 

As the method of approach is quite different, further reference will be made not to the work 

of Askar [14], but to the work of the authors on a linear chain of coupled fractional 

oscillators [19] and the approach is outlined below. 

4.1. Linear chain of fractional oscillators 

Instead of starting with equation (10), we consider the integral equation of motion for the 

nth mass interacting with only its nearest neighbors, which can be written without loss of 

generality as: 

 ( )2
0 1 1

0

( ) (0) (0) 2 ( ) ( ) ( ) ( ) 2 1
t

n n n n n nu t u u t u u u t d n Nw t t t t t+ -= + - - - - £ £ -ò  (12) 

Here (0)nu  and (0)nu refer to the displacement from equilibrium and velocity of the nth 

mass at t=0. For the masses at the ends of the chain, the equations of motion are given by 

 ( )2
1 1 1 0 1 2

0 0

( ) (0) (0) 2 ( ) ( ) ( )( )
t t

u t u u t u u t d f t dw t t t t t t= + - - - + -ò ò  (13) 
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 ( )2
0 1

0

( ) (0) (0) 2 ( ) ( ) ( ) ,
t

N N N N Nu t u u t u u t dw t t t t-= + - - -ò  (14) 

respectively. Of course, it is  2
0 /k mw = , in the usual notation. The last term in equation (13) 

indicates a periodic forcing on the end atom. 

The integrals on the right hand side of equations (11) -(13) are generalized to fractional 

integrals of order a  (defined by equation (19) below) to yield the equations of motion of 

a chain of coupled fractional oscillators. However, as has been well known that a 
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fractional oscillator behaves like a damped harmonic oscillator [15-18], the oscillations of 

the linear chain of fractional oscillators can be sustained only if it is driven by an external 

force. Hence a periodic force, taken to be sinusoidal without loss of generality, acting 

only on the first member of the chain is included. Thus the equations of motion are given 

by 

( ) 10(0) (0) 2 ( ) ( ) ( ) ( ) , 2 1
1 1( )
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t
u u u t u u u t d n N

n n n n n n

aw at t t t t
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The last term on the right hand side of equation (16) represents the effect of the periodic 

forcing as already noted.  

4.2. Formal solution 

The set of equations (15) through (17) can be solved formally by using the Laplace transform 

technique [20-24]. In the standard notation, the Laplace transform is defined by 
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The Laplace transform of a fractional integral of order , (Re 0)a a> defined by [20] and can 

be evaluated by considering the fractional integral as a convolution of two functions (19b), 
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and using the formula for the Laplace transform of the convolution. Thus 

 0{ ( )} { ( ) * ( )} ( ) ( );L I f t L t f t s f sa f f+ = =   (21) 
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But as discussed in [23], 
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Taking Laplace transforms on both sides of the set of equations (15) through (17) yields 
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The set of equations can be rewritten in the following matrix form: 
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and the N x 1 column vectors are given by 
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respectively. It may be noted that among the four column vectors, only the first and the last 

refer to Laplace transformed quantities, but the middle two refer to constants describing the 

initial conditions. The solution to Eq. (25) can be formally written as  

 ( )1 1 2( ) ( ) (0) (0) ( )U s A s U s U s F s- - -= + +    (29) 
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Then the set of linear equations can be explicitly written down and the inverse Laplace 

transform applied to these equations on both sides term by term to obtain the displacements 

as functions of time. This formal procedure appears to be straight enough, however, it is not 

possible to carry out further simplifications in closed form of the expressions in equation. 

(28). Nevertheless, this set of equations can be numerically solved for specific values of N, 

the number of oscillators in the chain. Such calculations have been carried out and the 

details of numerical applications may be found in [19]. In the next section, the continuum 

limit of these equations is studied.  

5. The continuum limit   

It would appear to be a straight forward procedure to extend the same considerations to the 

equations of motion of a chain of coupled fractional oscillators given in equations (15)-(17).  

However, it is not so straight forward and due caution has to be exercised in extending such 

a procedure. The reason is the occurrence of time derivatives of fractional order. Douglas 

has shown [25] that in the context of fractals, inhomogeneity in space results in the 

appearance of fractional order time derivatives and inhomogeneity in time implies 

fractional order derivatives of space. Since fractional order time dependence is being 

investigated in the present work, the question arises whether inhomogenneity in space can 

be ignored and whether space derivatives can be taken. The question is one of scale. The 

long wavelength limit implies that the lengths involved are very much larger than the 

separation distance between masses. On this scale the inhomogeneity in space can be 

ignored and space derivative can be interpreted as an average of some sort and a hand 

waving justification can be made. The limiting form of the equations (12) through (14) can be 

considered. 

Thus the following factor in equation (15) 
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In the limit a 0, ( )nu t  becomes a continuous variable ( , )u x t  and the expression in 

parenthesis in (30) reduces to 
2

2

( , )u x

x
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¶
 and , /ka m ak r   represent the tension and 
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the mass density respectively. The expression in (30) can be written in terms of a quantity 

0ca , where 0c  has the dimensions of ‘velocity’. Assuming that at t=0 the displacement at the 

free end is subject to sinusoidal forcing, (0, ) ( ) sin( )u t f t A tw= = , the equation of motion 

reduces in the continuum limit to 
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with the initial conditions 

 ( ,0) 0 and ( ,0) 0 for 0 and (0, ) ( ).u x u x x u t f t= = > =  

Taking the Laplace transform on both sides of equation. (32) yields 

 

2
0

2

( , )
( , )

c d u x s
u x s

s dx

a

a
=

  (33) 

The equation. (33) can be rewritten as 
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This is an ordinary differential equation and can be solved to yield 
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Substituting for 
2 2
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A
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s

w

w
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+
  corresponding to a sinusoidal forcing ( ) sin( )f t A tw= ,  

The eq. (35) can be inverted as a Bromwich integral 
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The Bromwich integral in eq.(36) can be evaluated by appealing to the theory of complex 

variables [22-24]. By considering a Hankel-Bromwich path, it can be evaluated as the sum of 

two contributions: 

 ( , ) ( , ) ( , )tr stu x t u x t u s t= +  (37) 

representing a transient part and a steady state part respectively. 
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The transient part, ( , )tru x t , arises from the Hankel loop consisting of the small circle and 

two lines parallel to the negative x-axis (as shown in  figure 1in [17]) and is given by 

 0
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tru x t e K r c x dra

a w
¥

-= ò  (38) 

with 
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The steady part, ( , )stu x t , arises from the residues of the poles of the integrand in eq. (36) at 

s iw=  and is given by   
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 (40) 

This completes the formal analysis of the response to sinusoidal forcing of a chain of 

fractional oscillators in the continuum limit. Numerical results will be presented in the next 

section. 

6. Results and discussion 

The results of the last section in equations (36)-(40) are new. Applications of fractional 

calculus to oscillation and dissipation problems and solutions to integral and fractional 

order differential equations can be found in Gorenflo and Mainardi [8] Impulse response 

functions are also discussed in their work. The same methodology has been extended to 

sinusoidal forcing of a linear chain in the present work. The response of a chain of fractional 

oscillators in the continuum limit, when subject to a sinusoidal forcing starting from a 

quiescent state consists of a transient part and a steady part. The transient part decays in 

time and approaches zero as t ¥ . In the limit 2a the transient part vanishes entirely. 

Furthermore, it exhibits attenuation as a function of distance from the end as indicated by 

the spatial dependence of the kernel in eq. (39). No simple closed form expressions can be 

obtained, the only recourse is through numerical integration. Closed form solutions are not 

available even for simple mechanical models such as the standard linear solid, which are not 

based on fractional calculus, for the reason that the solutions are deemed mathematically 

cumbersome as has been discussed by Caputo and Mainardi [5]. These authors have applied 

methods of fractional calculus to the linear theory of viscoelasticity based on mechanical 

models and have discussed the propagation of viscoelastic waves[6]. Their work is 

macroscopic in its approach and is not based on the continuum limit of lattice dynamics. 

However, some concepts developed by these authors are quite insightful and the results of 
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the present study can be related to these concepts as follows. Equation (38) can be rewritten 

by changing the variable  1 /r t  as 

 
/

0
0

( ) t
tr

A
u R e d

c

t
a

t t
¥ -= ò  (41) 

to bring out clearly the decay in time. It is obvious that the decay in time is characterized by 

a distribution of relaxation times. The relaxation spectrum is given by  
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0

cos( /2)
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2 2 /2
0

( ) sin( sin( / 2))
(1 ) ( )

x

c x
R e

c

a
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t
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w
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p w t t

-

= ´
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It may be noted that the relaxation spectrum depends also on the distance x , which appears 

in a similarity combination /2
0/ ( )x c at and that the factor in the exponent, cos( / 2)pa , may 

become negative. Hence caution should be exercised in a strict interpretation in terms of 

relaxation times. The relaxation spectrum is displayed in figure 4 for several values of the 

parameter a . The values of the other parameters have been chosen to be 01.0, 1.0x c= =  

and 1.88w=  for this display. 

The steady state solution given by equation (40) can be written as  

 
0

( , ) sin ( / )x
st

A
u x t e t x v

c

d
a

w-= -  (43) 

explicitly showing that it as an attenuated wave, propagating with a velocity (phase 

velocity) 

 

/2
0

/2 sin( / 4)

c
v

a

a

w

w pa
=  (44) 

and characterized by an absorption parameter 

 

/2

0

cos( / 4)
c

a
w

d pa
æ ö÷ç ÷ç= ÷ç ÷ç ÷è ø

 (45) 

In the limit 02 , and 0v c  a d    as can be seen from equations (44) and  (45).  

Phase velocity as a function of frequency for several values of a is shown in Fig. 5. The 

variation of the absorption parameter as a function of the driving frequency is shown in 

Fig.6. 
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Figure 4. Relaxation Spectrum for different values of a  
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Figure 5. Phase  velocity  as  a   function   of   driving frequency (in arbitrary units).  
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Figure 6. Absorption  parameter  d  as  a function  of driving Frequency (in arbitrary units).  

According to equation. (40), the amplitude of the response wave decays with distance as
/2

0

cos( /4)

~
x

c
Ae
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w
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æ ö÷ç ÷ç- ÷ç ÷ç ÷çè ø and hence the energy as
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2

x
c

A e

a
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æ ö÷ç ÷ç- ÷ç ÷ç ÷çè ø . The specific dissipation  

function can be defined in terms of the distance over which the energy decays by a factor 
1e- , which is given by 

 
/2

0
/22 cos( / 4)

c
x

a

aw pa
=  (46) 



 
Microscopic Formulation of Fractional Theory of Viscoelasticity 

 

73 

The specific dissipation function is given by 1Q-  where Q is defined (in analogy with the 

quality factor ‘Q’ of harmonic oscillators) as the phase change in radians experienced as the 

wave travels the distance x  in equation. (45) and is given by 
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0

1
sin( / 4) tan( / 4)

2
Q x

c

a
w

pa pa
æ ö÷ç ÷ç= =÷ç ÷ç ÷è ø

  (47) 

An alternate definition of ‘ 1Q- ’ has been given [6] by Caputo and Mainardi, who 

introduced in analogy with the optical case, a complex ‘refractive index, r in n in= - . The 

real and imaginary parts of the refractive index for the wave in eq. (40) are given by  
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and   
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According to Caputo and Mainardi [6], the specific dissipation function is given by 

 1 2
2cot( / 4)i

r

n
Q

n
pa- = =  (50) 

which is equivalent to the expression in equation (47).  

Kolsky’s definition [26, equation 5.22] of 1 , ( 2 /Q vd w- = , in our notation), also yields the 

same expression as in equation  (50). 

6.1. Further discussion 

As explained earlier, the classical theory of viscoelasticity is based on the so called 

Standard Linear Solid Model characterized by the constitutive relation given in equation 

(6). This model gives a good qualitative description of the deformation behavior of 

viscoelastic solids, but has been found to be inadequate to give quantitative account as 

has been discussed in detail by Gorenflo and Mainardi [8]. More complex mechanical 

models lead to difficulties in formulation and solution of the resulting complicated 

differential equations and no satisfactory resolution has been possible [8]. Quantitative 

agreement is secured only when recourse is made to the so called fractional viscoelastic 

models. The stress-strain relations are then expressed in terms of fractional order 

integrals in both creep- and relaxation- representations mentioned earlier and further 

details can be obtained in reference [9]. In the space-time domain, the approach based on 
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fractional calculus leads to the propagation of viscoelastic waves and the details can be 

found in Mainardi[9]. The approach developed in the present work is based on lattice 

dynamics and hence is a dynamical model. It is microscopic in approach and hence 

macroscopic properties are described in the so called long wave limit. Further 

deformation properties which are ‘static’ in nature are described in the zero frequency 

limit. As has been shown above the microscopic approach leads to the macroscopic 

properties in the appropriate limit. It has been noted [26] that the presence of spatial in-

homogeneity in polymeric materials gives rise to fractional differential operators in time 

in the relevant evolution equations, while temporal in-homogeneity leads to fractional 

differential operators in space. Since only fractional order operation in time has been 

considered in the present work, there is an implicit in-homogeneity in space which 

results in a tendency of the particles to cluster and move in a collective fashion. Such 

collective motion can be considered as elastic waves of very large wavelength, much 

larger than the scale of the in-homogeneity. This provides a sort of justification for the 

limiting long wavelength approximation employed. 

7. Summary 

A microscopic approach based in lattice dynamics, but from the fractional calculus point of 

view has been developed for the theory of viscoelasticity. The system considered is a linear 

chain of fractional oscillators subject to a sinusoidal forcing at one end. For the system 

starting from a quiescent state, the response to sinusoidal forcing consists of a transient and 

a steady state part. The decay of the transient is characterized by a distribution of relaxation 

times and the expression for the relaxation spectrum has been obtained. The steady state is 

essentially a attenuated sinusoidal wave, whose phase velocity and attenuation have been 

studied and an expression for the specific dissipation function has been obtained. The 

results obtained are consistent with the results obtained by Mainardi and others from a 

macroscopic point of view. 
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