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1. Introduction 

Along with rapid assembly for the purpose of creating thinner printed circuit boards, the 

side effect of warping during the reflow process is inevitable. As a result, the assembly 

process encounters serious challenges, such as difficulty in implementing a highly 

integrated assembly, as well as degradation in the reliability of connectivity. Aside from 

attempts to simulate these issues employing the FE analysis method, it is also necessary to 

conduct an estimation of the warpage at the early stage of design, for which development of 

more simplified estimation tools is strongly desired. From a material behavior point of view, 

if any glass transition points exist within the temperature range of the reflow process, the 

relaxation effect (due to viscoelastic characteristics of the material of the boards) appears as 

a deformation, which acts as a barrier to achieving a distinct estimation of the amount of 

warpage. Generally speaking, the viscoelastic behavior of resin materials exhibits very 

sensitive temperature dependency. This makes it difficult to accurately capture the 

characteristics of resin materials in actual experiments, and accordingly, to build numerical 

models based on such an experimental measurement. There have been many analysis cases 

published using sophisticated FE approaches (Shrotriya et al., 2005 and Valdevitet al., 2008), 

but these approaches have not extended beyond applications as a handy design tool. 

To easily estimate the thermal deformation in the laminated structure, some approaches 

employ the multilayered beam theory (Lim, 2008 and Yuju, 2003). The method proposed in 

this paper enhances these approaches to incorporate the layered plate theory, and includes 

the effect from the temperature-dependent viscoelasticity and the temperature-dependent 

coefficient of thermal expansion of resin materials. The program, which is equipped with the 

developed method, can give an arbitrary temperature history to a multilayered plate 

consisting of an arbitrary number of layers. As well, the practical approach for measurement 
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of viscoelasticity characteristics has been specifically developed by the author’s group, with 

the aim of performing measurements to obtain highly accurate data (Kobayashi, 2008). The 

method proposed herein was verified using the achievements from this development. 

Verification results are also shown in this paper. This method instantly calculates the 

amount of warpage and stress in a multilayered plate by giving the values of the thickness 

and material constants of the plate. Advantages of the proposed method may cover a wide 

range of real world applications, such as design optimization problems. 

2. Viscoelasticity theory and its incremental form solution 

In order to incorporate viscoelasticity into the multilayered plate theory, the one-

dimensional linear viscoelasticity theory can be expanded into the plane stress field, and 

then treated as an incremental form of solution. The generalized Maxwell model is applied 

to exhibit linear viscoelastic behavior. This model is composed of a parallel series of 

multiple Maxwell models, each of which is assembled with a serial connection of a dashpot 

and a spring defined by: 

    
1

exp /

N

r e n n

n

E t E E t τ


     (1) 

where Er(t’) is called the relaxation modulus of longitudinal elasticity defining the stress 

relaxation keeping the strain constant. En, τn, and N are the material constants denoting the 

coefficient to the Prony series, the relaxation time, and the number of terms in the Maxwell 

model, respectively; t' is the reduced time. Where the reduction rule of time-temperature is 

applicable, the time-temperature conversion factor, aT(T), is obtainable from the following 

formula: 
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    (2) 

where t is the real time and T is the temperature. 

Using Eq. (1) and Eq. (2), the one-dimensional behavior of the viscoelastic material with 

temperature dependency can be represented. Considering the plane stress state, where 

uniform in-plane deformation is assumed to take place, the stress-strain (σ-ε) relation can be 

represented with the relaxation form as follows: 
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where ν is the Poisson’s ratio. This study is conducted in accordance with the plate theory of 

shin shells assuming the thicknesses of a circuit board are not relatively large. Based on this 

pre-condition, the effect from the out-of-plane shear deformation of the plate is not taken 

into consideration. Therefore, the bending behavior of the plate is mainly governed by only 
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the Young’s modulus. Note that Poisson’s ratio is incorporated into Eq. (3) for the purpose 

of expanding the use of the beam theory into the plate theory. Accordingly, the Poisson’s 

ratio in this study is treated as constant value. Further, the Poisson’s ratio of viscoelastic 

materials in its strict sense is allowed to have its own time-dependency independent of the 

Young’s modulus, such that the Poisson’s ratio can be experimentally measured and the 

measured Poisson’s ratio becomes available for the associated analysis.  

Equation (3) should be converted into an incremental form so that it can be treated 

numerically. Taking tm as arbitrary time, and assuming that the strain varies with a constant 

gradient of Δε(tm)/Δtm during a time increment of Δtm= tm-tm-1, the relationship between the 

stress increment, Δσ(tm), and the strain increment, Δε(tm), can be represented using Eq. (1) 

and Eq. (3) by following the expression below (Eq. (4)). Equation (4) takes a form with 

respect to the strain increment; in the multilayered plate theory described in the section 

below, necessary equations are derived with respect to the continuity of the strain in each 

layer, where σn is the stress in the n-th term of the Maxwell model. 
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3. Multilayered plate theory including viscoelasticity 

3.1. Assumptions 

For modeling a printed circuit board with a multilayered plate as illustrated in Fig. 1, the 

following assumptions were made: 

 The in-plane property of the plate is homogeneous and isotropic.  

 The thickness of the plate is sufficiently thin to generate a no stress component in the 

direction normal to the surface. 

 The plate is not subjected to any constraint.  

 The plate will warp under the uniformly distributed temperature.  
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The bending moment to deform the plate convexly is defined as positive; the deflection 

along this direction is also defined as positive. Hi and νi in the figure denote the plate 

thickness and the Poisson’s ratio, respectively. The curvature induced under temperature 

variation becomes identical in all in-plane directions of the xy plane, since isotropicity and 

non-constraint are assumed. Therefore, the warpage of the multilayered plate can be 

calculated only on the deformation within the xz plane, as shown in Fig. 2.  

 

Figure 1. Multilayered plate 

 

Figure 2. Deformation in xz plane 

In multilayered plate theory, global warpage is calculated based on the assumption that the 

strain in each layer is independent and the respective interface is continuous; the strain 

generated in each of the layers is composed of three components:  

a. Thermal strain 

b. Strain due to in-plane force in the plate 

c. Strain due to bending moment on the plate 

Each strain component is classified as follows: 

a. Thermal strain 

When the temperature-dependent thermal expansion coefficient of the i-th layer at an 

arbitrary temperature, T, is expressed as αi(T), the thermal strain is expressed as the 

following equation: 
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where T1 represents the initial temperature in the analysis. The temperature-dependent 

thermal expansion coefficient is the average thermal expansion coefficient based on a 

reference temperature, T0. The second term in Eq. (6) is necessary in order to prevent strain 

at the initial temperature from being generated. In order to express it as an incremental 

form, Eq. (6) is differentiated by T.  

 0

( )
( ) ( )i i

i

dε dα T
T T α T

dT dT


      (7) 

Therefore, the thermal-strain increment in a given temperature change, ΔT (tm), can be 

obtained from the following equation: 
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b. Strain due to in-plane force in the plate  

On each layer of the multilayered plate illustrated in Fig. 2, generation of in-plane force and 

bending moment are considered. Taking the in-plane force in the i-th layer as Pi(tm), the 

incremental force can be expressed with Eq. (9). Hi and B are the thickness and width of each 

layer, respectively; σ’’i(tm) indicates the stress due to the in-plane force. 

    i m i i mP t H B σ t       (9)  

Introducing the effect from viscoelasticity using Eq. (4), as previously derived, Eq. (8) can be 

written in the incremental form as follows; 
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where 

    , ,i n m m i i n m mP t t H B σ t t         (11) 

c. Strain due to bending moment  

The incremental strain due to the bending moment in each layer can be similarly expressed 

by Eq. (13); iz is the distance measured from the neutral plane of the i-th layer. 
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where 
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The strain increment, Δε’’’i(tm), can be represented as Eq. (15).  

    i m i i mε t z C t      (15) 

where ΔCi(tm) is the increment of the curvature,  
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3.2. Strain continuity and equilibrium equation 

The global in-plane strain generated at each layer is expressed as the sum of the above-

mentioned strain components a. through c. As this global strain must be kept continuous 

across the interface on each layer, the following expression can be written: 
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The applied load must also satisfy the following equilibrium equations:  
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   (19) 

Assuming the thickness of each layer is negligibly small compared with its resultant 

curvature, the respective curvature on each layer is identical as Eq. (20). Therefore  

ΔPi (tm), ΔMi(tm) and ΔCi(tm) are obtainable by simultaneously resolving Eq. (17), Eq. (18), 

and Eq. (19). 
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 1 2( ) ( ) ( ) ( )m m I m mC t C t C t C t           (20) 

3.3. Derivation of stress and deflection 

By way of the above-mentioned procedure, in-plane forces and curvatures are obtained. 

Using these results, stress and deflection can be derived following the steps below. Firstly, 

the stress generated in each layer is calculated as the sum of the in-plane stress and the 

bending stress, as follows:  
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12( )
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i m i m
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P t zσ t M t
H B H B

   (21) 

As this model is assumed to be isotropic and unconstrained, the curvature must be identical 

in all directions within the xy plane. As per Fig. 3, L is taken as the distance from the center 

to the corner of each layer; the cross-section of each layer is assumed to have the shape 

shown in Fig. 4, and θ is taken as the slope at the tip of each layer. Accordingly, the 

maximum tip deflection, δ(tm), is obtained as follows: 

      1 cos /m mδ t θ C t    (22) 

Assuming θ is relatively small and in-plane elongation is also small, resulting in L = L’, the 

following expression can be obtained: 
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Figure 3. Definition of L  

 

Figure 4. Deformation of the cross section 
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4. Measurement of viscoelastic material properties 

Aside from the fact that thermal stress analysis taking viscoelasticity into account has not 

been adequately carried out to date, one must recognize that it is difficult, in practice, to 

obtain sufficient accuracy in such experimental measurements. Accordingly, any data 

measured in such experiments is not accurate enough to relate to the viscoelastic numerical 

model. Viscoelastic materials exhibit very sensitive temperature dependency, particularly in 

the vicinity of the glass transition point. Thus, intricate temperature control is required 

throughout the entire duration of the measurement operation. In addition, the time-domain 

constants obtained usually span a wide range of digits, in the range of 20 to 30. This leads to 

the additional task of determining desirable factors, which may prove difficult unless 

advanced optimization techniques are applied. 

This paper also presents a test case for obtaining the characteristics of epoxy resin material. 

A device for measuring dynamic viscoelasticity, RSA III (TA Instruments), was used. 

Dynamic viscoelasticity characteristics were measured for angular velocities 3.16, 10, 31.6, 

and 100 rad/sec with an ascending temperature rate of 2 °C/min, in the temperature range of 

-40 to 60 °C. As shown in Fig. 5 and Fig. 6, the storage modules, E’, and the loss modulus, 

E’’, of the epoxy resin material were measured. This measurement device is equipped with a 

temperature-controlled oven with a solid structure and a large volume flow rate, providing 

excellent performance in temperature control.  

Figure 7 shows the master curve, representing the relationship between the storage/loss 

modulus and reduced angular velocity, for the reference temperature, TR. To create the master 

curve, the WLF formula as shown below was applied for the temperature-time reduction. 
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In this study, a simple optimization technique was employed in which generally 

recommended values for C1 and C2 were used, and Tg was estimated using the quasi-

Newton method (Kobayashi, 2008). As a result, a single smooth master curve could be used 

to cover the wide range of angular velocities. The coefficients for the Maxwell model were 

obtained from the master curve by the optimization approach so that the relaxation curve 

from Eq. (1) could be calculated numerically. The result is shown in Fig. 8. The relationship 

between time-domain constants and frequency-domain constants is expressed by Eq. (25). 

Using this formula, the numerical model that gives a close approximation of the actual 

measurement data can be obtained, as seen in Fig. 8.  
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These procedures for identification have been organized in Excel; please refer to the Appendix. 
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Figure 5. Storage modulus of epoxy resin 

 

Figure 6. Loss modulus of epoxy resin 

 

Figure 7. Master curve for Storage/Loss modulus 
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Figure 8. Master curve for relaxation modulus 

5. Numerical verification by FEM 

To verify the calculation method proposed in this study, a three-layered plate—40 mm in 

length and 20 mm in width (Fig. 9), consisting of epoxy resin with 0.5 mm thickness 

(viscoelastic, Tg = 105 °C), FR-4 substrate with 0.5 mm thickness (viscoelastic, Tg = 120 °C), 

and aluminum with 0.1 mm thickness (elastic)—was analyzed. The initial temperature of the 

laminated plate was set at 180 °C, and it was cooled to 25 °C within 2,000 sec, as shown in 

the temperature history (Fig. 10). Because the laminated plate was gradually cooled, its 

inside temperature was assumed to be uniform. 

Figure 11 shows the master curves of the relaxation moduli of the epoxy and FR-4 

substrates. The temperature-dependent viscoelasticity was assumed to be in accordance 

with the Arrhenius formula, as expressed by Eq. (26).  
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Figure 9. Three-layered plate model 
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The values of the coefficients for Epoxy resin shown in Eq. (26) were as follows: ΔH1 = 2.4420 

× 105 (before T0); ΔH2 = 3.0480 × 105 (after T0); and T0 = 97.7 °C. Those for the FR-4 substrate 

were as follows: ΔH1 = 8.8300 × 104 (before T0); ΔH2 = 4.3220 × 105 (after T0); and T0 = 113.2 °C. 

 

Figure 10. Applied temperature history 

 

Figure 11. Relaxation modulus 
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shows the thermal expansion coefficients of the epoxy and FR-4 substrates. The aluminum 
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the thermal expansion coefficient α 3 = 23.2 × 10-6/°C.  

For comparison with the multilayered plate theory developed in this study, an FE analysis 

of the same model was performed using the shell elements of Abaqus ver. 6.8. Figure 13 

shows the deformation of the plate obtained by the FE analysis. Figure 14 shows the 
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relationship between the deformation and temperature. Figure 15 shows the relationship 

between stress and temperature for each layer. As shown in Figs. 14 and 15, the deformation 

and stress of the laminated plate obtained by the multilayered plate theory were confirmed 

to be identical to those obtained by the FE analysis. 

 

Figure 12. Thermal Expansion curves 

 

Figure 13. Deformation of plate (FEM)   

 

Figure 14. History of plate deflection 
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Figure 15. History of stress 
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(b) Epoxy resin (Interface between Layer 1 and Layer 2)
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6. Conclusions 

We were able to establish a simplified and easy-to-use tool for estimating the warpage in 

printed circuit boards based on the multilayered plate theory combined with the effects 

from the temperature-dependent thermal expansion coefficient and the temperature-

dependent viscoelastic characteristics of the resin material. The results derived from this 

method are confirmed to be in agreement with the FE analysis results. 

Appendix (Identification of the generalized Maxwell model and 

development of a curve fit program) 

When the generalized Maxwell model for time domain is identified based on the master 

curve in frequency domain using Eq. (25), the following three points should be noted. 

Ee, En, τn of positive definite 

Since the generalized Maxwell model is regarded as a mechanical model, it is preferable that 

all the values of these coefficients are always positive. However, the input rule for them is 

different among general purpose FEMs. For example, some codes allow negative value 

input, while others strictly prohibit negative value input. Hence, there is no unified rule 

among all the codes. Since it is empirically observed that master curves may oscillate due to 

the affect of terms with negative values, it is considered reasonable to control the input data 

to make them positive definite. 

Number of terms in the generalized Maxwell model 

It is common practice to give the abscissas of a master curve, i.e., frequencies using a 

logarithmic scale covering a range of 20 to 30 digits. To make this master curve 

approximate a smooth curve, it is said that the number of terms (number of two-element 

Maxwell models) should be selected so they are equal to or above the number of digits of 

the frequencies. In order to confirm this, a simple calculation was carried out using a 

single two-element Maxwell model. The calculation was performed under the following 

conditions. 

Elastic model: E = 100 Pa 

Viscoelastic model: E1 = 100 Pa, τ1 = 1 sec 

The relaxation modulus calculated using this model is shown in Fig. 16. In the figure, the 

curve with the solid line in the relaxation module is noted to decay one digit over time. It 

shows that a single Maxwell model is capable of representing relaxation behavior over a 

time domain of about one digit. Accordingly, when each dashpot is provided with the 

sequence of τn such that the next one has an order of time greater by one digit than the 

former, the relaxation behavior over the full range of a time domain can be expressed 

without a break. If the abscissa of a master curve, for example, is represented with a time 
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domain of 20 digits, the number of terms in the generalized Maxwell model may be selected 

to include 20 or more. 

 

Figure 16. Relaxation behavior of single two-element Maxwell model 

Smoothness of relaxation spectra 

The next task is to organize the model so that the contribution from each term is 

approximately smoothed. In accordance with the knowledge derived by Emri et al. (1993), 

keeping the smoothness of discrete relaxation spectra is effective in securing the desirable 

accuracy of approximation results. The Kronecker’s delta in the expression is denoted by δ. 
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An example of these relaxation spectra is shown in Fig. 17. An attempt was made in this 

example such that the envelope for these discrete spectra is approximated to be piecewise 

quadratic so that the smoothness can be maintained subject to the curvature change along 

this envelope being not too large. Through the testing of such provisions, followed by an 

approximate calculation, it becomes possible to perform a curve fit operation for a master 

curve even though data is missing. For viscoelastic materials with sharp temperature 

dependency, it becomes very difficult for the temperature control in the measurement 

device to catch up with the actual material response, and as a result, critical defects are 

bound to occur (Fig. 18(b)); therefore, smoothing manipulation for those relaxation spectra is 

a highly effective measure. 

In the curve fit program developed by the author’s company, the generalized Maxwell 

model is identified based on the master curve shown in Fig. 7. This program is designed to 

completely fulfil the constraint conditions discussed in the preceding section. A sample 

output from this program is shown in Fig. 19. The user is only required to enter ”Input 

data,” “Number of Prony terms,” and “Poisson’s Ratio” in the specified input field, and then 

press the “Optimization” button. The program automatically performs an approximate 
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calculation. The optimization operation uses the quasi-Newton method. For the quasi-

Newton method, it is necessary to set up the initial condition in the vicinity of the optimized 

value. However, this program incorporates an algorithm that can automatically estimate, 

from the test results, an initial condition that easily converges.  

The master curve for epoxy resin material shown in Fig. 8 covers a range of about 12 digits 

in terms of angular frequency, so the number of terms in the Maxwell model is set to 12. As 

previously mentioned, positive values for all of Ee, En, and τn are maintained during the 

calculation. The coefficients of the identified Maxwell model are automatically written into 

the respective format of the input file for Abaqus, Marc, or LS-DYNA. 

 

 

Figure 17. Smoothing manipulation for relaxation spectra 

 

 

Figure 18. Examples of measured master curve 
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Figure 19. Viscoelastic curve fit program using Excel 
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Number of Terms( Prony)

12 G' G'' w Gr t Gi τi ｔ Gr(t)

9.95E+08 9.26E+07 1.00E+11 9.95E+08 1.00E-11 1.55E+08 1.00E-11 1.00E-11 1.07E+09

Relative Error 8.85E+08 1.15E+08 5.42E+10 8.50E+08 1.00E-10 1.24E+08 1.00E-10 2.00E-11 1.02E+09

1.940E+00 9.47E+08 9.79E+07 2.65E+10 7.35E+08 1.00E-09 2.12E+08 1.00E-09 3.00E-11 9.93E+08

Variance 8.78E+08 1.22E+08 2.52E+10 5.28E+08 1.00E-08 2.17E+08 1.00E-08 4.00E-11 9.76E+08

9.846E-03 9.00E+08 1.05E+08 1.23E+10 3.29E+08 1.00E-07 2.25E+08 1.00E-07 5.00E-11 9.63E+08

8.50E+08 1.12E+08 5.72E+09 1.48E+08 1.00E-06 1.51E+08 1.00E-06 6.00E-11 9.52E+08

Frequency Range 8.56E+08 1.20E+08 2.76E+09 5.05E+07 1.00E-05 4.30E+07 1.00E-05 7.00E-11 9.43E+08

8.00E+08 1.27E+08 2.65E+09 2.76E+07 1.00E-04 1.40E+07 1.00E-04 8.00E-11 9.34E+08

8.02E+08 1.21E+08 1.28E+09 1.68E+07 1.00E-03 7.25E+06 1.00E-03 9.00E-11 9.26E+08

7.46E+08 1.33E+08 1.23E+09 1.29E+07 1.00E-02 5.16E+06 1.00E-02 1.00E-10 9.19E+08

Minimum Frequency ωmin 7.35E+08 1.30E+08 5.95E+08 9.62E+06 1.00E-01 3.02E+06 1.00E-01 2.00E-10 8.68E+08

1.00E-01 6.67E+08 1.40E+08 2.76E+08 7.62E+06 1.00E+00 8.86E+05 1.00E+00 3.00E-10 8.38E+08

Maximum Frequency　ωmax 5.97E+08 1.50E+08 1.28E+08 7.33E+06 1.00E+01 7.33E+06 Ge 4.00E-10 8.17E+08

1.00E+11 5.88E+08 1.54E+08 1.14E+08 5.00E-10 8.00E+08

5.28E+08 1.57E+08 5.95E+07 6.00E-10 7.86E+08

Poisson's Ratio 5.15E+08 1.56E+08 5.28E+07 7.00E-10 7.73E+08

4.00000E-01 4.55E+08 1.61E+08 2.76E+07 8.00E-10 7.61E+08
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1.01E+08 7.85E+07 4.28E+05 1.00E-08 5.26E+08

Experimental Data (Fig.1) Proney Series Master Curve (Fig.2)

Fig.1　Master Curve (Frequency)
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Fig.2　Master Curve (Time)
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