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1. Introduction 

Post flight data analyses are essential activities in aerospace projects. In particular, there is a 

specific interest in obtaining vehicle aerodynamic characteristics from flight data, especially 

for re-entry vehicle, in order to better understand theoretical predictions, to validate wind-

tunnel test results and to get more accurate and reliable mathematical models for the 

purpose of simulation, stability analysis, and control system design and evaluation. Indeed, 

due to atmospheric re-entry specificity in terms of environment and phenomena, ground 

based experiments are not fully exhaustive and in-flight experimentation is mandatory. 

Moreover pre-flight models are usually characterised by wide uncertainty ranges, which 

should be reduced. These objectives can be reached by performing vehicle’s model 

identification from flight data.  

The Italian Aerospace Research Centre (CIRA) has faced the problem of re-entry vehicle 

model identification from flight data within the framework of its Unmanned Space Vehicle 

(USV) program. The main objective of the USV program is designing and manufacturing 

unmanned Flying Test Beds (FTBs), conceived as multi-mission flying laboratories, in order 

to test and verify innovative materials, aerodynamic behaviour, advanced guidance, 

navigation and control functionalities as well as critical operational aspects peculiar of the 

future Reusable Launch Vehicle. Based on the velocity range under investigation, the whole 

USV program has been divided into several parts, the first of them, named USV_1 project, is 

aimed at investigating the terminal phase of re-entry mission, that is, subsonic, transonic 

and low supersonic flight regimes. Two identical autonomous Flying Test Beds (called 

FTB_1 but nicknamed Castore and Polluce) were designed and produced to support the 

execution of the USV_1 project. The FTB_1 vehicles are unmanned and un-powered. They 
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are winged slender configurations, with two sets of aerodynamic effectors: the elevons, that 

provide both pitch control when deflected symmetrically and roll control when deflected 

asymmetrically, and the rudders, that deflect only symmetrically to allow yaw control. 

Lateral-directional stability is enhanced by means of two ventral fins. A Hydraulic Actuator 

System (HYSY) controls the aerodynamic effectors. The on-board computers host the 

software that implements the guidance, navigation and control algorithms and manages 

subsystems and experimental payloads. One of the FTB_1 vehicles is shown in Figure 1, 

while Figure 2 presents its three-view. 

 

Figure 1. FTB_1 vehicle  

 

Figure 2. FTB_1 three-view 

Two transonic flight missions, named Dropped Transonic Flight Test 1 and 2 (DTFT1 and 

DTFT2), were already carried out. They were aimed at evaluating the transonic flight of a re-

entry vehicle. Data gathered during the FTB_1 missions have been analysed by the proposed 

identification techniques, in order to increase the accuracy of the vehicle model. Model 

identification of a re-entry vehicle is a very challenging task for the following main reasons: 

1. The aerodynamic behaviour of a re-entry vehicle is characterised by a complex flow 

structure that produces significant variations of all the aerodynamic coefficients 

depending on Mach number and angle of attack. It makes it difficult to model the 

vehicle aerodynamics, particularly in transonic regime. 

2. Experimental re-entry missions are typically performed once, providing a limited 

number of suitable data, and the experiment cannot be repeated in the short term. 

Therefore, it is difficult to refine the vehicle model in the whole flight envelope. 
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3. Due to safety constraints, manoeuvres specifically suited to the purpose of model 

identification are minimised. 

The first two issues call for structured parametric models based on physical considerations, 

where the flow field characteristics in the regimes of interest are represented with adequate 

accuracy. As a major advantage, such a model would extend the results obtained from the 

analysis of a single trajectory to the whole flight envelope. On the other hand, the third topic 

above requires that as much as possible information is extracted from low excitation inputs, 

and it is thus related to the effectiveness of the adopted identification methodology. 

In this chapter the parametric aerodynamic model is discussed first, the structure of which is 

based on first principles and specifically accounts for the peculiarities of a slender winged 

body configuration. The definition of this model has to face several challenging problems. 

The first of them is of a physical nature and arises from the variations of the flow structure 

about the aircraft, which depends on the current vehicle state variables and on some of their 

time derivatives. The simultaneous effect of all these quantities produces a pressure 

distribution on the aircraft surface, which depends on such variables in a complex fashion 

(Lamb, 1945). Because of this complexity, the determination of reasonable expressions of the 

aerodynamic coefficients, in terms of the state variables, can be very difficult. Although the 

aerodynamic performances of several lifting vehicles, such as HL-10, HL-20, X-33, and X-38, 

have only recently been analysed (Brauckmann, 1999; Kawato et al., 2005), the 

methodologies for calculating the aerodynamic characteristics of lifting bodies in subsonic, 

transonic, and supersonic regimes do not provide the same level of accuracy that is obtained 

for the classical wing-body configurations. This is apparent, in particular, for what concerns 

the variations of the lateral and directional coefficients with respect to aerodynamic angles 

and Mach number (Rayme, 1996). In fact, the simultaneous effects of lateral flow, body 

angular rates, and fluid compressibility can determine complex situations, where these 

coefficients exhibit nontrivial, non-monotonic variations (Kawato et al., 2005). The second 

problem is of a mathematical nature and regards the use of a tabular aerodynamic 

coefficients database. If the aerodynamic coefficients are known for assigned values of the 

state variables, the accuracy of the coefficient values out of the data points (calculated 

through an interpolation procedure) depends on the adopted interpolation method and on 

the number of independent variables. Because these coefficients depend on quite a large 

number of state variables, the interpolation provides in general poor accuracy (Hildebrand, 

1987), especially for the transonic variations of the lateral and directional coefficients at null 

sideslip angle, roll and yaw rates. Nevertheless, structured models, where the aerodynamic 

coefficients are expressed using some interpolation technique as functions of Mach number, 

aerodynamic angles and control surfaces deflection, are usually proposed in the literature 

for the purpose of identification (Gupta & Hall, 1979; Trankle & Bachner, 1995). Since these 

models are not based upon first principles, they cannot, in general, be applied outside of the 

region of the flight envelope where flight trials are undertaken. Last, but not least, the 

aerodynamic controls, which influence the aerodynamic coefficients in conjunction with all 

the variables, determine a further difficulty for the determination of the aerodynamic 

coefficients of a lifting body.  
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The model proposed in the present work provides a continuous and regular analytical 

representation of non-dimensional aerodynamic force and moment coefficients acting on the 

vehicle in the three regimes of subsonic, transonic and supersonic flow. It is based on the 

Kirchoff theorem, which in origin was formulated for incompressible streams and is based 

on the linear property of the continuity equation. This theorem states that, for an 

incompressible flow, the local fluid velocity around an obstacle is a linear function of the 

characteristic velocities of the problem. To study the vehicle aerodynamics in the 

compressible regimes, the Kirchoff theorem is properly extended to the compressible 

streams, taking into account that the local velocity depends on the fluid compressibility 

through the von Kármán equation (de Divitiis & Vitale, 2010). The model allows expressing 

each aerodynamic coefficient as nonlinear function of Mach number, aerodynamic angles, 

control effectors deflections, angular rates, and a set of constant aerodynamic parameters. 

The nonlinear behaviour stems from the effect of Mach number in the transonic regime and 

from the aerodynamic characteristics of the FTB_1 low aspect ratio, lifting-body 

configuration. The parameters of the aerodynamic model are firstly determined before 

flight, fitting a pre-flight aerodynamic database, built upon wind-tunnel test data and 

computational fluid dynamics analysis (Rufolo et al., 2006). Next, a subset of the model 

parameters is identified from flight data analysis, in order to update their pre-flight values 

and to reduce the related uncertainty level.  

Next, an original methodology for model identification from flight data is presented, which 

is applied in the framework of a two-step strategy called Estimation Before Modelling 

(EBM) (Hoff & Cook, 1996). This strategy is based on the classical decomposition principle, 

that is, it decomposes the starting identification problem in sub-problems which are easier to 

be solved. The EBM is introduced to manage the complex nonlinear structure of the vehicle 

dynamic equations and, above all, of the proposed aerodynamic model. The methodology 

allows to deal independently with the mission flight path reconstruction, that is the 

estimation of vehicle state vector and global aerodynamic coefficients, and the evaluation of 

aerodynamic model parameters. As for the latter sub-problem, the estimation process is 

carried out independently for each aerodynamic coefficient and for each flight regime (that 

is, subsonic and supersonic). The multi-step approach also permits to select a suitable 

estimation methodology to solve each sub-problem, exploiting in such a way the advantages 

of several identification techniques. Finally, it is specifically suited to deal with problems 

where identification manoeuvres are minimised and dynamic excitation is poor. In 

particular, the identifiable parameters are easily selected, and the identification (and related 

validation) can be carried out only for the model of the aerodynamic coefficients the 

parameters of which are in fact identifiable.  

The proposed identification strategy is illustrated in Figure 3. In the first step of EBM, 

vehicle state vector, aerodynamic coefficients and some atmospheric properties (such as 

local wind experienced during the mission) are estimated. This step is formulated as a 

nonlinear filtering problem and solved using the Unscented Kalman Filter (UKF). In recent 

times, UKF has been proposed as a valid alternative to the Extended Kalman Filter (EKF) for 

nonlinear filtering, receiving great attention in navigation, parameter estimation, and dual 



 
Identification from Flight Data of the Aerodynamics of an Experimental Re-Entry Vehicle 175 

estimation problems (Chowdhary & Jategaonkar, 2006). The UKF is based on the concept of 

Unscented Transformation (UT), introduced by Julier and Uhlmann, and, unlike EKF, 

provides at least second order accurate estimates of the first two statistical moments, not 

requiring approximations for state and output functions (Julier & Uhlmann, 1995). It enables 

a complete and structured statistical characterization of the estimated variables, leading to a 

reliable evaluation of uncertainties on the unknowns. The availability of the aerodynamic 

coefficients with related estimation uncertainty allows validating pre-flight aerodynamic 

databases and models. The second step receives in input the aerodynamic coefficients and 

related uncertainties calculated in the previous step, and provides an estimation for a subset 

of the aerodynamic model parameters that, as said before, is valid throughout the whole 

flight envelope of interest. This subset of parameters is selected using a sensitivity analysis 

based on the evaluation of the Cramer Rao Bounds. The parameters estimation could be 

performed using the UKF again as well as the simpler Least Mean Squares techniques. With 

respect to UKF, the LMS technique has the advantage that it does not require the tuning of 

the filter gains, neither the definition of an initial guess for the unknowns, which could 

eventually influence the estimation. When the estimation is carried out, the uncertainties on 

the aerodynamic coefficients identified in the first step are treated as measurement noise 

and they are rigorously propagated through the second step, whatever the applied 

estimation methodology is. Therefore, the identification process provides the nominal value 

and the related estimation uncertainty of the aerodynamic parameters, and guarantees an 

accurate and reliable characterisation of the identified aerodynamic model, by using all the 

available pre-flight information and in-flight gathered data. In this way the identified model 

is completely defined and the values of the estimated aerodynamic uncertainties are 

generally lower than the pre-flight ones.  

 

Figure 3. Identification strategy 
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The application of the above described aerodynamic modelling and identification 

methodology to the flight data of the first two missions of the FTB_1 vehicle has provided 

interesting results in terms of estimation convergence, reduction of uncertainty with respect 

to pre-flight model and capability of extracting useful information on the vehicle 

aerodynamics from a rather limited set of flight data. 

2. DTFT missions profile 

As said, the FTB_1 vehicle already performed two test missions, in winter 2007 (DTFT1) and in 

spring 2010 (DTFT2). Both mission profiles were based on the release of the vehicle from a 

high altitude scientific balloon at nominal mission altitude (about 20 km for the first mission 

and 24 km for the second one), followed by a controlled gliding flight down to the deployment 

of a recovery parachute. Key mission phases of DTFT missions are shown in Figure 4.  

 

Figure 4. Pictorial representation of the DTFT Missions Profile 

In the first mission the transonic regime of flight was reached (Mach ~1.08) while holding 

the angle of attack at a constant value. No lateral directional manoeuvres were foreseen and 

the flight was very short, lasting only about 44 seconds. Based on first mission experience, 

second mission was more complex. After release, the vehicle performed a pitch-up 

manoeuvre to reach and hold a specified value of the angle of attack while accelerating up 
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to Mach 1.2 at about 15 km altitude; then a pull down manoeuvre was performed to keep 

the Mach number constant while a sweep in angle of attack was executed. The manoeuvre 

allowed the verification of the aerodynamic behaviour of the vehicle at constant Mach and 

variable angle of attack in full transonic regime as it would happen in a wind tunnel facility. 

At the end of this manoeuvre the vehicle began a pull up manoeuvre to decelerate to very 

low speeds (below Mach 0.2) and reached an altitude lower than 5 km where a subsonic 

parachute was opened, allowing a safe splashdown of the vehicle. Figure 5 shows the in-

flight measured barometric altitude versus Mach profile for DTFT2, and also highlights the 

most relevant phases of flight. 

In both missions, the on board navigation sensors suite was composed of Inertial 

Measurement Unit (INS), magnetometer and Air Data System (ADS). Flight measurements 

of load factors, centre of mass (CoM) velocity and position, angular velocity, Euler angles, 

aerodynamic angles, Mach number, total and static pressure, total temperature and 

aerodynamic effectors deflections are required in input by the parameter identification 

process. During DTFT1, these data were recorded at different sampling rates (10Hz and 

100Hz). They were re-sampled and synchronized at 100Hz prior to perform further 

analyses. In the DTFT2 mission all the data were gathered at 100Hz. Post-flight 

meteorological data, namely, static pressure, static temperature and mean wind velocity, 

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) were 

also collected for identification purpose. 

 

Figure 5. DTFT2 Altitude vs. Mach profile  

3. Aerodynamic model 

In this section the available pre-flight aerodynamic database is first described. Next the 

theoretical derivation and the final formulation of the analytical model, proposed for system 

identification purpose, is presented (de Divitiis & Vitale, 2010). 
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3.1. Pre-flight aerodynamic data base 

The pre-flight Aerodynamic Data Base (ADB) was developed at CIRA in the framework of 

studies on transonic aerodynamics for the FTB_1 vehicle. Aerodynamic coefficients in ADB 

account for several inputs, that is, Mach number, aerodynamic angles, Reynolds number, 

rotary and unsteady effects along with the action of controls. The ADB is described in detail 

in (Rufolo et al., 2006). The primary sources of data were represented by the tests carried out 

at CIRA wind tunnel PT-1 and at the DLR-DNW Transonic Wind tunnel Gottingen (TWG). 

The experiments mainly addressed the transonic regime, according to its particular interest 

for the DTFT missions. Computational Fluid Dynamics (CFD) and simplified engineering 

methods were used to cross-check wind tunnel data and to analyse in detail flow conditions 

where measurements were not complete. Simplified methods like Vortex Lattice Method, 

Boundary Element Method and DATCOM were also employed to fill gaps in wind tunnel 

data, and allowed the extension of the database to low subsonic regime (Mach < 0.5), also 

including the effects of Reynolds number. The resulting ADB covers a wide envelope of 

flight conditions and provides aerodynamic coefficients in tabular form. Uncertainty of 

predictions was also estimated, taking into consideration random experimental errors 

(repeatability), systematic experimental errors (known and not removable errors) and CFD 

errors (effect of computational grid, convergence, level of turbulence modelling, boundary 

conditions, etc.). The ADB is implemented in the form of look-up tables for the purpose of 

simulation, control system design and validation. 

3.2. Analytical aerodynamic model for identification purpose 

The proposed analytical aerodynamic model provides a continuous and regular analytical 

representation of the aerodynamic force and moment coefficients of the FTB_1 in the form of 

parametric functions, based on first principles and valid for winged slender configuration 

across the three regimes of subsonic, transonic and supersonic flow (de Divitiis & Vitale, 

2010). Its formulation is derived starting from the continuity equation. Under the hypothesis 

of small perturbations, that is, small angle of attack (α), sideslip angle (β) and body 

thickness, the perturbed velocity v in the proximity of the vehicle is described by the local 

perturbation v , which in wind frame is 

  ( ) , ,v r    u v w  (1) 

where u , v  and w  << V , being V  
the stream velocity and r the position vector in body 

frame; thus 

  2 2 2
      v    V u v w V u  (2) 

The component u corresponds to the direction x  parallel to the flight velocity V, whereas 

v  and w  are the lateral components of the perturbed velocity, corresponding to the normal 

coordinates to V, that is, y  and z . In the small perturbations hypothesis, v  satisfies the 

continuity equation in the von Kármán-Guderley form, which, in the wind frame, is written 

as follows (Cole & Cook, 1986) 
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 0
  

  
  
  
  
u v w

B
x y z

 (3) 

  21 1 1      B M u V  (4) 

where   is the air specific heat ratio and M  is the flight Mach number. For a small 

enough M , all the points around the aircraft are subsonic, B > 0 in any case, and (3) is an 

elliptical equation. On the contrary, when each point is supersonic, B < 0 everywhere and (3) 

is a hyperbolic equation. In both cases, B can be approximated by the expression 

 21  B M  (5) 

and (3) can be reduced to a linear equation. Due to this linearity, the local velocity v is also a 

linear function of the characteristic velocities of the problem. This result is an extension to 

the compressible stream of the Kirchoff theorem (Lamb, 1945). With reference to Figure 6, 

the characteristic velocities for a rigid vehicle moving in a fluid are V and the angular 

velocity ω that, written in the body frame are: 

 ˆV VV  (6) 

 

ˆ cos cos
ˆ ˆ sin

ˆ sin cos

   
       
      

V

 


 

u

v

w

 (7) 

 

 
   
  

ω
p

q

r

 (8) 

where û , v̂  and ŵ  are the direction cosines of V and p, q, r are the angular rate 

components, both in body frame. The Kirchoff theorem allows to express the local fluid 

velocity as  

 

Figure 6. Characteristic velocities and reference frame 
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      , , 
 

   
 

v v
v r V ω A r V B r ω

V ω
M M  (9) 

The Jacobian matrices A and B are the influence functions that, for M < 1 or for M > 1, 

only depend on M  and r. 

In the transonic regime, the nonlinear term of equation (3) is non-negligible with regard to 

the others, and the von Kármán equation is locally elliptic or hyperbolic, following the sign 

of B. As a result, the influence functions will also depend on V and ω . The solutions of (3) 

are formally expressed by the continuation method in the form of (Guckenheimer & 

Holmes, 1990) 

      
0 0

, , , , , , 
 

 
  

v ωv v
v r r V ω V r V ω ω

V ω
M d M d  (10) 

This velocity, that accounts for the variations of the flow structure about the vehicle, 

depends on the path integrals of (10), which are described by the time histories of V and ω . 

For steady-state aerodynamics, the local fluid velocity depends only on the current state 

variables, so that (10) reads as follows 

      , , , , , ,  v r A r V ω V B r V ω ωM M  (11) 

It is worthy to remark that this analysis only holds if the variations of the flow structure 

around the vehicle are considered to be known when α, β, and ω change. The flow structure 

is supposed to be assigned, and this implies that the solutions of (3) do not modify their 

analytical forms with respect to (11). Starting from (11), let us now detail the formulation of 

the aerodynamic coefficients, recognizing three distinct contributions: steady aerodynamics, 

unsteady aerodynamics, effect of the controls (de Divitiis & Vitale, 2010).  

3.2.1. Steady aerodynamic coefficients 

The aerodynamic force and moment are calculated as surface integrals of the pressure P 

over the vehicle wetted surface Sw: 

  ,       cgn r r n

w wS S

F P dS M P dS  (12) 

with n normal unit vector to the wetted surface and rcg vehicle centre of gravity location in 

the body frame sketched in Figure 6. The contribution of the skin friction does not appear in 

(12), and its effect is considered to be caused by a proper pressure reduction (Lamb, 1945).  

Equation (11) can be reformulated in terms of dimensionless angular velocity, 

 ˆ ˆ ˆ, , ω ω p q r L V  

   1 
  

 
v r V AV Bω

 
L

 (13) 
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Pressure P in equation (12) is determined using the steady Bernoulli theorem 

 

2

1 2 1 2
 




  

 
v v 

   
P VP

 (14) 

in which   is the air density and the square of v is provided by equation (13) 

    
3 3 32 2

1 1 1  
    v v v r

     
ij ik j k ij ik j k ij ik j k

i j k

V A A v v A B v ω B B ω ω  (15) 

The aerodynamic force coefficients in the body frame exhibit more oscillating variations 

with regard to α than those in the wind axes (Lamb, 1945). On the contrary, the moment 

coefficients exhibit quite smooth variations in body axes (Lamb, 1945). For this reason, the 

aerodynamic force and moment are calculated in the wind frame and body axes, 

respectively. They are expressed through drag (CD), lateral (CS) and lift (CL) force coefficients 

and roll (Cl), pitch (Cm) and yaw (Cn) moment coefficients, respectively: 

 2 21 1
,

2 2

   
         
      

 
D l

S m

L n

C C

F V S C M V SL C

C C

 (16) 

where L and S are vehicle characteristic length and surface. The generic aerodynamic 

coefficient iC  (i = D, S, L, l, m, n) is computed integrating equations (12). We get 

    
3 3

1 1

, , , ,
 

          i i i
i hk h k hk j k hk j k

h k

C p q r F v v G v ω H ω ω  (17) 

where    1 2 3
ˆ ˆ ˆ, , , ,  

v v v u v w ,    1 2 3, , , ,        p q r  and , ,i i i
hk hk hkF G H  are functions of r 

evaluated as surface integrals over Sw of 
3

1
 ij ik
k

A A ,
3

1
 ij ik
k

A B  and 
3

1
 ij ik
k

B B , respectively. 

Although A and B are functions of V and ω , the quantities , ,i i i
hk hk hkF G H , which represent 

the aerodynamic derivatives, for thin obstacles vary with M , and exhibit quite small 

variations with respect to α, β, and ω ( Ashley & Landahl, 1965). Hence, according to the 

literature, these integrals are supposed to be functions of M  alone. They show rather 

smooth variations with respect to M  in the subsonic and supersonic regions, whereas for 

M  ≈ 1, sizable variations, caused by the fluid transonic regime, are observed. 

iC  incorporates three addends. The first addend is the static aerodynamic coefficient, 

whereas the second one, which provides the simultaneous effect of V and ω , represents the 

contribution of the rotational derivatives. The last term is a quadratic form of ω  that, in the 

aerospace applications, is negligible with respect to the others. Therefore, iC  is expressed as 

follows 
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    
3 3

1 1

, , , ,
 

       i i
i hk h k hk j k

h k

C p q r F v v G v ω  (18) 

where i
hkF  and i

hkG  are called static and rotational characteristic functions, respectively. 

They are the second-order derivatives of the generic aerodynamic coefficient with respect to 

the direction cosines of V and to the dimensionless angular velocity. The structure of these 

derivatives is supposed to be 

     1

2

2 3
1 2 1

sup sup
2

2

1 1

1
1

  





   
 

  





y
sub

sub y

H m h M h M g M
F M F F H

g M
m M

 (19) 

where the indexes i, h and k have been omitted, and the same structure holds for G, too. 

1 2 sup 1 1 2 2, , , , , , , , , , subF m h h F g y g y  are aerodynamic constant parameters to be identified 

prior to flight, using the available tabular aerodynamic database, or after the flight by 

analysing the flight data. The quantities subH  and supH  are two sigmoidal functions of M , 

which are chosen as follows:  

    tanh 50 1 1

2




 
sub

M
H M  (20) 

    
sup

tanh 50 1 1

2




 


M
H M  (21) 

Equation (19) incorporates two addends: the first one gives the variation of the aerodynamic 

coefficients in the subsonic regime, whereas the second one describes the supersonic region. 

Indeed, subH is about 1 if M ≤ 0.95 and about 0 if M ≥ 1.05, whereas supH  is about 0 if 

M ≤ 0.95 and about 1 if M ≥ 1.05 In transonic regime both the sigmoidal functions 

assume values between 0 and 1 and the combination of the subsonic and the supersonic 

contributions provides the aerodynamic coefficients in the transonic regime. Substituting 

equations (7) and (8) in (18) and considering some simplifications due to the symmetry of 

the vehicle (de Divitiis & Vitale, 2010), we get the expressions for steady aerodynamic force 

coefficients in wind axes and the moment coefficients in the body frame. In particular, since 

the vehicle is symmetric with respect to the longitudinal plane, each longitudinal 

aerodynamic coefficient is an even function of   and results in an odd function of the 

products ˆ ˆvr  and ˆ ˆvp , whereas the lateral-directional coefficients are odd functions of   and 

the products ˆ ˆup , ˆ ˆur , ˆ ˆvq , ˆ ˆwp , and ˆ ˆwr . The steady aerodynamic coefficients are 
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3.2.2. Unsteady aerodynamic coefficients 

The unsteady effects are of two kinds (Ashley & Landahl, 1965): the first effect is directly 

related to the pressure forces through the Bernoulli theorem, it is instantaneous and depends 

only on the current value of the state variables; the second effect is caused by the unsteady 

motion of the wakes and it represents the story of this motion from the initial condition until 

the current time. The proposed model only takes into account the first effect. It is caused by the 

term      up t which appears in the Bernoulli equation in the case of unsteady flow, 

where   is the velocity potential. For assigned velocity variations, this increment is function of 

the time derivatives of the aerodynamic angles and the flight speed, whereas the contribution 

produced by the time derivatives of the angular velocity is not taken into account, that is 

      
            

      
 u

d d dV
p

t dt dt V dt
 (28) 

The pressure increment is the sum of three terms; for thin vehicles, the last addend, which is 

related to the variation of the velocity, is negligible with respect to the first one. Thus, it is 

not considered in the present analysis.  up  can also be written in terms of the derivatives of 

the velocity potential ˆ  u , ˆ  v  and ˆ  w  . Using equation (7) we get 
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This increment induces aerodynamic force and moment, which are obtained by integrating 

 up
 
on Sw. Therefore, the unsteady increment  iC of each aerodynamic coefficient varies 

linearly with the aerodynamic angles derivatives, resulting in 

    1 2 1 2 3sin cos cos cos sin cos sin sin              i i i i i
iC A A B B B  (30) 

where i
hA  and i

hB  (i = D, S, L, l, m, n) are appropriate surface integrals over Sw of ˆ  u , 

ˆ  v  and ˆ  w , that are functions of M . These integrals are supposed to be described 

by expressions such as (19), whereas  and   are the dimensionless time derivatives of the 

aerodynamic angles, defined as 

 ,    d L d L

dt V dt V
 (31) 

The terms  1 2sin cos cos  i iA A  and  1 2 3cos sin cos sin sin     i i iB B B  represent 

the unsteady aerodynamic derivatives. Due to the vehicle symmetry with respect to the 

longitudinal plane, the derivatives with respect to   of the longitudinal coefficients are 

even functions of  , while the analogous derivatives of the lateral-directional coefficients 

are identically equal to zero. The aerodynamic derivatives with respect to   are even 

functions of   for the longitudinal coefficients and odd functions of   for the lateral-

directional coefficients. 

3.2.3. Effects of the controls 

The FTB_1 vehicles have two sets of aerodynamic effectors: the elevons, that provide both 

pitch control when deflected symmetrically (e ) and roll control when deflected 

asymmetrically (a ), and the rudders, that deflect only symmetrically (r ) to allow yaw 

control. The rotation of the aerodynamic control surfaces modifies the vehicle geometry, which 

in turn determines a variation of the aerodynamic force and moment coefficients. These 

coefficients are also expressed by equations (22) - (27), because the analytical structure of these 

equations holds also when the control surfaces are deflected. Thus, it is reasonable that the 

increment of the aerodynamic coefficient caused by the effect of the controls is expressed by 

        1 2 3, ,           i i i i n
e e e e e e e eC M F M F M F M  (32) 
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r r r r r r r rC M F M F M F M  (34) 

where i = D, L, m, and j = S, l, n. Indeed, the effects of the elevator on the lateral 

aerodynamic coefficients, which can occur for 0 , are not taken into account in the 
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present analysis. Similarly, the effects of the ailerons and of the rudders on the 

longitudinal aerodynamic coefficients are considered negligible. In the above equations, 

the first and the second terms on the right hand sides represent, respectively, the linear 

effect of the control and the combined effect of control and angle of attack, whereas the 

third addend is the nonlinear term. In (32) the exponent n varies, depending on the 

coefficient: it is assumed equal to 2 for CD, whereas it values 3 for CL and Cm. The functions 
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i
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i
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j
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j
aF M ,  1 

j
rF M ,  2 

j
rF M , 

 3 
j

rF M  are called elevator, ailerons and rudder characteristic functions. They 

correspond to surface integrals over Sw, which can be obtained as the difference between 

the aerodynamic coefficients when the controls are deflected and those for clean 

configuration (null deflections). These integrals are functions of M , and their analytical 

structure is assumed to be described by equation (19). 

In conclusion, the aerodynamic coefficients are computed summing steady and unsteady 

contributions plus the effect of the controls, that are expressed by equations (22) - (27), 

equation (30), and equations (32) - (34), respectively. Each addendum in these equations 

contains a function of M  expressed through (19), which also depends on a vector of free 

model parameters  

 
1 2 sup 1 1 2 2, , , , , , , , , ,   lθ  i

subF m h h F g y g y  (35) 

with  1,...,   il Q C , being  iQ C  the total number of addends for the coefficient iC  (i = D, 

S, L, l, m, n). 

3.2.4. Pre-flight identification 

All the constant parameters of the proposed model are estimated before flight, using the 

information provided by the pre-flight aerodynamic database. The pre-flight estimation is 

carried out through a least minimum square (LMS) method, which for each aerodynamic 

coefficient, is applied to the following optimization problem: 

  
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min min , , , , , ,

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i k k
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i

J C C i D S L l m n  (36) 

where ikC and  ik ADB
C   are the aerodynamic coefficients calculated in M points of the flight 

envelope, with the proposed model and the pre-flight aerodynamic database, respectively. Ji is 

the goal function, defined for each aerodynamic coefficient, for which the arguments are the 

free parameters   1 2, ,...,θ θ θ θ
k

i i i i
Q C

 with the generic θi
l  given by (35). To obtain the 

combined effects of all the vehicle state variables and those of the controls, the coefficients ikC

and  ik ADB
C   are calculated in a wide range of variation of these variables.  
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4. System identification methodology 

In order to improve the reliability of the aerodynamic model, it is validated and refined using 

flight data. To this end, a suitable identification methodology is proposed in this section.  

4.1. Problem formulation 

Vehicle dynamics are represented as a stochastic process in continuous state space form, 

along with the measurements equations, as follows 

           0f t , t ,η t , t V V V0x x c x x
V t  (37) 

         t , t , t Vy x c νt h  (38) 

       t , t , Vc x U Θt l  (39) 

where Vx  is the state vector of the vehicle, t0 is the initial mission time and f and h are generic 

nonlinear real-valued functions. Measurements are available for inputs U and outputs y of the 

model with a fixed sampling time. The vector of aerodynamic force and moment coefficients, 

denoted as c, depends on vehicle state Vx , input U and on a set of unknown aerodynamic 

parameters , , , , ,   Θ θ θ θ θ θ θD S L l m n , through the aerodynamic model represented by the 

nonlinear real-valued function l (which translates the aerodynamic model defined in section 

3). Finally, η and ν are process and measurement noises, respectively. All noises are assumed 

zero mean and are characterized by covariance matrices. 

We aim at estimating the parameter vector Θ, using flight data measurements. The 

identification process is solved according to the Estimation Before Modelling (EBM) approach 

(Vitale et al., 2009), where the time histories of state vector Vx , some air properties (that is, 

wind velocity, air temperature and pressure) and global aerodynamic coefficients c are 

estimated first, using (37) and (38) and a set of measurements. Aerodynamic parameters 

identification, that is, the determination of Θ, is conducted in the second step using (39) and 

the values of Vx  and c evaluated in the first step, with their covariance matrices. In this 

respect, computation of the covariance matrix of Vx  and c provides information on the 

uncertainty of the inputs to the second step, where this uncertainty is regarded as 

measurements error on the inputs and is characterized by the computed covariance matrix. 

The two identification steps are described in detail in the following sub-sections. 

4.2. First identification step 

4.2.1. Identification methodology 

The first identification step is formulated as nonlinear filtering problem and solved using 

the Unscented Kalman Filter (UKF). The nonlinearity stems from the vehicle nonlinear 

equations of motion.  
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The UKF is a nonlinear filtering technique based on the concept of Unscented 

Transformation (UT), an analytical method for propagating a probability distribution 

through a nonlinear transformation. In more details, the UT allows estimating the mean and 

the covariance of the nonlinear function by computing the weighted mean and covariance of 

a discrete set of function values, obtained propagating through the function a set of points 

(named sigma points) deterministically chosen in the domain of the function. The UKF 

provides at least second-order accurate evaluations of the first two statistical moments of the 

unknowns (Julier & Uhlmann, 1995), enabling a complete and structured statistical 

characterization of the estimated variables and leading to a reliable evaluation of the 

uncertainties on the estimations. Like all the Kalman filters, the UKF performs the 

estimation in two sequential phases: first a dynamic model, whose state vector is composed 

of the unknowns, is used for time propagation of the estimation (prediction phase); next, at 

each time step, the available flight measurements are compared with the prediction (that is, 

the dynamic model outputs) to refine the estimation (correction phase).  

The UT is applied in the prediction phase of the filter. Several implementation of the UT, 

and consequently of the UKF are available in the literature (Wan & van der Merwe, 2000; 

Van Dyke et al. 2004), characterized by different number of sigma points, weights and free 

parameters. We adopted a non-augmented version of the UKF algorithm with additive 

process and measurements noises, in order to reduce the number of sigma points 

(Chowdhary & Jategaonkar, 2006). Different formulations are not expected to introduce 

significant improvements in the algorithm performance, while they could increase the 

computational effort. In order to avoid losing information on the effect of process noise on 

the outputs, two concatenated Unscented Transformations are performed during the 

prediction phase, to account for the propagation throughout the nonlinear process and 

measurement equations (Wu et al., 2005). Although the detailed mathematical formulation 

of the filter is not reported here for the sake of brevity, the main steps to be performed in 

each filtering phase are summarized. The prediction phase is composed of 

1P. First generation of sigma points and related weights, based on the current estimate of 

the filter state vector and related covariance matrix. 

2P. Propagation of the sigma point through the process equations. 

3P. Prediction of the filter state vector, computed as weighted mean of the propagated 

sigma points. 

4P. Prediction of the covariance matrix of the filter state. It is computed as summation of 

two terms: the first one is the weighted variance of the propagated sigma points (step 

2P) with respect to the state vector prediction (step 3P); the second term is the process 

noise covariance matrix. 

5P. Second generation of sigma points and related weights, based on the predicted filter 

state vector (step 3P) and covariance matrix (step 4P). 

6P. Propagation of the sigma points through the measurement equations. 

7P. Prediction of the filter outputs, computed as weighted mean of the propagated sigma 

points. 
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8P. Prediction of the covariance matrix of the filter outputs. It is computed as summation of 

two terms: the first one is the weighted variance of the propagated sigma points (step 

6P) with respect to the filter outputs prediction (step 7P); the second term is the 

measurements noise covariance matrix. 

9P. Prediction of the state-output correlation matrix. It is computed as the weighted 

deviation of the sigma points propagated through the process equation (step 2P) with 

respect to the predicted state vector (step 3P) times the deviation of the sigma points 

propagated through the measurement equation (step 6P) with respect to the predicted 

filter outputs (step 7P). 

The correction phase is based on the following steps: 

1C. Computation of the residual, that is, the difference between flight measurements and 

related filter outputs prediction (step 7P). 

2C. Computation of the Kalman filter gain. It depends on filter outputs covariance matrix 

(step 8P) and state-output correlation matrix (step 9P). 

3C. Correction of the predicted filter state. The corrected filter state is given by the 

summation of state prediction (step 2P) and Kalman gain (step 2C) times computed 

residual (step 1C). 

4C. Correction of the predicted covariance matrix of the filter state.  

4.2.2. Filter model 

The UKF requires the definition of a dynamic model describing the behaviour of the 

unknowns, that represent the filter state vector. The adopted filter state is composed of the 

vehicle state vector, some local environment properties (wind velocity, temperature, and 

static pressure) and the aerodynamic coefficients. The filter model should be completed by 

the measurements equations, that is, algebraic equations for the evaluation of model outputs 

starting from the state variables. The model for the first identification step is sketched in 

Figure 7.  

 

Figure 7. Filter model 
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It is composed of four main blocks: Vehicle model, Environment model, Aerodynamic 

model, Sensor model. 

The Vehicle model is based on the classical rigid body nonlinear equations of motion 

(Stevens & Lewis, 2003). Vehicle state vector is composed of Centre of Mass (CoM) position 

and velocity components, attitude angles, and angular rates. Static algebraic expressions for 

the computation of aerodynamic angles, Mach number and dynamic pressure, are also 

included in the model (measurement equations). 

The Aerodynamic force ( FC ) and moment ( MC ) coefficients are computed by the 

aerodynamic model. They are transformed in dimensional force and moment and sent in 

input to the vehicle model. More in detail, the aerodynamic coefficients are computed as 

summation of baseline deterministic components ( ,F MC C ) and corrections ( , F MC C ) 

resulting from stochastic processes. The former are evaluated from the in-flight 

measurements of load factors n, angular rates ω, and dynamic pressure Pdyn, namely 

 
 

,
  
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n g Iω ω Iω

F M
dyn dyn

m
C C

P S P SL
 (40) 

where ω  is obtained by numerical differentiation of ω, m and I are mass and inertia matrix 

of the vehicle, respectively, g is gravitational acceleration, S and L are aerodynamic 

reference surface and length, respectively. The corrections to the baseline components are 

the unknowns to be estimated by the filter. They are modelled using Gauss-Markov (GM) 

stochastic models (Gelb, 1989), that require a suitable characterization. 

The Environment model is composed of the WGS84 (World Geodetic System), for the 

computation of the gravitational acceleration as a function of vehicle position, and the 

atmospheric model. The latter is based on the meteorological data of the European 

Centre for Medium-Range Weather Forecasts (ECMWF), that provides baseline profiles 

for wind velocity, air temperature and pressure during the missions. High frequency 

corrections to these baseline trajectories are estimated by the filter and their dynamic 

behaviour is again modelled by means of Gauss-Markov models. Concerning the wind 

velocity, the high frequency corrections are low pass filtered in order to compute their 

low frequency content. Since we assume that the low frequency content is correctly 

provided by the ECMWF (that is, the low frequency component of wind velocity 

coincides with the baseline profile), the output of the low pass filter should be null, 

therefore it could be compared with a zero virtual measurement in the correction phase 

of the UKF. 

Finally, the Sensor model is implemented to match the specifications of the actual on-board 

sensors. Globally, the filter models have 25 states to be estimated, that is, 12 states for the 

rigid vehicle, 6 from the aerodynamic coefficients (corrections to the six baseline trajectories) 

and 7 from the Environment model (corrections to the baseline trajectories of three wind 

components, atmospheric temperature and pressure, plus two states related to the low-pass 

filter). 
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4.2.3. Characterization of stochastic processes and uncertainties 

The stochastic models used by the UKF are to be suitably characterized through the 

definition of some properties, such as model order, correlation time, process and 

measurements noises variance, that could affect the filter convergence. Most of them are 

specified in a rigorous way, as shown in this section. The remaining parameters are 

considered as free variables for the filter design, tuned when the identification procedure is 

preliminarily carried out on simulated data. The process noises related to the Vehicle model 

and to the low-pass filter applied to wind velocity correction are considered very low, due 

to high confidence in the pertinent models. The measurement noises of Sensor model are 

described by sensors datasheet, whereas the noise on filtered wind is characterized through 

the noise covariance matrix given by the ECMWF for the baseline, low-frequency profiles of 

wind velocity, air temperature and pressure. 

The order and statistical characterization of the GM models adopted for the wind correction 

are assessed through the analysis of flight data collected during the ascent phase of the 

mission, when the vehicle is carried by a balloon at the release altitude. We assume that, in 

the ascent phase, the horizontal components of wind velocity in the North-East-Down 

(NED) reference frame are almost coincident with the corresponding components of the 

CoM measured velocity (balloon transported by the wind) and that the wind does not 

change in the time frame between ascent and descent phases. Under these hypotheses, the 

high frequency correction versus altitude is determined (and stored in a lookup table) as the 

difference between CoM velocity and wind speed given by the ECMWF in the ascent phase. 

Then the table is queried with the altitude trajectory of the mission descent phase to get the 

related correction, and the autocorrelation function of the correction is evaluated. The 

normalized autocorrelation of the North component of wind correction for DTFT1 is shown 

in Figure 8 (top plot); a similar plot is obtained for the East component, too.  

 

Figure 8. Normalized autocorrelation functions of corrections on North component of wind (top), 

lateral force (middle) and pitch moment (bottom) 
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The autocorrelation is typical of a first-order process (Gelb, 1989), described by the model 

  1
, ,      

windi wnd i wnd i
wnd i

V V i East North  (41) 

where τwind and ηwind are correlation time and process noise, respectively. The correlation time is 

equal to 1/3 of the time delay, where the normalized autocorrelation function has a value of 

0.05. The process noise, characterized by its variance, is a free parameter for the UKF design. 

The obtained model has also been applied to the Down component of wind correction, where 

no information can be extracted from the ascent phase data. Since no a priori information was 

available on the high frequency corrections of static temperature ( ST ) and pressure ( SP ) with 

respect to ECMWF, we assume they can be described by a zero-order GM model  

 ,  S TsT    S PsP  (42) 

where the process noises Ts  and Ps  are again design parameter for the filter. The initial 

value of all the GM state is set to zero. 

The characterization of GM models for the aerodynamic corrections is performed through 

simulation, taking advantage of the a priori information provided by the pre-flight 

aerodynamic database. As many as 2,000 Monte Carlo simulations of each mission were 

carried out before flight considering uncertainties on aerodynamics, inertia, initial state, 

sensors and actuators characteristics, and environmental disturbances. For each 

simulation, the aerodynamic corrections are evaluated as differences between true 

aerodynamics (known in simulation) and baseline aerodynamic terms, provided by (40). 

Then the autocorrelation functions related to the corrections are computed. Finally, for 

each aerodynamic coefficient a mean normalized autocorrelation function is evaluated, as 

shown in Figure 8 for the lateral force (middle plot) and pitching moment (bottom plot) 

corrections. The other force and moment corrections have similar behaviours. 

A first-order GM model is selected for the force coefficients, with correlation time computed 

as described above for the wind corrections. The autocorrelation functions for moment 

coefficients corrections have an impulsive shape, typical of a zero-order GM processes. 

Accordingly, we get 
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correlation time,
 Fw  and Mw  are the process noises. The variances of process noises WF

 
and 

WM  are related to the correlation time τ and to the variance MC  of the simulated trajectories 

for the aerodynamic coefficients in the aforementioned Monte Carlo analysis, namely 

 2 2 2 22 ,     WF MC WM MC
 (44) 
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4.3. Second identification step 

4.3.1. Identifiability analysis 

The second identification step aims at estimating from flight data the identifiable subset 

Θ  of the parameters of the aerodynamic model defined in section 3. Indeed, this 

model presents many parameters and, taking into account the limited amount of 

available flight data, not all of them can be updated in post flight analysis. In particular, 

the attention is focused on the gains subF  and supF  which appear in the addends on the 

right hand side of equations (22) - (27), (30), (32) - (34). Some of these gains are 

identifiable and estimated from the flight data. The other gains, as well as all the other 

parameters of the model, are kept equal to the pre-flight identified values. The selection 

of the identifiable gains is performed considering the Cramer–Rao bounds (CRBs). The 

CRB related to the generic parameter  k , denoted as  k
, is computed through 

(Jategaonkar, 2006): 
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  k kkD  (46) 

where y is the output vector of the system to be identified, recorded in N time instants, 

denoted as ti. R is the covariance matrix of measurements error on y.   is the set of all the 

subsonic and supersonic gains of the aerodynamic model. F represents the information 

matrix (also named Fisher matrix), D is the dispersion matrix and kkD  is the k-th element on 

the main diagonal of D.  

The CRBs indicate the theoretically maximum achievable accuracy of the estimates and 

can be considered as a measurement of the sensitivity of system outputs with regard to 

parameter variations. If the CRB associated to a parameter is bigger than a suitable 

threshold, the parameter cannot be identified, because its variation has no relevant effect 

on system outputs and therefore on flight measurements. Concerning the computation of 

the information matrix, in our case the output y coincides with the vector composed by 

the aerodynamic coefficients. Since they are expressed by regular analytical functions, 

their derivatives with respect to each gain (that is,   y it ) can be analytically 

computed. Finally these derivatives are evaluated along the flight trajectories of DTFT1 

and DTFT2 using the flight measurements of Mach number, aerodynamic angles, control 

effectors deflections and vehicle angular rate. The matrix R is diagonal and its elements 

are the aerodynamic coefficients variances. Based on these considerations, the CRB for 

each gain can be computed and only the parameters having CRB less than 30% of their 

pre-flight nominal value are selected as identifiable and updated through the analysis of 

flight data. 
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4.3.2. Identification methodology 

Two different estimation methodologies can be applied in this step. Due to the structure of 

the aerodynamic model, in both cases parameters estimation is performed independently for 

each global aerodynamic coefficient and for subsonic and supersonic regime.  

The first approach is based on the UKF, already described in section 4.2. It was used for the 

analysis of DTFT1 flight data (Vitale et al., 2009). The UKF requires the definition of a 

dynamic model for the unknown parameters. Since they are constant, their dynamics are 

described by zero order GM processes 

   k k  (47) 

The initial condition of this equation is the pre-flight value of the parameter. Covariance 

matrices of initial condition and process noise are used as design parameters to tune the 

filter. The output equation is obtained from the analytical model. The first identification step 

provides a joint characterization of uncertainties on aerodynamic angles, Mach number, 

angular velocity, and aerodynamic coefficients. In order to properly manage the uncertainty 

characterization, these variables are all considered as inputs for the output equation of the 

second step, which is rearranged in term of residual on the aerodynamic coefficient, that is 

    1 , , , , , , ,  u  i
i i step ires C C i D S L l m n  (48) 

where 1i stepC   is the i-th aerodynamic coefficient estimated in the first step and iC  is the 

analogous coefficient provided by the analytical model. The vector u includes Mach 

number, aerodynamic angles and angular rate estimated in the first step, plus the flight 

measurements of aerodynamic effectors. Finally i  is the vector of identifiable parameters 

associated to coefficient iC . Equations (47) and (48) are used in the prediction phase of the 

filter, whereas in the correction phase the residual (resi) is compared with a virtual null 

measurement. 

The second estimation methodology is the Least Mean Square (LMS), that was used for the 

analysis of DTFT2 flight data. LMS only requires measurements equations, that is the 

analytical model, and does not need any initial guess or dynamic model describing the 

dynamics of the unknowns. Since the aerodynamic model is linear in the unknown 

parameters, in order to perform the estimation, the expression of the i-th aerodynamic 

coefficient is rearranged as 

 
i i iY  A  (49) 

It can be easily demonstrated that Yi is given by the difference between the global 

aerodynamic coefficient 1i stepC   (which is estimated in the first step) and the summation of 

all the additive terms on the right hand side of equations (22) - (27), (30), (32) - (34) that are 

related to non-identifiable gains. These additive terms are evaluated using Mach number, 

aerodynamic angles and angular rate estimated in the first step, and the flight 
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measurements of aerodynamic effectors. iA  is the matrix of the regressors, which is 

composed of the additive terms on the right hand side of equations (22) - (27), (30), (32) - (34) 

related to the identifiable gains divided by the gains themselves, which are included in  i . 

The unknowns are given by 

 ( )i T T
i i i iinv Y  A A A  (50) 

Finally, for the LMS technique, the uncertainties on the estimated parameters are evaluated 

through a Monte Carlo analysis. To this end, many estimations of the same unknown 

parameters are carried out by using in input flight measurements and global aerodynamic 

coefficients randomly selected in their range of uncertainty. The statistics of the estimated 

parameters are then evaluated and used to define the estimation uncertainty on each of the 

evaluated aerodynamic parameters. 

5. Flight data analysis 

The analytical aerodynamic model and the identification methodology proposed in this 

chapter were applied to flight data gathered during the DTFT1 and DTFT2 missions, in 

order to identify the model of the FTB_1 vehicles. Post flight data analyses of these missions 

are described in the present section. The time histories of Mach number and angle of attack 

for the two missions are presented in Figure 9.  

 

Figure 9. Angle of attack and Mach number time histories for DTFT1 and DTFT2 

For both missions, the examined time frame starts 17 seconds after the vehicle drop, when 

the air data measurement noise is suitably low. For DTFT1 Mach number varied from 0.57 to 

about 1.08, whereas the angle of attack was held nearly constant at about 7 deg until 39 s. 

Transonic regime started about 31 s after the drop, where the displacement of the 

aerodynamic centre created a large perturbation in the pitch moment. At t = 39 s, due to a 

problem concerning the parachute deployment system, the flight control system switched 

into a safety mode. Consequently the aerodynamic control surfaces were brought to the 
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neutral position, leading to the variations of α visible in the figure at t > 39 s that resulted 

from the excitation of the short period dynamics of the vehicle. In the DTFT2 mission Mach 

number varied from 0.2 to about 1.2. Transonic regime started about 30 s after the drop, 

while after 77 s the regime was again subsonic. The vehicle performed two sweeps in angle 

of attack: the first at maximum and constant Mach number, the second in subsonic regime at 

the end of the mission. In both flights, the sideslip angle was almost always close to 0 deg 

reference value. Before analyzing the flight data and starting the identification process, a 

compatibility check on the available measurements was performed, by using kinematic 

relations (Jategaonkar, 2006), in order to check the measurements consistency and the 

correctness of the measurement error characterization. 

5.1. Results of DTFT1 data analysis 

Aerodynamic force and moment coefficients, wind velocity, static temperature and 

pressure, and vehicle states were estimated in the first step of EBM procedure for the time 

interval [17, 44 s]. Figure 10 shows the identified longitudinal aerodynamic coefficients, that 

are compared with the values obtained using the pre-flight ADB and flight measurements 

required in input by the ADB. Although the coefficients returned by the pre-flight ADB are 

not far from the estimated values, an update of the pre-flight database appears necessary. In 

particular, CL is over predicted as well as CD in the first 10 seconds of the considered time 

frame. The estimated values of Cm are very close to zero up to 39 s flight time, whereas the 

same coefficient computed using the pre-flight ADB assumes negative values. The 

comparison between the horizontal components of wind velocity estimated by UKF and 

computed through ECMWF is shown in Figure 11. The UKF, extending the frequency 

content of wind velocity with respect to ECMWF, improves the evaluation of the wind field 

experienced by the vehicle which, in turn, has a positive effect on the filtering of the 

aerodynamic angles. Not shown for the sake of conciseness, the estimated values of Down 

component of wind velocity, static temperature and pressure are very close to the ECMWF 

predictions, whereas the filtered states of the vehicle are nearly indistinguishable from the 

in-flight measurements. 

 

Figure 10. Pre-flight ADB and estimated longitudinal aerodynamic coefficients versus time 

17 22 27 32 37 42

-0.5

0

0.5

time [s]

C
L

17 22 27 32 37 42

0.1

0.2

time [s]

C
D

17 22 27 32 37 42

-0.2

0

0.2

time [s]

C
m

 

 

UKF estimation

pre-flight ADB



 
Advances in Modeling of Fluid Dynamics 196 

 

Figure 11. Wind horizontal velocity (in NED) estimated by UKF and provided by ECMWF 

In the second identification step the analytical model was updated only for the longitudinal 

coefficients, because the flight trajectory was basically longitudinal and there was little 

excitation of lateral-directional dynamics. 6 aerodynamic parameters were estimated in 

subsonic regime, 3 related to drag coefficient and 3 to lift, by using the flight measurements 

gathered from 17 s through 36 s flight time. Cramer Rao bounds enhanced that, no 

parameters could be estimated for the pitch moment coefficient in the subsonic regime, due 

to the low excitation of attitude dynamics. In transonic regime, from 38 s to 44 s, 10 

parameters were estimated, related to the supersonic drag coefficient (3 parameters), lift 

coefficient (3 parameters) and pitch moment coefficient (4 parameters). The estimated 

parameters are basically related to zero-order terms and to the aerodynamic derivatives 

with respect to α and δe. Figure 12 shows the convergence characteristics of the parameters 

related to the lift coefficient in subsonic regime. Similar plots were obtained for the other 

coefficients. The UKF also provided the uncertainties on the estimated parameters. Figure 13 

presents the comparison between pre-flight and post flight uncertainties on main 

aerodynamic derivatives. The former are provided by the pre-flight ADB, whereas the latter 

are computed propagating the uncertainties on the estimated aerodynamic parameters 

through the analytical model. Model identification allowed to significantly reduce these 

uncertainties in most cases. 

 

 

 

 
 

 

Figure 12. Estimation of the subsonic lift parameters 
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Figure 13. Pre-flight and post flight uncertainties on main aerodynamic derivatives 

5.2. Results of DTFT2 data analysis 

The DTFT2 mission allowed to identify also the lateral-directional aerodynamics. Figure 14 

shows the comparison between the aerodynamic coefficients identified in the first step and 

the corresponding pre-flight behaviours, provided by the ADB. Matching between ADB and 
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80 s. Since in transonic regime the sideslip angle is always null except for the interval from 

60 s to 80 s, where it varies between 2 deg and -2 deg (see Figure 17), it can be argued that 
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about zero. On the contrary, the Cm profile provided by the ADB varies significantly and it is 

most of the time different from zero. Based on these considerations, a refinement of the 

model was performed in the second identification step, where 71 aerodynamic parameters 

were estimated (31 longitudinal and 40 lateral-directional). 
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Figure 14. Pre-flight ADB and estimated aerodynamic coefficients versus time 

 

Figure 15. Comparison between aerodynamic force coefficients estimated in first identification step and 

provided by the identified model 

The identified model was validated by using two different procedures. First, the 

aerodynamic coefficients provided by the model were compared (along the DTFT2 

trajectory) with their time histories estimated by the UKF in the first identification step. 

Results are shown in Figure 15 (for the force coefficients) and Figure 16 (for the moment 

coefficients). The matching is generally very good, both in subsonic and in supersonic 

regimes, for all parameters but the pitching moment, the mean value of which is different 

from zero in some parts of the trajectory. This problem could be due to some of the 

parameters which were not updated using the flight data. However also for this coefficient 

the identified model works better than the pre-flight ADB.  

20 40 60 80 100 120
0

0.5

1

time [s]

C
L

20 40 60 80 100 120
-0.01

0

0.01

C
l

20 40 60 80 100 120
0

0.1

0.2
C

D

20 40 60 80 100 120

-0.1

-0.05

0

0.05

C
m

20 40 60 80 100 120
-0.2

0

0.2

C
Y

20 40 60 80 100 120
-0.01

0

0.01

time [s]
C

n

 

 

UKF estimation pre-flight ADB

40 45 50 55 60 65
0

0.5

time [s]

C
L

80 90 100 110 120 130
0

0.5

1

C
L

time [s]

40 45 50 55 60 65

0.2

0.3

C
D

supersonic

80 90 100 110 120 130

0.1

0.2

C
D

subsonic

40 45 50 55 60 65
-0.05

0

0.05

C
S

80 90 100 110 120 130
-0.4

-0.2

0

0.2

0.4

C
S

 

 

Second identification step First identification step



 
Identification from Flight Data of the Aerodynamics of an Experimental Re-Entry Vehicle 199 

 

Figure 16. Comparison between aerodynamic moment coefficients estimated in first identification step 

and provided by the identified model 

 

Figure 17. Validation of the identified model by open loop simulation 
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required on the aerodynamic moments model. 
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6. Conclusion 

This chapter presented a novel analytical model for describing the aerodynamics of a re-

entry vehicle in subsonic, transonic and supersonic regimes, and an innovative 

methodology for the estimation of model parameters from flight data.  

The structure of the proposed aerodynamic model is based on first principles. As a major 

advantage, the model can extend the results obtained from the analysis of a single trajectory 

to the whole flight envelope. Model identification is performed in the framework of a multi-

step approach, where the aerodynamic coefficients are identified first and, in a following 

phase, a set of model parameters is evaluated. In each step, a suitable estimation technique 

is used. This approach also provides the estimation of useful information on the 

environment conditions experienced by the vehicle during the flight, such as wind velocity 

and air temperature and pressure. Another relevant peculiarity of the identification method 

concerns the use of the Unscented Kalman Filter, the exploitation of all the available a priori 

information for the stochastic characterization of the filter models through Gauss-Markov 

processes, and the rigorous management of all the uncertainties involved in the system 

identification process. As a result, a reliable, complete, and structured statistical 

characterization of the identified model could be obtained.  

The application of the proposed model and methodology to flight data of the first two 

missions of the Italian unmanned space vehicle provided very good results, in spite of the 

fact that flight maneuvers specifically designed for parameter estimation were not 

performed due to safety constraints. Furthermore, the applied estimation techniques did not 

present any convergence problem, not a trivial result for the considered field of application. 

Identification from flight data allowed to validate and refine the available pre-flight 

aerodynamic model in terms of nominal values update and significant reduction on model 

uncertainties. The availability of an updated aerodynamic model represents a fundamental 

step for the development of the upgraded version of the Guidance, Navigation and Control 

system for the next missions of the same configuration, where the accuracy of estimates and 

the reliability of the model over an expanded flight envelope will be carefully analyzed and 

assessed. 
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