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1. Introduction 

Correct understanding of turbulence model, particularly boundary-layer turbulence model, 

has been a subject of significant investigation for over a century, but still is a great challenge 

for scientists[1]. Therefore, successful efforts to control the shear stress for turbulent 

boundary-layer flow would be much beneficial for significant savings in power 

requirements for the vehicle and aircraft, etc. Therefore, for many years scientists connected 

with the industry have been studying for finding some ways of controlling and reducing the 

skin-friction[2]. Experimentally, it has been shown that the surface friction coefficient for the 

turbulent boundary layer may be two to five times greater than that for laminar boundary 

layer[6]. By careful analysis of our new DNS results, we found that the skin-friction is 

immediately enlarged to three times greater during the transition from laminar to turbulent 

flow. We try to give the mechanism of this phenomenon by studying the flow transition over a 

flat plate, which may provide us an idea how to design a device and reduce shear stress. 

Meanwhile, some of the current researches are focused on how to design a device that can 

artificially increase the thickness of the boundary layer in the wind tunnel. For instances, 

one way to increase is by using an array of varying diameter cross flow jets with the jet 

diameter reducing with distance downstream, and there are other methods like boundary 

layer fence, array of cylinders, or distributed drag method, etc. For detail information read 

[9]. However, there are few literatures which give the mechanism how the multi-level rings 

overlap and how boundary layer becomes thicker. By looking at the Figure 1 which is 

copied from the book of Schilichting, we can note that the boundary layer becomes thicker 

and thicker during the transition from laminar to turbulent flow. This phenomenon is also 

numerically proved by our DNS results by flow transition over a flat plate, which is shown 

in Figure 2 representing multiple level ring overlap. Moreover, we find that they never mix 

each other. More details will be given in the following sections. 
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[16] (Copy of Figure 15.38, Page 474, Book of layer  thickening Boundary Layer Theory by Schilichting et al, 2000)  

Figure 1. Schematic of flow transition on a flat plate    

 

Figure 2. Vortex cycles overlapping and boundary  

2. Case setup  

The computational domain on a flat plate is displayed in Figure 3. The grid level is 

1920x128x241, representing the number of grids in streamwise (x), spanwise (y), and wall 

normal (z) directions.  The grid is stretched in the normal direction and uniform in the 

streamwise and spanwise directions. The length of the first grid interval in the normal 

direction at the entrance is found to be 0.43 in wall units ( 0.43)z  . 

The parallel computation is accomplished through the Message Passing Interface (MPI) 

together with domain decomposition in the streamwise direction. The computational 

domain is partitioned into N equally-sized sub-domains along the streamwise direction. N 

is the number of processors used in the parallel computation. The flow parameters, 

including Mach number, Reynolds number, etc are listed in Table 1. Here, 300.79in inx 

represents the distance between leading edge and inlet, 798.03 inLx  , 22 inLy  , 

40in inLz  are the lengths of the computational domain in x-, y-, and z-directions 

respectively and 273.15wT K  is the wall temperature. 

 

M  
Re  

inx  Lx Ly Lz
wT  T  

0.5 1000 300.79 s  798.03 in  22 in  40 in  273.15K 273.15K 

Table 1. Flow parameters 
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Figure 3. Computation domain     

3. Code validation and DNS results visualization 

To justify the DNS codes and DNS results, a number of verifications and validations have 

been conducted[5,12,13,14,15] 

1. Comparison with Linear Theory 

Figure 4(a) compares the velocity profile of the T-S wave given by our DNS results to linear 

theory. Figure 4(b) is a comparison of the perturbation amplification rate between DNS and 

LST. The agreement between linear theory and our numerical results is good.  

 

Figure 4. Comparison of the numerical and LST (a) velocity profiles at Rex=394300 (b) perturbation 

amplification rate 

2. Skin friction and grid convergence 

The skin friction coefficients calculated from the time-averaged and spanwise-averaged 

profiles on coarse and fine grids are displayed in Figure 5(a). The spatial evolution of skin 

friction coefficients of laminar flow is also plotted out for comparison. It is observed from 

these figures that the sharp growth of the skin-friction coefficient occurs after 450 inx  , 

which is defined as the ‘onset point’. The skin friction coefficient after transition is in good 

agreement with the flat-plate theory of turbulent boundary layer by Cousteix in 1989 
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(Ducros, 1996). The agreement between coarse and fine grid results also shows the grid 

convergence. 

 

Figure 5. (a). Streamwise evolutions of the time-and spanwise-averaged skin-friction coefficient, (b). 

Log-linear plots of the time-and spanwise-averaged velocity profile in wall unit 

3. Comparison with log law 

Time-averaged and spanwise-averaged streamwise velocity profiles for various streamwise 

locations in two different grid levels are shown in Figure 5(b). The inflow velocity profiles at 

300.79 inx   is a typical laminar flow velocity profile. At 632.33 inx  , the mean velocity 

profile approaches a turbulent flow velocity profile (Log law).  This comparison shows that 

the velocity profile from the DNS results is a turbulent flow velocity profile and the grid 

convergence has been realized. Figures 5(a) and 5(b) also show that grid convergence is 

obtained in the velocity profile. 
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4. Spectra and Reynolds stress (velocity) statistics 

Figure 6 shows the spectra in x- and y- directions. The spectra are normalized by z at 

location of 6Re 1.07 10x    and 100.250y  . In general, the turbulent region is 

approximately defined by 100y   and / 0.15y   . In our case, The location of / 0.15y    

for 6Re 1.07 10x    is corresponding to 350y   , so the points at 100y   and 250 should 

be in the turbulent region. A straight line with slope of -5/3 is also shown for comparison. 

The spectra tend to tangent to the 

5

3k


 law. The large oscillations of the spectra can be 

attributed to the inadequate samples in time when the average is computed. 

 

 

 

 
 

Figure 6. (a) Spectra in x direction; (b)Spectra in y direction 

Figure 7 shows Reynolds shear stress profiles at various streamwise locations, normalized 

by square of wall shear velocity. There are 10 streamwise locations starting from leading 

edge to trailing edge are selected. As expected, close to the inlet where 3Re 326.79 10x  

where the flow is laminar, the values of the Reynolds stress is much smaller than those in 

the turbulent region. The peak value increases with the increase of x . At around 

3Re 432.9 10x   , a big jump is observed, which indicates the flow is in transition. After

3Re 485.9 10x   , the Reynolds stress profile becomes close to each other in the turbulent 

region. So for this case, we can consider that the flow becomes turbulent after 
3Re 490 10x   . 
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Figure 7. Reynolds stress 

All these verifications and validations above show that our code is correct and our DNS 

results are reliable. 

4. Small vortices generation and shape of positive spikes 

A general scenario of formation and development of small vortices structures at the late 

stages of flow transition can be seen clearly by Figure 8.  

    

Figure 8. Visualization of flow transition at t=8.0T based on eigenvalue 2   
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Figure 9(a) is the visualization of 2  from the bottom view. Meanwhile, the shape of 

positive spikes along x-direction is shown in figure 9(b). We can see that from the top to 

bottom, originally the positive spike is generated by sweep motion, and then two spikes 

combine together to form a much stronger high speed area. Finally, two red regions (high 

speed areas) depart further under the ring-like vortex[5]. 

 

Figure 9. (a) bottom view of 2 structure;  (b) visulation of  shape of positive spikes along x-direction   

In order to fully understand the relation between small length scale generation and increase 

of the skin friction, we will focus on one of two slices in more details first. 

The streamwise location of the negative and positive spikes and their wall-normal positions 

with the co-existing small structures can be observed in this section. Figures 10(a) 

demonstrates that the small length scales (turbulence) are generated near the wall surface in 

the normal direction, and Figure 10(b) is the contour of velocity perturbation at an enlarged 

section x=508.633 in the streamwise direction. Red spot at the Figure 10(b) indicates the 

region of high shear layer generated around the spike. It shows that small vortices are all 

generated around the high speed region (positive spikes) due to instability of high shear 

layer, especially the one between the positive spikes and solid wall surface. For more 

references see[7,14,15]. 

5. Control of skin friction coefficient 

The skin friction coefficient calculated from the time-averaged and spanwise-averaged 

profile is displayed in Figure 11. The spatial evolution of skin friction coefficients of laminar 

flow is also plotted out for comparison. It is observed from this figure that the sharp growth 

of the skin-friction coefficient occurs after 450 inx  , which is defined as the ‘onset point’. 

The skin friction coefficient after transition is in good agreement with the flat-plate theory of 

turbulent boundary layer by Cousteix in 1989 (Ducros, 1996). 
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Figure 10. (a)Isosurface of  2 (b) Isosurface of  2 and streamtrace at x=508.633 velocity pertubation at 

x=508.633 

The second sweep movement [5] induced by ring-like vortices combined with first sweep 

generated by primary vortex legs will lead to a huge energy and momentum transformation 

from high energy containing inviscid zones to low energy zones near the bottom of the 

boundary layers. We find that although it is still laminar flow at 450 inx   at this time step 

t=8.0T, the skin-friction is immediately enlarged at the exact location where small length 

scales are generated, which was mentioned in last section in Fig.10. Therefore, the 

generation of small length scales is the only reason why the value of skin-friction is 

suddenly increased, which has nothing to do with the viscosity change. In order to design a 

device to reduce the shear stress on the surface, we should eliminate or postpone the 

positive spike generation, which will be discussed in more details next. 

Figure12 shows the four ring-like vortices  at time step t=8.0T from the side view. We 

concentrated on examination of relationship between the downdraft motions and small 

length scale vortex generation and found out the physics of the following important 

phenomena. When the primary vortex ring is perpendicular and perfectly circular, it will 

generate a strong second sweep which brings a lot of energy from the inviscid area to the 

bottom of the boundary layer and makes that area very active. However, when the heading 

primary ring is skewed and sloped but no longer perfectly circular and perpendicular, the 

second sweep immediately becomes weak. This phenomenon can be verified from the 

Figure 13 that the sweep motion is getting weak as long as the vortex rings do not keep 

perfectly circular and perpendicular. By looking at Figure 14 around the region of x=508, we 

note that there is a high speed area (red color region) under the ring-like vortex, which is 

caused by the strong sweep motion. However, for the ring located at x=536, we can see there 

is no high speed region below the first ring located at x=536 due to the weakness of the 

sweep motion. In addition, we can see that the structure around the ring is quite clean. This 
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is because the small length scale structures are rapidly damped. That gives us an idea that 

we can try to change the gesture and shape of the vortex rings in order to reduce the 

intensity of positive spikes. Eventually, the skin friction can be reduced consequently.  

 

Figure 11. Streamwise evolutions of the time-and spanwise-averaged skin-friction coefficient 

 

Figure 12. Side view for multiple rings at t=8.0T 

 

Figure 13. Side view for multiple rings with vector distribution at t=8.0T- sweep motion is weaker 
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Figure 14. Side view for multiple rings with velocity perturbation at t=8.0T 

6. Universal structure of turbulent flow 

This section illustrates a uniform structure around each ring-like vortex existing in the flow 

field (Figure 15). From the 2 contour map and streamtrace at the section of x= 530.348 in

shown in Figure 16, we have found that the prime streamwise vorticity creates counter-

rotated secondary streamwise vorticity because of the effect of the solid wall. The secondary 

streamwise vorticity is strengthened and the vortex detaches from the solid wall gradually. 

When the secondary vortex detaches from the wall, it induces new streamwise vorticity by 

the interaction of the secondary vortex and the solid wall, which is finally formed a tertiary 

streamwise vortex. The tertiary vortex is called the U-shaped vortex, which has been found 

by experiment and DNS. For detailed mechanisms read [10,14].  

 
 

 

Figure 15. Top view with three cross-sections              
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Figure 16. Structure around ring-like vortex in streamwise direction    

 

Figure 17. Stream traces velocity vector around  ringlike vortex 

7. Multi-level rings overlap 

A side view of isosurface of 2 [8] with a cross-section at x=590 at time step t=9.2T is given in 

the Figure 18 which clearly illustrates that there are more than one ring-like vortex cycle 

overlapped together and the thickness of boundary layer becomes much thicker than before. 

Next, Figure 19 was obtained from the same time step and shows that there are two ring 
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cycles which are located at the purple frame and the red frame. This phenomenon confirms 

that the growth of the second cycle does not influence the first cycle which is because there 

is a counter-rotating vortex between those two vortex rings[14].  

 

Figure 18. Side view of isosurface 2 with cross section 

 

Figure 19. Cross-section of velocity distribution and streamtrace 

8. Conclusion 

Although flow becomes increasingly complex at the late stages of flow transition, some 

common patterns still can be observed which are beneficial for understanding the 
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mechanism that how to control the skin friction and why the boundary layer becomes 

thicker. Based on our new DNS study, the following conclusions can be made. 

1. The skin-friction is quickly enlarged when the small length scales are generated during 

the transition process. It clearly illustrates that the shear stress is only related to velocity 

gradient rather than viscosity change.  

2. If the ring is deformed and/or the standing position is inclined, the second sweep and 

then the positive spikes will be weakened. The consequence is that small length scales 

quickly damp. This is a clear clue that we should mainly consider the sharp velocity 

gradients for turbulence modeling instead of only considering the change of viscous 

coefficients in the near wall region.   

3. Because the ring head moves faster than the ring legs does and more small vortices are 

generated near the wall region, the consequence is that the multi-level ring cycles will  

overlap.  

4. Multiple ring cycles overlapping will lead to the thickening of the transitional boundary 

layer. However, they never mix each other. That is because the two different level cycles are 

separated by a vortex trees which has a different sign with the bottom vortex cycle. 

Nomenclature 

M   = Mach number    

Re    = Reynolds number 

in    = inflow displacement thickness   

wT     = wall temperature  

T    = free stream temperature   

inLz   = height at inflow boundary 

outLz    = height at outflow boundary 

Lx   = length of computational domain along x direction 

Ly  = length of computational domain along y direction 

inx   = distance between leading edge of flat plate and upstream boundary of computational 

domain 

2dA  = amplitude of 2D inlet disturbance  

3dA  = amplitude of 3D inlet disturbance 

   = frequency of inlet disturbance   

2 3,d d  = two and three dimensional streamwise wave number of inlet disturbance 

   = spanwise wave number of inlet disturbance  

R  = ideal gas constant 

   = ratio of specific heats    

  = viscosity 
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