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1. Introduction

Over the last years, the field of energy harvesting has become a promising technique as

power supply of autonomous electronic devices. Those use the surrounding energy, such as

vibrations, temperature gradients or radiation, for conversion in electrical energy. Mechanical

vibrations are an attractive source due to their high availability in technical environments,

thus numerous research groups are working on this topic. The most important conversion

methods for ambient vibrations are electromagnetic, electrostatic and piezoelectric. All those

techniques have been successfully demonstrated in the past. [11] provides an overview of the

basics in energy harvesting.

Due to the fact, that vibration energy harvester generates the most energy when the generator

is excited at its resonance frequency, the converter needs to be tuned to the main external

frequency of the individual environment. If the excitation frequency shifts, the performance

of the generator may reduced drastically. In practical use the vibration of an environment may

vary in a large spectrum. To overcome this disadvantage researchers work hard to increase

the working bandwidth of an energy harvester.

This chapter is a contribution to the current state of the art for modeling broadband energy

harvesting generators. In the first part the electromechanical model is derived in terms

of using lumped parameters. The system is based on a piezoelectric bimorph structure.

The coupled differential equations for the case of a simple electrical circuit are derived and

furthermore the possibility to enhance the energy extraction is analyzed. The use of generator

arrays to archive a high power outputs in a wide frequency range is discussed. In detail,

the Synchronized Switch Harvesting on Inductor (SSHI) technique is studied. Further the

modeling of the promising piezomagnetoelastic energy harvesting technique is covered in the

last part.

©2012Westermann et al., licensee InTech. This is an open access chapter distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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2. Linear piezoelectric energy harvesting system

This section is devoted to the modeling of a linear piezoelectric bimorph for energy harvesting.

This will be the basis for the proposed nonlinear techniques with enhanced bandwidth

duscussed in the following sections.

2.1. Modeling of piezomechanical structures

Fundamental for the energy harvesting techniques presented in the following is the
piezoelectric bimorph. In the following, the general modeling of piezomechanical structures
is given, and further on applied to the case of a bending bimorph.

The calculations are based on the potential energy stored in a piezoelement,

U =
1

2

∫

V

(TiSi + D3E3)dV, (1)

where T, S, D, E represent the mechanical stress and strain as well as the electrical
displacement and field. V is the volume of the piezoelement. A one-dimensional strain
distribution within the piezoelement in axis direction i is assumed. According to [6] the axis
of polarization is defined as x3. Therefore the transversal effect is represented by i = 1, where
the mechanical strain is normal to the direction of polarization, and the longitudinal effect by
i = 3, where the mechanical strain is in the direction of polarization. After some mathematical
calculations, see [9] the energy can be written as

U =
1

2

Q2
p

Cp
+

1

2

1

sE
ii

∫

V

[

S2
i +

k2
3i

1 − k2
3i

ΔS2
i,3

]

dV +
1

2

α2

Cp
(ℓiS̄i)

2
−

1

2
2

α

Cp
ℓiS̄iQp. (2)

The electrical charge at the electrodes is termed Qp, while the mechanical compliance in axis
direction i is given as sii. Further on, the material coupling of the piezoelement is given by
k3i = d2

3i/
(

sE
iiε

T
33

)

. In the following, the stiffness cp in xi direction, the capacitance Cp of the
piezoceramics and the piezoelectric force factor α are introduced as

cp =
1

sE
ii

V

ℓ2
i

,

Cp = εT
33

(

1 − k2
3i

) Ael

ℓ3
,

α =
d3i

sE
ii

Ael

ℓi
. (3)

They depend on the area of electrodes Ael, the piezoelectric constant d3i, the permittivity ε33

as well as the geometry of the piezoelement (length ℓ3 between electrodes and length ℓi of the
piezoelement in direction of mechanical strain).

The energy terms in Equation 2 can be classified as the stored electrical energy, the stored

mechanical energy and the converted energy. For convenience of the following calculations,
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Ael

ℓ3

x1

x2

x3

S1

S̄1,3

Figure 1. Piezoelement with uniaxial strain distribution.

the mechanical strain is split into the mean value S̄i, the mean strain S̄i,3 along the x3 axis

(between the electrodes), and the difference ΔSi,3 between the actual strain and S̄i,3,

S̄i,3(x1, x2) =

ℓ3
∫

0

Si(x1, x2, x3)dx3

ℓ3
, ΔSi,3 = Si − S̄i,3. (4)

The reason for this representation is that piezoelectric systems with a homogeneous strain

distribution is readliy described by ΔSi,3 = 0, which strongly simplifies the calculations.

Additionally, the influence of an uneven strain distribution can be seen in the term ΔSi,3.

See Figure 1 for an illustration of these definitions.

In case of a continuous system it is reasonable to discretize it for the further analysis. The

mechanical deformation is then described by n degrees of freedom (DOF) qi, while the charge

Qp is the electrical DOF,

q =

[

qmech

Qp

]

. (5)

Each mechanical DOF is associated with a global mode shape, which defines the mechanical

strain distribution Si within the piezoelectric volume (and the rest of the mechanical system).

The overall strain distribution is then the sum of all mode shapes. In order to rewrite the

energy term in Equation 2, the term −ℓiS̄i, which represents the mean deformation of the

piezoelement in xi direction, will be represented by

− ℓiS̄i =
n

∑
k=1

κkqk. (6)

Here, a mechanical coupling vector κ is introduced. In that form, the energy terms in

Equation 2 can be rewritten as
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x1

x2
x3

w(x1)e

piezoelectric layer

substrate layer

Figure 2. Piezoelectric bimorph.
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Cmech 0
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The potential energy can be rewritten as

U =
1

2
qTCq, (8)

so that the stiffness matrix of the system follows as

C =

⎡

⎣

Cmech + α2

Cp
κκ

T α
Cp

κ

α
Cp

κ
T 1

Cp

⎤

⎦ . (9)

The term Cmech represents the ’mechanical’ stiffness matrix of the piezoelement, which can be

deduced in the same way as standard mechanical systems.

2.2. Piezoelectric bimorph

Now we can apply the above obtained results for the piezoelectric bimorph. We are

considering the general case of a piezoelectric layer which has a distance e to the neutral

axis of the beam. The coordinate axes are defined in such a way that the origin is at contact

between the piezoelectric and the substrate layers at the clamped end, see Figure 2. The x1 axis

is in beam direction and the deformations occur in x3 direction, which is also the direction of

polaziration. With Euler-Bernoulli assumptions the strain is only applied in x1 direction. That

means the transversal effect of the piezoceramics is utilized. The strain terms described in the
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previous section then read for the case of the clamped beam:

S̄1,3 =

ℓ3
∫

0

S1dx3

ℓ3
= −

(

e +
ℓ3

2

)

w′′(x1, t),

ΔS1,3 = S1 − S̄1,3 =

(

ℓ3

2
− x3

)

w′′(x1, t),

S̄1 = −

(

e +
ℓ3

2

)

ℓ1
∫

0

w′′(x1, t)dx1

ℓ1
= −

(

e +
ℓ3

2

)

w′(ℓ1)− w′(0)

ℓ1
. (10)

The bending of the beam is described by w(x1, t). This term will be split into the part

depending on coordinate x1 and the part depending on time t,

w(x1, t) = W(x1)q(t), w′′(x1, t) = W ′′(x1)q(t). (11)

In this example, only one mechanical degree of freedom is used to describe the vibrations.

This is typically a reasonable approximation when the system vibrates close to one of its

eigenfrequencies. In this way, the general stiffness matrix according to Equation 9 reduces

to

C =

⎡

⎣

cmech + α2

Cp
κ2 α

Cp
κ

α
Cp

κ 1
Cp

⎤

⎦ , (12)

and the mechanical coupling is written as

κ =

(

e +
ℓ3

2

)

(

W ′(ℓ1)− W ′(0)
)

, (13)

while the piezoelectric coupling reads

α

Cp
=

k2
31

1 − k2
31

1

d31

ℓ3

ℓ1
,

α2

Cp
=

1

sE
11

k2
31

1 − k2
31

ℓ2ℓ3

ℓ1
. (14)

Terms of the kind α2

Cp
κ2, which determine the increase in eigenfrequencies between short

circuit electrodes and isolated electrodes are obtained as

α2

Cp
κ2 =

1

sE
11

k2
31

1 − k2
31

ℓ2ℓ3

ℓ1

(

e +
ℓ3

2

)2
(

W ′(ℓ1)− W ′(0)
)2

. (15)

For a better understanding of these terms, it is useful to introduce the area moment of inertia

IPZT of the piezoceramics around its own center of gravity and the moment of inertia InF

around the neutral axis of the beam. Additionally, also the difference InF − IPZT is included
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in the results,

IPZT =
ℓ2ℓ

3
3

12
,

InF =
ℓ2ℓ

3
3

12
+

(

e +
ℓ3

2

)2

ℓ2ℓ3,

InF − IPZT =

(

e +
ℓ3

2

)2

ℓ2ℓ3. (16)

With these definitions, the coupling terms can be expressed as

α2

Cp
κ2 =

1

sE
11

k2
31

1 − k2
31

InF − IPZT

ℓ1

(

W ′(ℓ1)− W ′(0)
)2

. (17)

This result can be used to discuss different geometries and types of bimorphs. Obviously a

beam that consists only of piezoelectric material does not have any coupling at all, because

the distance e is exactly one half of the thickness of the piezoelectric layer, e = − ℓ3
2 . This

means the term InF − IPZT vanishes. Contrary to this, a beam which is made of two identical

piezoelectric layer is represented by e = 0 because of the symmetry, and a coupling exists.

However, yet more efficient is the design of bimorphs or trimorphs with a substrate layer,

which moves the neutral axis away from the surface of the piezoelectric layer. This results in a

positive value e > 0. The best type is a symmetric trimorph with identical piezoelectric layers

on both sides of the substrate layer. Here the distance equals half of the substrate layer. More

details about the optimization of bimorphs can be found in [10].

In general, the piezomechanical system can be described by the following differential

equations,

[

mmech 0

0 0

] [

q̈

Q̈p

]

+

⎡

⎣

cmech + α2

Cp
κ2 α

Cp
κ

α
Cp

κ 1
Cp

⎤

⎦

[

q

Qp

]

=

[

F(t)

−up(t)

]

, (18)

with the modal mass mmech, the external force F(t) and the voltage up(t) at the electrodes of

the piezoelement.

2.3. Linear energy harvester

Based on these results, the simplest and linear energy harvester can be modeled. In this

case only a resistor is connected as an electrical load at the electrodes of the piezoelement.

Therefore the voltage up is dependent on the time derivative of charge Q̇p and the differential

equations of motions for this case including damping dmech read

[

mmech 0

0 0

] [

q̈

Q̈p

]

+

[

dmech 0

0 R

] [

q̇

Q̇p

]

+

[

cmech + α2

Cp
κ2 α

Cp
κ

α
Cp

κ 1
Cp

] [

q

Qp

]

=

[

F(t)

0

]

(19)
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We seek for the amplitudes of the stationary oscillations,

q̂ =
(

−Ω2M + jΩD + C
)−1

[

F̂

0

]

, (20)

with the corresponding system matrices according to Equation 19. The amplitudes of the

time signals are marked by a hat. With the stationary charge amplitude Q̂p the instantaneous

power p(t) can be calculated,

p(t) = Ri2
p(t) = RΩ2Q̂2

p cos2 (Ωt) , (21)

where ip is the current. The energy that is dissipated in the resistor will be treated as the

stationary harvested energy Eh,stat. It is then the integral of the power p,

Eh,stat =
∫ 2π

Ω

0
p(t)dt = πRΩQ̂2

p. (22)

This result, normalized to force amplitude, is shown in Figure 3 versus the load resistance R

and the excitation frequency Ω, normalized to the mechanical eigenfrequenzcy ω0. For this

study, the following system parameters are used:

mmech = 0.005kg,

dmech = 0.1212Ns/m,

cmech = 341.2651N/m,

ακ = 0.002,

Cp = 83.676nF. (23)

Obviously the harvested energy is highly frequency dependent. Only in a narrow frequency

range around the eigenfrequency the efficiency is high. Also the resistor must be tuned for

maximum harvested energy. The system is less sensitive towards changes of the resistance,

but one can show that the optimal resistance which is optimal for low coupling and/or high

damping is obtained as

Ropt =
1

ΩCp
(24)

3. Array configuration

Utilizing an array configuration for the extension of the generator bandwidth is a commonly

used approach. The idea is simple and powerfull: multiple generator elements are tuned to

slightly (a few %) different eigenfrequencies. A major factor is the connection to the electrical

system; if each individual element uses its own bridge rectifier, the elements are electrically

uncoupled and their output power simply can be summed up. However, individual bridge
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Figure 3. Harvested energy Eh,stat versus normalized excitation frequency Ω and load resistance R.

rectifiers are a comparable big effort, a huge number of elements and cables is needed, further

the voltage drop over each diode is also summed up, so that the losses increase. As soon the

individual elements are made of one part the electrodes are connected naturally, which results

automatically in parallel connected elements. In such a configuration, Figure 4, the elements

are electrically coupled.

This section investigates the effect of the electrical coupling on the performance of

piezoelectric energy harvesting generators. Two configurations are investigated, the electrical

parallel connection as well as the electrical serial connection. Both cases are utilizing two

elements as most basic version of a piezoelectric array. The model is based on the linear

generator model in Equation 19, therefore a fore excitation is assumed. We further assume

that the applied fore is equal on all elements, representing a common support. The resonance

frequency tuning is made by an adoption of the modal mass of the elements (change of

tip mass), all other parameters are assumed to be constant. The configurations including

boundary conditions is given in Figure 4. Each element can be represented by the linear

Equation 19. In the parallel configuration the two voltages are equal and uP1
= uP2

=
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Figure 4. Schematic Circuit. Left: series configuration. Right: parallel configuration

RL (iP1
+ iP2

) apply due to Kirchhoff’s rules. Using both, the parallel configuration is

described by

⎡

⎢

⎢

⎣

mmech − Δm 0 0 0
0 mmech + Δm 0 0
0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

q̈1

q̈2

Q̈p1

Q̈p2

⎤

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

dmech 0 0 0
0 dmech 0 0
0 0 R R
0 0 R R

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

q̇1

q̇2

Q̇p1

Q̇p2

⎤

⎥

⎥

⎦

...+

⎡

⎢

⎢

⎢

⎢

⎣

cmech + α2

Cp
κ2 0 α

Cp
κ 0

0 cmech + α2

Cp
κ2 0 α

Cp
κ

α
Cp

κ 0 1
Cp

0

0 α
Cp

κ 0 1
Cp

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

q1

q2

Qp1

Qp2

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

F(t)
F(t)

0
0

⎤

⎥

⎥

⎦

. (25)

The coupling between the elements is obviously seen in the damping matrix. In the series
configuration, the current at both generators is equal. Therefore uP1

+ uP2
= RLiP1

= RLiP2
is

applied to couple the two generators:

⎡

⎣

mmech − Δm 0 0
0 mmech + Δm 0
0 0 0

⎤

⎦

⎡

⎣

q̈1

q̈2

Q̈p

⎤

⎦+

⎡

⎣

dmech 0 0
0 dmech 0
0 0 R

⎤

⎦

⎡

⎣

q̇1

q̇2

Q̇p

⎤

⎦+ ...

⎡

⎢

⎢

⎣

cmech + α2

Cp
κ2 0 α

Cp
κ

0 cmech + α2

Cp
κ2 α

Cp
κ

α
Cp

κ α
Cp

κ 2
Cp

⎤

⎥

⎥

⎦

⎡

⎣

q1

q2

Qp

⎤

⎦ =

⎡

⎣

F(t)
F(t)

0

⎤

⎦ . (26)
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Here the coupling is evidently in the stiffness matrix. Where all parameters correspond to
the ones from the modeling section. The mass for frequency adoption is Δm = 0.5g. For the
steady state the system can be solved and the transfer functions can be determined analog to
the single system. The total dissipated energy at the resistor is again given by

Eh,stat =
∫ 2π

Ω

0
u(t)i(t)dt. (27)

Evaluating this equation for voltage and current over the load resistor gives the gained energy
for the application, the result is depicted in Figure 5 for serial configuration and in Figure 6
for parallel configuration. For the in series connected generators the bandwidth is widened at
high impedance loads and it is not significantly changed for low impedances. For the parallel
configuration, a bandwidth expanded at low impedance loads and also not changed for high
impedances.

Figure 5. Energy per period in serial configuration in mJ/N. Left: gained useable energy. Middle:
element 1. Right: element2.

Figure 6. Energy per period in parallel configuration in mJ/N. Left: gained useable energy. Middle:
element 1. Right: element2.

To explain why there is no widening of the bandwidth in serial connection at low impedances
the Equation 27 is evaluated for both elements, using the individual voltage and the common
current. Figure 5 show that the second element works as energy sink for low impedances,
with the consequence, that the energy generated by element one is used to actuate the other
one. Figure 7 shows this effect. Even with the overall maximum displacement of element two
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Figure 7. Tip displacement of both elements in serial configuration in mm/N. Left: element 1. Right:
element2.

S

G

Figure 8. Schematic of SSHI circuit.

at low impedances the gained useable energy is low. The same effect but for high impedances
is shown in Fig. 6 for the parallel configuration. In this case element one is the energy sink.

Concluding, the utilization of arrays with serials or parallel electrical coupling has only a
major positiv effect on the bandwidth for a matched impedance, for unmatched impedances
the coupling can be a drawback. The bandwidth can be enlarged with any further element,
the mean energy output over bandwidth in general is higher if the mistuning of the resonance
frequencies is smaller. For power and bandwidth comparison of generator arrays it is
reasonable to keep the volume of active material constant.

4. Switching networks (SSHI)

An important technique to enhance the energy extraction is to use nonlinear switching
networks. In detail, the ’Synchronized Switch Harvesting on Inductor’ (SSHI) technique is
studied. Such networks are an active field of research [3, 4, 7]. The corresponding network is
shown in Figure 8. This nonlinear electric circuit consists of a switching LR-branch, a rectifier
and load capacitor Cr. The load is again described as a resistor RL. Assuming a sinusoidal
mechanical deformation of the piezoceramics, the switch is briefly closed on minima and
maxima of the deformation. During these times, an oscillating electric circuit is formed, as the
capacitive piezoelectric transducer and the inductance are connected. During this electrical
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semi-period the switch is kept close and the voltage is inverted. As this electrical period time
is generally much shorter than the mechanical one, this occurs nearly instantaneously. After
inversion, the switch is opened again until the next deformation extremum. Consequently,
the resulting voltage signal at the piezoelectrodes is nearly rectangular-shaped. Previous
publications have proven the enhanced performance of SSHI circuits especially for systems
with low piezoelectrical coupling.

The modeling and optimization of such networks is not straight forward, as the overall system
is nonlinear. In the following we will present a modeling technique that is based on the
harmonic balance method.

4.1. Period response for harmonic excitation

Firstly, the periodic response if the SSHI is studied. In order to simplify the results, the
following approximations are defined,

Ls → 0, Cr → ∞. (28)

and the electrical losses remain constant. In practical realizations, all approximations are
appropriate. A small inductance value results in a fast inversion, and a large storage capacitor
means that the voltage at the load is nearly constant. Both situations are typically wanted.
Further on, the nonlinear system can be treated as a piecewise linear system.

In order to obtain the stationary voltage signal it is necessary to study one semi-period of
the system and consider the stationarity condition, which means the signal repeats after each
period. We define the time axis in such a way that for t = 0 the voltage was just inverted and
the switch is opened. With the approximation Cr → ∞ the voltage uL at the load capacitor is
constant at u0. This value has to be calculated yet. Because of the loss resistances - described
by the electrical damping ratio ζ - the voltage changes from ±u0 to ∓u0e−πζ . That means
the absolute value of the voltage up at the piezoelectrodes after inversion is smaller than the
voltage at the load u0. Therefore the recifier blocks, and the piezovoltage changes linearly
with the piezodeformation q,

up(t) = −
ακ

Cp
q(t) + C0, (29)

with an integration constant C0. According to the definitions, the piezodeformation must have
an extremum at t = 0, so that the time signal reads

q(t) = q̂ cos (Ωt) , (30)

and for the voltage signal it follows

up(t) = −
ακ

Cp
q̂ cos (Ωt) + u0e−πζ +

ακ

Cp
q̂. (31)

The voltage amplitude u0 is still unknown, but at least the time t1 can be calculated, at which
the voltage at the piezoelectrodes equals the voltage at the load, up(t = t1) = u0:

t1 = acos

[

u0
ακ
Cp

q̂

(

e−πζ − 1
)

+ 1

]

/Ω. (32)
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At this time t1 the rectifier changes from ’blocking’ to ’conducting’. Practically this means that
the piezovoltage remains constant at u0 from t1 until the end of the semi-period T/2.

The piezovoltage u0 can be calculated based on the energy balance. Therefore, the transferred
energy Et, the harvested energy Eh and the energy dissipated in the switching branch Es must
be obtained. They read, respectively,

Et = −2
∫ T/2

0
Fp(t)q̇(t)dt = 2ακΩq̂

[

∫ t1

0
up(t) sin (Ωt) dt +

∫ T/2

t1

u0 sin (Ωt)dt

]

,

Eh = 2
∫ T/2

0

u2
0

R
dt = 2

π

Ω

u2
0

R
,

Es = 2
1

2
Cpu2

0

[

1 −
(

e−πζ
)2

]

. (33)

The transferred energy corresponds to the total energy that is shifted from the mechanical
system into the piezoelectric system, while the other terms are the energies that are dissipated
within the load resistor and the resistor of the switching branch. In stationary situation, the
equality

Et = Eh + Es (34)

holds. With this equation, finally the stationary voltage amplitude can be recalculated as

u0 = 2
ακ

Cp
(

1 − e−πζ
)

+ π
ΩR

q̂. (35)

Figure 9 shows the time signal of the voltage up. Inserting the stationary voltage amplitude
into the energies in Equation 33 gives us the stationary energies,

Et,stat = 4
α2κ2

Cp

1 − e−2πζ + 2π
CpΩR

(

1 − e−πζ + π
CpΩR

)2
q̂2,

Eh,stat = 4
α2κ2

Cp

2π
CpΩR

(

1 − e−πζ + π
CpΩR

)2
q̂2,

Es,stat = 4
α2κ2

Cp

1 − e−2πζ

(

1 − e−πζ + π
CpΩR

)2
q̂2. (36)

All these energy terms have quadratic dependency with the force factor α, which should be
maximized for a high energy conversion. Also the electrical damping ratio ζ in the switching
branch should be low. They also grow quadratically with the vibration amplitude q̂ of the
oscillator.

However, for the force excited vibrations, the vibration amplitude is influenced by the
harvesting device. The transferred energy Et,stat yields a damping effect upon the oscillator,
which reduces the vibration amplitudes. In order to determine the vibration amplitudes,
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Figure 9. Time signals of piezodeformation and voltage at the electrodes.

the harmonic balance method is applied in the following. In this technique the shunted
piezoceramics is replaced by a spring - damper combination. Therefore the period - but not
harmonic - force response Fp(t) = −αup(t) of the shunted piezoceramics is expressed by its
Fourier-series,

up(t) =
1

2
a0 +

∞

∑
i=1

(ai cos (iΩt) + bi sin (iΩt)) . (37)

The Fourier-coefficients ai, bi are obtained by the periodic timesignal up(t),

ai =
2

T

∫ c+T

c
up(t) cos (iΩt)dt; bi =

2

T

∫ c+T

c
up(t) sin (iΩt)dt. (38)

The idea of the proposed linearization techniques is to approximate the periodic voltage signal
by its main harmonics,

up(t) ≈ a1 cos (Ωt) + b1 sin (Ωt). (39)

This harmonic force signal is also produced by a spring - damper combination with the
following parameters,

c∗ =
a1

q̂
, d∗ = −

b1

Ωq̂
. (40)

In general, these replacement parameters c∗, d∗ are frequency dependent. With these results,
the stationary vibration amplitudes of the oscillator with shunted piezoceramics can be
recalculated,

q̂ =
F̂p

|−mΩ2 + j (d + d∗) Ω + c + c∗|
(41)
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Figure 10. Harvested energy Eh,stat versus normalized excitation frequency Ω and load resistance R.

Finally this stationary vibration amplitude q̂ can be inserted into Equation 36 for the harvested
energy Eh,stat. The resulting energy is shown in Figure 10 versus the excitation frequency Ω

and the load resistance R. This figure can be compared with the linear resistance case in
Figure 3. It again shows that most energy is harvested at the resonance frequency ω0 of the
oscillator, because the vibration amplitudes are highest in this case. But also the load resistor
must be tuned correctly in order to achieve the maximum energy. Compared to the standard
case the maximum amount of harvested energy is similar, while the frequency bandwidth
with SSHI tends to be larger. However, the voltage at the load resistance with SSHI circuit is
nearly constant which is wanted in most practical cases, while it is a harmonics oscillations
with the linear resistance. Additionally the damping effect upon the mechanical structure
is higher, because of the additional energy that is dissipated within the resistance of the
switching branch.

5. Piezomagnetoelastic energy harvesting

One major drawback for energy harvesting systems is that conventional generators produce
the maximum energy when the system is excited at its resonance frequency. If the excitation
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frequency shifts the output power is drastically reduced. To overcome this disadvantage
multiple researchers work on different broadband techniques to widen the operational
frequency range. The focus in this section is on piezomagnetoelastic energy harvesting
strategies. The equations of motion (EOM) are derived in the previous section. The generator
is based on a model with lumped parameters. The broadband response is achieved by using
nonlinear magnetic forces. Piezomagnetoelastic generators are studied in a bunch of multiple
research activities [1, 2, 13, 14]. In many approaches the system is modeled as Duffing
oscillator. Usually the system parameters in the model are adjusted manually to match the
amplitude or power response of the experiment. The aim in this work is to investigate an
analytically approach to derive the duffing parameters out of the system parameters.

This section is organized as followed. The mechanical EOM is derived for the
piezomagnetoelastic energy harvesting system. In the following the duffing parameters are
derived with respect to the system and input parameters and the system dynamic is discussed.
The last part shows the analytic solution for large orbit oscillations.

5.1. Modeling of the piezomagnetoelastic energy harvesting system

Figure 11 gives a schematic view of the piezomagnetoelastic system. The energy harvester
consist of a cantilever with two piezoelectric patches mounted on each side of an inactive
substructure. The system is excited by a harmonic force

F(t) = F̂ sin(ωt) (42)

where F̂ is the amplitude of the excitation and ω is the excitation frequency. A magnetic
tip mass is attached to the free end of the beam. Another permanent magnet is stationary
mounted near the free end. The magnets are oppositely poled so they exhibit a repulsive force.
The nonlinear magnetic force leads to two stable equilibrium positions. Figure 11 shows both
symmetric stable equilibrium positions. The tip displacement is given with q and the magnet
spacing is s. The coupled mechanical and electrical differential equations are derived in the
previous section

mq̈ + dq̇ + cq −
α

CP
QP +

dUmag

dq
= F(t) (43)

and

RQ̇P +
1

CP
QP −

α

CP
q = 0. (44)

Equation 43 and 44 are similar to 19 where m = mmech is the modal mass. The modal

damping is d and c = cmech + α2

Cp
κ2 is the total mechanical stiffness. Additionally to the linear

differential equations the nonlinear magnetic force leads to

Umag =
μ0

4π
∇

µArAB

‖rAB‖
3
2

µB (45)

where μ0 is the permeability of free space, µA and µB are the magnetic dipole moment vectors.
rAB is the vector from the source of magnet B to magnet A. ‖·‖2 is the EUKLIDEAN norm
and ∇ is the vector gradient defined with

∇
1

rn
=

⎡

⎣

∂/∂x
∂/∂y
∂/∂z

⎤

⎦

1

rn
= −

n

rn+1

⎡

⎣

x/r
y/r
z/r

⎤

⎦ = −
nr

rn+2
. (46)
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Figure 11. Schematic view of the piezomagnetoelastic energy harvesting system

The magnetic dipole moment vectors are written as

µA = MAVA

⎡

⎣

cos φ

0

sin φ

⎤

⎦ , (47a)

µB = MBVB

⎡

⎣

−1

0

0

⎤

⎦ , (47b)

where MA and MB represents the vector sum of all microscopic magnetic moments within a

ferromagnetic material and VA and VB are the volumes of the magnets. Details of the force

between magnetic dipoles can be found in [16]. φ is the rotation angle at the magnet A.

The vector from the source of magnet B to magnet A is

rAB =

⎡

⎢

⎢

⎣

−

(

s +
lA
2

+
lB
2
+

(

lP +
lA
2

)

(1 − cos φ)

)

0

q

⎤

⎥

⎥

⎦

(48)

where lA and lB are the length of the magnets and lP is the length of the beam in x-direction.

Figure 12 a) presents the potential energy

U = Umech + Umag =
1

2
cq2 +

μ0

4π

(

µA ·µB

r3
AB

− 3
(µA · rAB) (µB · rAB)

r5
AB

)

(49)

where Umech is the mechanical potential energy and c is the equivalent stiffness of the beam.

U is normalized to the potential energy U0 for a magnet distance of s = 0.79s0. The tip

displacement q is normalized to the tip displacement q0 for s = 0. The derivation of the

mechanical potential energy expression is shown in [15] and is proportional to q2 for the first

bending mode. Umag is given in Equation 45. The Figure shows the potential energy for

different magnet distances with respect to s0 which is the critical magnet distance where the

potential energy change from two to one stable equilibrium position. The nonlinear magnetic

319Modeling Aspects of Nonlinear Energy Harvesting for Increased Bandwidth



18 Will-be-set-by-IN-TECH

0.66s0

0.79s0

1.00s0

1.31s0

q/q0
q/q0

U
/

U
0

F r
es

/
F r

es
0

-1.5 -1.0 -0.5 0 0.5 1.0 1.5
0

1/3

2/3

1

4/3

5/3

-1.5 -1.0 -0.5 0 0.5 1.0 1.5
-3

-2

-1

0

1

2

3

a) b)

Figure 12. Potential energy and restoring force

force leads to an energy hump at zero tip displacement. A sharp peak results for a small

spacing.

The system exhibits two stable equilibrium positions which are the local minimum positions

in the potential energy and one unstable equilibrium for zero displacement (s < s0). The

hump disappears for large s and there is only one stable equilibrium for zero displacement

(s > s0).

The normalized restoring force

Fres =
dU

dq
(50)

is additionally presented in Figure 12 b). Fres is normalized to the restoring force for a magnet

spacing of s = 0.79s0. Equation 50 is a nonlinear function of the system parameters in

particular a function of s.

The benefit of the magnet force is the nonlinearity in the system response. Due to the

restoring force the system exhibits overhanging resonance curves which strongly depends on

the parameters. For s < s0 and low excitation energy that the system only oscillates around

one equilibrium the EOM has a hardening stiffness so the resonance curve overhang to the

left. A softening response is given for s > s0 with a distorted peak to the right. Specially for

a hardening stiffness the system exhibit two equilibrium positions and the system bounces

between both positions if the energy of the excitation is high enough. These large orbit

deflections generate the most energy and are most important for designing the system setup.

5.2. Approximation with the Duffing oscillator

The potential energy shown in Figure 12 a) is approximated as fourth order polynomial

function

UDuff =
1

4
αq4 +

1

2
βq2 (51)
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in a bunch of different research activities. The nonlinear restoring force shown in Figure 12 b)

is than approximated as the Duffing equation

Fres,Duff =
dUDuff

dq
= αq3 + βq (52)

with the Duffing parameters α and β. The approach as Duffing equation is not only

limited to piezomagnetoelastic energy harvesting techniques. [5] used this equation to model

an electrostatic energy harvesting system and [8] approximate an electromagnetic energy

generator. In the following α is the Duffing parameter before the cubic term instead of the

coupling factor in Equation 43 to be conform to the most publications concerning the duffing

equation. The uncoupled equation of motion (EOM) for the piezomagnetoelastic system in

terms of the duffing oscillator is written as

mq̈ + dq̇ + αq3 + βq = F(t). (53)

The Duffing parameters are complicated functions of the beam, the piezo, the magnet

parameters and in particular the magnet distance. It can be recognized in Figure 12 b) that

the cubic part αq3 is always positive for repulsive magnets because the function is always

monotonically increasing for large q values. Only the linear part βq can be either positive or

negative with respect to the magnet distance. For s < s0 the parameter β is negative and the

system exhibits two stable and one unstable equilibrium position. For s ≥ s0 the system has

only one stable equilibrium position and β is positive. s0 is the critical magnet spacing.

The nonlinear restoring force Fres shown in Figure 12 b) can be approximated as a third order

Taylor serious given with

p(q) = k1q3 + k2q2 + k3q + k4 (54)

where k1−4 are constants derived from the system parameters. By comparing Equation 54 and

Equation 52 note that k1 = α and k3 = β. To calculate the constant parameters in Equation 54

it takes four constrains.

1. The restoring force is point symmetric:

p(0) = 0, (55)

d2 p(0)

dq2
= 0. (56)

2. The Taylor series must exhibit the same equilibrium positions:

p(qeq) = 0. (57)

3. The oscillation must be suitable for small magnet distances s around one equilibrium

position
dp(qeq)

dq
= a, (58)
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Figure 13. Equilibrium positions and β with respect to the magnet distance s.

where qeq is the equilibrium position and a is the slope at qeq. a and qeq can be calculated from

the original system. The solution for k1−4 is

k1 = α =
a

2q2
eq

, (59a)

k2 = 0, (59b)

k3 = β = −
a

2
, (59c)

k4 = 0. (59d)

Equation 53 becomes

mq̈ + dq̇ +
a

2q2
eq

q3 −
a

2
q = F(t). (60)

Equation 60 is usable if the potential energy exhibits two equilibrium positions. If the magnet

distance is larger than s0 the Duffing parameters α and β are simply the liner and the cubic

part of the third order Taylor series of Equation 50 and α and β are positive.

This behavior can be recognized in Figure 13 a) and b). The graphs are calculated by using

the potential energy of two point dipols in Equation 49. Figure a) shows the equilibrium

position over the magnet distance. The equilibrium position qeq is normalized to the known

q0. The magnet distance is normalized to the critical magnet distance s0. Note that the distance

between the two stable qeq becomes smaller for very small s because of the rotation angle φ of

magnet A. The Figure 13 b) gives the modification of the Duffing parameter β with respect to

the normalized known magnet distance. β is normalized to β0 the linear Duffing parameter
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Figure 14. Duffing approximation of the restoring force and displacement

for s = 0. For s < s0 the system exhibit a negative linear restoring force due to the negative

parameter β. β is positive for s > s0.

Figure 14 shows the approximation of Equation 50 with Equation 52 and the Duffing

parameter known from Equation 59. The pictures a) show the restoring force derived from

the force between two point dipoles and the Duffing equation for different magnet distances.

The pictures b) gives the corresponding time variant tip displacement. It can be recognized

that the Duffing equation approximate the restoring force very well for the different ranges

of magnet spacing. The Duffing equation shows the hardening response for small magnet

distances (s = 0.38s0) and it approximates the influence of the different attractors (s = 0.91s0).

For s > s0 the approximation is also very good.

5.3. Solution for large orbit oscillations

In Section 5.1 and Section 5.2 the piezomagnetoelastic energy harvesting system is presented

and an approximation with the Duffing oscillator is given. In the following Equation 60 is
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solved for large orbit oscillations so that system bounces between both symmetric equilibrium

positions or around the only one for s > s0. The EOM can be written as

q̈ + 2Dω0q̇ + ǫq3 + sgn(β)ω2
0q = f0 cos(ωt) (61)

where sgn(β) is either positive or negative for β > 0 or β < 0 with

D =
d

2ω0m
, (62a)

ω2
0 =

|β|

m
, (62b)

ǫ =
α

m
, (62c)

f0 =
F̂

m
. (62d)

The Equation 61 can be solved by applying the harmonic balance method. The harmonic

balance method is well known and details can be found in [12]. The amplitude response is

assumed as harmonic with the frequency of the excitation

q = q̂cos(ωt − ϕ) (63)

where q̂ is the amplitude and ϕ is the phase of the tip displacement. Insert Equation 63 in

Equation 61 and only consider terms with the excitation frequency leads to

√

[

(

sgn(β)ω2
0 − ω2

)

q̂ +
3

4
ǫq̂3

]2

+ 4D2ω2
0ω2q̂2 cos (ωt − . . .

. . . − ϕ + arctan

(

2Dω0ωq̂

(sgn(β)ω2
0 − ω2)q̂ + 3

4 ǫq̂3

))

= f0 cos(ωt). (64)

The Equation 61 is valid if the amplitude and the phase in Equation 63 solves the equations.

The solution gives the frequency response with respect to the amplitude q̂

ω2
1/2 = sgn(β)ω2

0 − 2Dω2
0 +

3

4
ǫq̂2 ±

√

f 2
0

q̂2
+ 4D2ω2

0

(

D2ω2
0 − sgn(β)ω2

0 −
3

4
ǫq̂2

)

. (65)

Figure 15 shows the analytical amplitude response given in Equation 65 and the numerical

solution of the Duffing oscillator. The graph shows the solution for three different magnet

distances. The frequency was slowly increased so the system remains a steady state response.

One can recognize that the harmonic balance is well suited if the Duffing equation has a

positive linear restoring force (β > 0). If the Duffing oscillator exhibits a negative restoring

force and the system excitation delivers enough energy that the energy harvester bounces

between both stable equilibrium positions than the harmonic balance predicts the influence of
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Figure 15. Numerical and analytical results for the large orbit duffing equation

the attractors till the first jump. The system behavior after the first jump can not be predicted

with this harmonic approximation.

6. Conclusions

This chapter presents different techniques to enlarge the frequency bandwidth of piezoelectric
energy harvester. A precise modeling of piezomechanical structures is given, and the linear
harvesting system is given as the reference. In detail a nonlinear switching SSHI circuit,
nonlinear magnet forces and an array configuration of several bimorphs are discussed. For
all cases, appropriate modeling techniques are presented that allow an efficient yet precise
analysis. The nonlinear techniques alter the system dynamics especially for off-resonance
vibrations. The magnet forces generate a bistable system, in which the bimorph oscillates
between both equilibria. The SSHI circuit increase the energy conversion rate by producing
a rectangular shaped voltage signal, while the array configuration tunes the individual
bimorphs to slightly different frequencies, so that the energy conversion is distributed to a
broader frequency range.
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