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1. Introduction 

Diabetes mellitus type1 (T1D) or insulin dependent diabetes mellitus (IDDM) is an 

endocrine metabolic disorder which is defined by absolute or partial lack of insulin and 

hyperglycemia (1).Traditionally the complications of diabetes were classified as acute 

complications like diabetic keto acidosis (DKA) and chronic complications. Chronic 

complications comprise vascular and nonvascular complications. The vascular 

complications are further subdivided into microvascular (retinopathy, neuropathy, and 

nephropathy) and macrovascular complications (coronary artery disease, CAD, and 

cerebrovascular disease) (2). Despite the first record of diabetes-related cognitive 

dysfunctions in 1922 (3), for a long period diabetic nephropathy, peripheral neuropathy, and 

retinopathy were considered as late diabetes microvascular complications and it was 

believed that central nervous system (CNS) as an insulin independent organ, spares from 

diabetic complications. However in recent decades studies have provided evidence that 

indicate the deleterious effects of T1DM on structure and functions of the brain (4-6). 

Duration related or chronic effects of T1DM on the brain, T1DM encephalopathy, are 

manifested at the all levels of CNS from microscopic to macroscopic level. Macroscopically 

neuroimaging studies have demonstrated a high incidence of abnormalities like temporal 

lobe sclerosis, decreases in white matter volume in parahippocampus, temporal and frontal 

lobes as well as decreased gray matter volumes of the thalami, hippocampi, and insular 

cortex, decreased gray matter densities of superior and middle temporal gyri and frontal 

gyri (7, 8).In experimental models of T1DM a vast spectrum of neuronal changes have been 

reported. These pathological abnormalities include synaptic and neuronal alterations, 

degeneration, increased cerebral microvasular permeability, and neuronal loss which 

collectively can lead to cognitive impairment and higher risk of development dementia (9-

11). Although the mechanisms through which hyperglycemia might mediate these effects 

are not completely understood it seems hyperglycemia increases oxidative stress in 
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mitochondria and subsequent free radicals generation. Increased free radicals damage 

cellular membrane (lipid per oxidation) and initiate death signaling pathways (12-14).  One 

of the most sensitive regions of the brain to the metabolic disorders and oxidative stress is 

hippocampus (15). The hippocampus itself is divided into two interlocking sectors, the 

dentate gyrus and the hippocampus proper (cornu ammonis). The dentate gyrus has three 

layers: (1) the granular layer containing the densely packed cell bodies of the granule cells; 

(2) the molecular layer formed by the intertwining apical dendrites of the granule cells and 

their afferents; (3) the polymorph layer in the hilus of the dentate gyrus containing the initial 

segments of the granule-cell axons as they gather to form the glutamergic mossy fiber 

bundle. Hippocampus proper as an archeocortiacl structure has been divided into seven 

layers as follows: (1) The alveus; containing the axons of the pyramidal cells (2) the stratum 

oriens, a layer between the alveus and the pyramidal cell bodies which contains the basal 

dendrites of the pyramidal cells (3) the stratum pyramidal (4) the stratum radiatum and (5) 

the stratum lacunosum/molecular which are, respectively, the proximal and distal segments 

of the apical dendritic tree. In the CA3 field an additional layer is recognized: the stratum 

lucidum, interposed between the pyramidal cell bodies and the stratum radiatum, receiving 

the mossy-fibers input from the dentate granule cells.  Each CA3 giant pyramidal neuron 

with large dendretic spines receive as many as10-50 mossy fibers from dentate gyrus, and 

send their axons into the fimbria. New memory formation and consolidation process of 

events by hippocampus depend on the integrity of hippocampus internal circuits (16, 17) 

(fig1). 

 

 

 

 

 
 
 

 

Figure 1. Functional circuits of hippocampus. Inputs from extensive cortical and subcortical areas reach 

dentate gyrus. Mossy fibers, axons of granular cells, synapse with CA3 pyramidal neurons.CA3 

pyramidal neurons send collateral to CA1.Axons from these two regions reach limbic related regions. 
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Hippocampus structural complexity has made it vulnerable to the many pathological 

conditions such as diabetes mellitus type1 (18). It is a crucial part of the limbic system, 

which plays a pivotal role in memory formation, emotional, adaptive and reproductive 

behaviors (16 17 and19). Studies have shown that cell proliferation continues in granular 

layer of DG constantly. This unique neuronal renew is necessary for memory formation 

(20, 21). Any factor disturbing the balance between neuronal proliferations /death may 

result to memory and learning impairment (22). Studies have demonstrated that 

experimental diabetes causes decreased granular cells proliferation and neuronal death 

(necrosis / apoptosis) in CA3  and DG regions (23).Although  neuronal death has been 

considered as the main leading cause of diabetic CNS and peripheral neuropathies the 

mode of neuronal death in T1DM has remained as a matter of controversy (24, 25, and 26). 

Neuronal death has been known as a common feature of neurodegenerative diseases like 

Alzheimer and diabetes (27).Studies have suggested free radicals and glutamate 

excitotoxicity as the main driving causes of neuronal death in diabetic paradigm (27-28). 

Interestingly these factors have been implicated in another mysterious and different type of 

neuronal death which is called “Dark” neuron. This kind of neuron has been reported in 

various pathological conditions likes stroke, epilepsy, hypoglycemia, aging and spreading 

depression phenomena (SD) .On the other hand, dark neuron formation has been reported 

in stress full conditions such as acute physical stress, normal ageing process in cerebellum 

and postmortem (nonenzymatic). All of these pathologic conditions cause disturbance in 

ion gradient (Na/K ATPase pump), and increases excitatory neurotransmitters like 

glutamate (27, 28).Despite the role of hyperglycemia in increasing oxidative stress and 

extracellular level of glutamate in hippocampus, there is little information about the 

effect(s) of a chronic endogenous stressor like diabetes type 1 on dark neuron formation in 

DG granule cells. In spite of new therapies like intranasal insulin, C peptide and 

antioxidants (9) diabetic central neuropathy and its underlying mechanisms have remained 

far from fully understood. 

Purpose: Obviously understanding the neuronal death mechanisms as a common feature of 

neurodegenerative diseases like Alzheimer and diabetes would contribute to better 

understanding of its pathophysiology and new treatment approaches. As stated before dark 

neurons can form in enzyme-independent condition. Therefore, there may be a need to 

revise the cell death concept and types. This study was conducted to clarify the following 

questions:(1) Does hyperglycemia lead to dark neurons formation in granule layer of DG?(2) 

What is the nature and entity of the ultrastructural changes?  

2. Materials and method 

Experimental diabetes mellitus induction 

Streptozotocin is a glucosamine–nitrosourea compound isolated from Streptomyces 

achromogenes. As an alkylating agent it interferes with glucose transport. It is taken up into 

beta cells of pancreas via the specific transporter, GLU-2, inducing multiple DNA strands 

breaks. Because  of the absence of The GLUT-2 glucose, STZ direct effects on the brain tissue 

is eliminated following systemic administration (29). 
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Induction of experimental diabetes 

This study was carried out on male Wistar rats (age eight weeks, body weight 240–260 

g, n=6 per group).All rats maintained in animal house and allowed free access to 

drinking water and standard rodent diet. Experiments performed during the light 

period of cycle and conducted in accordance with Regional Committee of Ethic 

complied with the regulations of the European Convention on Vertebrate Animals 

Protection (2005).We considered fasting blood glucose (FBG) >250 mg/dL as a diabetic. 

T1D was induced by a single intraperitoneal (IP) injection of STZ (Sigma Chemical,St. 

Louis, Mo) at a dose of 60 mg/kg dissolved in saline (control animals were injected with 

saline only) (30).Four days after the STZ injection, FBG was determined in blood 

samples of tail veins by a digital glucometer (BIONIME, Swiss). In the end of eight 

weeks, the animals were anesthetized by chloroform. Then perfusion was done 

transcardially with 100 mL of saline followed by 200 mL of fixative containing 2% 

glutaraldehyde and 2% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). The 

harvested brains were post-fixed in the same fixative for two weeks. Then the brain 

further processed through graded ethanol followed by xylene and paraffin. Serial 

coronal sections (thickness 10 μm) were made through the entire extent of hippocampus 

in left and right hemispheres using a microtome. 

Transmission electron microscopy (TEM) 

The hippocampi (two for each group) were removed and processed as follows briefly: 

washing in phosphate buffer 0.1 M (pH 7.4), fixation in 1% osmium tetroxide,dehydration 

by graded acetones (50, 70, 80, 90 each 20 minutes, and 100 three changes ×30 minutes), 

infiltration by resin/acetone (1/3 overnight, 1/1 8 hours and 3/1 8 hours), resin (overnight) 

and embedding, thick sectioning, thin sectioning (60–90 nm), staining with uranyl acetate 

and lead citrate. To identify DG region, the semi thin were stained by 1% Toluidine Blue. 

Finally, electron micrographs were taken by EM900 (Zeiss, Germany) equipped to TFPO 

camera. 

Gallyas’ method (dark neurons staining) 

Gallyas’ method is a useful method for detecting of DNs. This argyrophil staining is based 

on the damage in cytoskeleton and DNs show characteristic morphological features like 

shrunken dark somata and dendrites (28).Four sections from each animal (16 sections per 

group) were selected by uniform random sampling. Dark neurons staining was done as our 

previous study (27) and follows as briefly: (a) random systematically selection of paraffin 

embedded sections, (b) dehydration in a graded 1-propanol series, (c) incubation at 560C for 

16 hours in an esterifying solution consisting of 1.2% sulphuric acid, (d) 1-propanol(98%), (e) 

treatments in 8% acetic acid (10 minutes), (f) developing in a silicotungstate physical 

developer, (g) development termination by washing in 1% acetic acid (30 minutes), and (h) 

dehydration. The superior and inferior blades of the dentate gyrus were studied and 

pictures were taken by Olympus microscope (BX51, Japan) equipped with Motic Image plus 

2 software (Motic China Group, LTD). Counting of DNs was carried out according to the 

stereological bases and therefore only cell bodies were counted (26). 
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Statistical analysis 

All data are expressed as mean±SD. Statistical comparison for the number of DNs between 

two groups was made using Student t-test. Statistically significant difference was accepted 

at the p<0.05 level. 

3. Results 

The day 4 after STZ injection, rats were severely diabetic as indicated by their elevated 

plasma glucose (567.92±45.20 mg/dL) while plasma glucose of control group showed 

normoglycemic range (101±6.310 mg/dL) (p<0.001) (fig2). Diabetic rats also exhibited 

obvious signs of diabetes namely: polyuria and polydipsia. 

Counting the DNs 

The numbers of DNs in diabetic animals were counted 223±25 and those of normal group 

counted5.75±4.34. The comparison between the numbers of DNs in two groups showed 

significant level of difference (p<0.05) (Figure 2 

Light microscopy findings 

Dark neurons (DNs) in DG granular layer of STZ-induced diabetic group showed preserved 

cell integrity , detached from surrounding tissues, high darkly brown stained somata and 

degenerated axons (Figure 3-6).Filamentous (thread like) structures were noticed in soma 

and neuritis (Figure 4). Some granular cells showed small mitochondrion size brown grain 

in their perikarya (Figure 5). In control animals, some scattered DNs were also found in DG 

granular layer, while surrounding normal neurons were not stained (Figure 7).Staining by 

toluidine blue showed some neurons were  deeply stained  (hyperbasophilia) (figure8,9). 

TEM findings 

Characterization of neuronal death was according to our previous study, hence chromatin 

changes like clumping, margination and condensation was considered the most important 

evidence of non-necrotic death. Of course, other morphological characters such as cell 

shrinkage and dark appearance were considered. Integrity of neuronal membrane preserved 

in most of cases (Figs 10–14).Chromatin clumping, condensation and margination were 

noticed in diabetic group. The pattern of chromatin changes showed some differences. Tiny 

and dispersed chromatin clump in electron dense nucleus  and nucleolus without chromatin 

adherence were seen in some dark appearance neuron(figs10,12,13) while in some 

chromatin clumping was more conspicuous and nucleus appearance was lighter   

(fig14).Other morphological changes included: reduced inter-organelles spaces, electron 

dense appearance, shrinkage, detachment from surrounding tissues, degenerating 

axon(figs11,12) and apoptotic-body (14).Swelled mitochondria were observed in cytoplasm 

of shrunken dark neurons (fig10). In control animals some healthy looking neurons with 

increased electrondensity and apoptotic bodies were observed (14). The normal healthy 

neuron showed normal dispersed and light chromatin (fig 14). 



 
Pathophysiology and Complications of Diabetes Mellitus 6 

 

Figure 2. Counting of DNs in diabetic animals (Dia) showed significant level of difference to control 

group (Con). *p<0.05. 

 

Figure 3. Reversible type of dark neurons are scattered between some dark neuron. These neurons are 

characterized with light brown color that is indicative of recovering phase (arrowheads). Scale bar 5 μm  
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Figure 4. Fig4: A DN in the granular layer of diabetic group stained darkly brown (center). Soma of this 

DN shows some thread like structures (white arrow). An axosomatic synapse is also seen (right arrow). 

Scale bar 5 μm. 

 

Figure 5. Dark neuron. Highly dark stained degenerated neurons. In center a dark neuron (red 

arrowhead) and numerous degenerated neuronal particles are seen. Diabetic group. Scale bar 5 μm 
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Figure 6. A DN stained by Gallyas’ method. Somata and axon stained intensely (arrowhead). DN is 

detached from surrounding tissues and scattered among healthy neuron (windows). Scale bar 5 μm. 

 

Figure 7. DG granule cells in control group. DNs (arrow) dispersed in the granular layer. Scale 

bar25μm 
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Figure 8. Semi thin sections (1μm) stained by toluidine blue. Arrows indicate dark neuron among the 

healthy granular layer cells of DG (control). Scale bar 25μm 

 

Figure 9. Semi thin sections (1μm) stained by toluidine blue. Arrow indicates normal neuron among the 

dark, hyperbasophilic neurons  of DG. Scale bar 25μm 
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Figure 10. A DN in diabetic rats. Chromatin condensation,margination and clumping (white arrow), 

swollen mitochondria (arrows, right and left) are seen around the nucleus. Scale bar 2 μm. 

 

Figure 11. A DN in diabetic rats with degeneratedaxon (long arrow), dark perikarya (short arrow). 

Degenerative vacuolization has occurred around the DN and a vessel (star). Scale bar 5 μm. 

*



 
CNS Complications of Diabetes Mellitus Type 1 (Type 1 Diabetic Encephalopathy) 11 

 

Figure 12. Normal neuron (center) and its nucleolus (N).Two dark neurons (D) with chromatin 

clumping. A large mass of chromatin is attached to nucleolus. Scale bar2μm 

 

Figure 13. A dark neuron (white arrow).The pattern of chromatin clumping and nucleolus is different. 

Scale bar 4μm 
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Figure 14. Control group: apoptic neurons(AP) are seen with chromatin margination and clumping. 

Apoptotic like bodies (arrowheads). Right of photograph (star) shows normal neuron. Scale bar 4 μm. 

A AP 
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4. Discussion 

Dark neurons have been reported in the brain of experimental animals exposed to 

various pathological conditions. Morphologically DNs are characterized by at least six 

features namely: hyperbasophilia, argyrophilia, disappearance of antigenicity, 

ultrastructural compaction, volume reduction and increased electrondensity (31). On the 

basis of ultrastructural differences four types of dark neurons are descripted:  the 

Huntington type, the artefactual, the reversible, and the irreversible (32). They have been 

reported in Huntington, epilepsy, SD, hypoglycemia, and also in aging process (28). The 

result of our study showed that uncontrolled T1DM accelerates the rate of DNs 

formation in granular later of DG. We could also show that DNs occur in normal 

condition that implicates the common nature of dark neuron (31, 32). For demonstration 

of DNs, we used the selective type-III argyrophilia (method of Gallyas). Gallyas’ method 

is based on the reaction between the physical developer and few chemical groups in 

tissue. The final product of this chemical reaction would be formation of the 

crystallization nuclei whose enlargement produces the metallic silver grains constituting 

the microscopic image (31). DNs of both groups have common features like deep 

hyperbasophilia, dark staining, and neuronal shrinkage. So the reaction of neurons to 

different paradigms has resulted to a common morphology. DNs are the final product of 

a Series of physico-chemical reactions initiated from extracellular milieu and propagate 

into the neuron (33). At present the only proposed explanation for mechanism of 

formation of dark neurons is the gel concept. In this concept intra neuronal gel constitute 

a trabecular network surrounded by fluid. Various noxae e.g. free radicals induce release 

of noncovalent stored energy from gel state and as a results of gel contracture a large 

volume of cytoplasm contents is pressed out and lead to neuronal compaction and 

electron density of   dark neurons. It seems cytoskeletal network would be essential in 

these phenomena (33-35). However, it has not been defined as some different aspects of 

neuronal reactions. For instance some neurons with small mitochondrion size brown 

grain in their perikarya were noticed. It is believed these types of neurons are in 

recovering phase (reversible type) in contrast to real dark neuron (dead or irreversible) 

(36).Interestingly reversible dark neurons were only seen in diabetic group. At present 

we can’t   explain why reversible neurons were seen only in diabetic group but the 

severity of initiating insult, not its nature, may be a determinant. In diabetes more 

neurons were probably exposed to noxa e, g free radicals but the response of neurons 

would be selective (36). Studies have documented evidence that imply the role of 

hyperglycemia and increased oxidative stress in neuronal death (26, 37). Based on our 

results it can be inferred that neurodegeneration or aging process progresses more 

quickly in diabetes type1 (39). Although the rate of DNs was not significant in control 

animals, it may raise traumatic origin of DNs. Perfusion of animals before brains 

harvesting eliminates traumatic origin of DNs (38) as we did in this study. To reveal the 

ultrastructural changes, we took advantage of TEM study.TEM study provides clear-cut 

evidences to differentiate the mode of cell death (40). Morphological study of DNs by 

TEM showed chromatin changes, darkness, and shrinkage and swelled mitochondria. 
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The pattern of chromatin in DNs showed some differences as follows :( 1) chromatin 

clumping with electrondense appearance and normal shape of nucleus boundaries (most 

seen in control animals) (2) dispersed tiny clumped chromatin with relatively dark 

appearance and crenated outlines of nucleus (3) large clumped irregular chromatin with 

irregular outlines of nucleus. The last two patterns were only seen in diabetic animals. To 

the best of our knowledge this diversity in chromatin and nucleus morphology was not 

discussed in other related researches. Another characteristic of dark neuron was swelled 

mitochondria. In line with our findings the same characteristics have been reported in 

dark neurons (41). The same Chromatin changes (condensation and margination), 

neuronal darkness and shrinkage are considered as the hallmarks of apoptotic death. 

Although the apoptotic nature of death in DNs has been discounted and reasoned to 

TUNEL assay, it should be emphasized TUNELassay is based on caspase activity which 

is not always sole determinant of apoptotic death (40, 42, and 43). Based on our results in 

TEM, the different nuclear chromatin patterns can be explained in two ways: diverse 

patterns of chromatin clumping/condensation as a continuum or response of neuronal 

subtypes e.g. basket cells in granular layer. It seems apoptotic neurons or DNs represents 

a common way of death with some differences in intracellular pathways. Cell death can 

be classified into two major categories: apoptosis (with a variety of chromatin changes) 

and necrosis (40).The mechanism of DNs production that is proposed is gel-gel 

transition. The gel–gel phase transition is associated with morphological changes in 

neuron such as shrinkage, which is not seen in necrosis. Apoptotic neurons also undergo 

a rapid shrinkage. Thus, the mechanism of compaction in apoptotic neurons might 

involve the gel–gel phase transition (44-46). In conclusion; dark neurons occur naturally 

in CNS and diabetes mellitus as a metabolic disorder (common nature of dark neurons 

formation) accelerates dark neurons formation and consequently brain aging. We 

propose the future studies focus more on the preventive mechanisms of DNs formation 

in T1DM.  
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