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1. Introduction 

Energy harvesting is the process of capturing energy existing in the environment of a 

wireless device in order to power its electronics without the need to manually recharge the 

battery. By replenishing on-board energy storage autonomously, the need to recharge or 

replace the battery can be eliminated altogether, enabling devices to be placed in difficult-to-

reach areas. Vibration-based energy harvesting in particular has garnered much attention 

due to the ubiquity of vibrational energy in the environment, especially around machinery 

and vehicles (Roundy et al., 2003). Although several methods of electromechanical 

transduction from vibrations have been investigated, this chapter focuses on utilizing the 

piezoelectric effect. 

Piezoelectric energy harvesters convert mechanical energy into electrical through the strain 

induced in the material by inertial loads. Typically, piezoelectric material is mounted on a 

structure that oscillates due to excitation of the host structure to which it is affixed. If a 

natural frequency of the structure is matched to the predominant excitation frequency, 

resonance occurs, where large strains in the piezoelectric material are induced by relatively 

small excitations. In order to take advantage of resonance, the natural frequency of the 

device must be matched to the predominant frequency component of the base excitation 

(Anderson & Wickenheiser, 2012). For many potential applications, ambient vibrations are 

low frequency, requiring longer length scales or a larger mass to match the resonance 

frequency to the excitation frequency (Roundy et al., 2003; Wickenheiser & Garcia, 2010a; 

Wickenheiser, 2011). In order to shrink the size and mass of these devices while reducing 

their natural frequencies, a variety of techniques have been investigated. Varying the cross 

sections along the beam length (Dietl & Garcia, 2010; Reissman et al., 2007; Roundy et al., 

2005) and the ratio of tip mass to beam mass (Dietl & Garcia, 2010; Wickenheiser, 2011) have 

been shown to improve the electromechanical coupling (a factor in the energy conversion 
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rate) over a uniform cantilever beam design. Multi-beam structures can reduce the overall 

dimensions of the design by folding it in on itself while retaining a similar natural frequency 

to the original, straight configuration (Karami & Inman, 2011; Erturk et al., 2009); however, 

this requires a more complex analysis of the natural frequencies and mode shapes 

(Wickenheiser, 2012). 

In resonant designs, minimizing the mechanical damping in the system enhances the power 

harvesting performance (Lefeuvre et al., 2005; Shu and Lien, 2006; Wickenheiser & Garcia, 

2010c). Unfortunately, lightly damped systems are the most sensitive to discrepancies 

between the resonance and the driving frequencies. Several methods have been analyzed for 

tuning the stiffness of the vibrating beam in order to match a slowly varying base excitation 

frequency. (Challa et al., 2008) and (Reissman et al., 2009) have considered placing one or 

more magnets to either side of the tip mass to create either an attractive or repulsive force 

that changes the effective stiffness of the beam, thus allowing the natural frequencies to be 

adjusted to match the base excitation frequency. Similarly, (Mann & Sims, 2009) harvest 

energy from a magnet levitating in a cavity between two magnets; varying the spacing of 

the magnets changes the natural frequency of the levitation. (Leland & Wright, 2006) have 

proposed tuning the natural frequencies of the beam by applying an axial load; however, 

this technique has been found to increase the apparent mechanical damping in the structure. 

A similar concept has been developed for adjusting the pre-tension in extensional mode 

resonators (Morris et al., 2008). These methods can be considered “quasi-static” because the 

rate at which the natural frequencies can be tuned is often much slower than the vibration 

frequency. Thus, these methods are ideal if the base excitation is an approximately 

stationary process with frequencies concentrated in a narrow band. 

The off-resonant response of these systems can be enhanced by destabilizing the relaxed 

state of the beam. A bi-stable cantilever beam can be created by adding a repelling magnet 

beyond a magnetic tip mass or by adding attracting magnets on either side. In this situation, 

the beam can be induced to jump from one well of attraction to the other either periodically, 

quasi-periodically, or chaotically, depending on the amplitude and frequency of the base 

excitation. Bi-stability can be realized with a “snap-through” mechanism, in which the mass 

moves perpendicularly to the elastic axis (Ramlan et al., 2010), using the aforementioned 

beam and magnetic set-up first analyzed by (Moon, 1978), and using an inherently bi-stable 

composite plate (Arrieta, 2010). This technique is suited for strong excitations that are able to 

drive the beam between the two potential wells; however, for low excitation levels the 

performance converges towards the linear system unless a perturbation is added to “kick” 

the system into the other well. 

In this chapter, a technique known as frequency up-conversion is employed to generate 

strong off-resonant responses. This technique is based off a repetition of the bi-stable system 

to create a sequence of potential wells; the transition between them induces a “pluck” 

followed by a free response at the fundamental frequency. A similar concept has been 

pursued by Tieck et al. (2006), consisting of a rack placed transversely near the tip of the 
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beam that would periodically pluck the beam as it vibrated. Other concepts utilizing 

mechanical rectification have been proposed for harvesting energy from buoy motion 

(Murray and Rastegar, 2009) and low-frequency, rotating machinery (Rastegar and Murray, 

2008). 

In the following sections, the equations of motion (EOMs) are derived for a uniform beam 

with magnetic tip mass under periodic base excitation. The eigenvalue problem for this 

design is then solved for the natural frequencies and mode shapes. The modal expansion is 

reduced to a single mode (the fundamental) in order to derive an approximate model for 

low frequencies well below the fundamental frequency. A simplification is derived based on 

neglecting the base excitation; this simplification leads to a model of the beam’s excitation in 

terms of a sequence of plucks followed by free vibrations. A few simple case studies are 

presented to highlight the accuracy of this approximate model. 

2. Derivation of electromechanical EOMs 

The layout of the piezoelectric, vibration-based energy harvester and the nearby magnetized 

structures used for mechanical rectification is presented in Fig. 1. For this study, a bimorph 

configuration is considered, in which piezoelectric layers are bonded to both sides of an 

inactive substructure. Other configurations, such as the unimorph, can be modeled with few 

modifications, as pointed out below. Electrodes are assumed to cover the upper and lower 

surfaces of each layer, and they are wired together in the “parallel” configuration, as 

depicted. In this configuration, the voltage drop across each layer is assumed to be the same, 

and the charge displaced by each layer is additive, much like capacitors in parallel. Because 

the piezoelectric layers are on opposite sides of the neutral axis, each layer experiences 

opposite strains; hence, they must be poled in the same direction to avoid charge 

cancellation. It is assumed that the electrodes and connecting wires have negligible 

resistance and that the resistivity of the piezoelectric material is significantly higher than 

that of the external circuitry; thus, the transducer impedance is assumed to be purely 

reactive. 

A tip mass is connected to the free end of the beam, and its center of mass is displaced 

axially from the connection point by a distance td . Tip masses are traditionally added to 

decrease the natural frequency of the beam and to increase the strain due to base excitation. 

In this situation, the tip mass is considered to be a permanent magnet and is attracted to 

ferromagnetic structures placed in a line parallel to the y-axis with spacing md  between 

them. These structures are not magnets themselves; rather, they become magnetized due to 

the proximity of the magnetic tip mass. Thus, in this device, the tip mass is an active 

component of the excitation while fulfilling its passive role as just described. 

In the following section, the EOMs for the electromechanical system presented in Fig. 1 are 

derived through force, moment, and charge balances while adopting the Euler-Bernoulli 

beam assumptions and linearized material constitutive equations. The approach taken 

herein is based on force and moment balances and is a generalization of the treatments by 
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(Erturk & Inman, 2008; Söderkvist, 1990; Wickenheiser & Garcia, 2010c). It is assumed that 

each beam segment is uniform in cross section and material properties. Furthermore, the 

standard Euler-Bernoulli beam assumptions are adopted, including negligible rotary inertia 

and shear deformation (Inman, 2007). Subsequently, a solution consisting of a series of 

assumed modes is presented, and the EOMs are decoupled into modal dynamics equations. 

As will be demonstrated, only the first bending mode is excited significantly by the plucking 

of the magnetic force. Although higher modes can be excited by higher frequency base 

excitation, this study focuses primarily on base excitation frequencies well below the 

fundamental resonant frequency. 

 

Figure 1. Layout and geometric parameters of cantilevered vibration energy harvester in parallel 

bimorph configuration with magnetic tip mass 

2.1. Electromechanical EOMs 

In this derivation, the states of the electromechanical system are the following:  ,w x t  is the 

relative transverse deflection of the beam with respect to its base,  v t  is the voltage across 

the energy harvester as seen by the external circuit, and  i t  is the net current flowing into 

the external circuit. The input to the system is  y t , the absolute transverse displacement of 

the base; therefore,    ,w x t y t  is the absolute transverse deflection of the beam. 

 

Figure 2. Free-body diagram of Euler-Bernoulli beam segment 

Consider the free-body diagram shown in Fig. 2. Dropping higher order terms, balances of 

forces in the y-direction and moments yield 
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where  ,V x t  is the shear force,  ,M x t  is the internal moment generated by mechanical 

and electrical strain,  ,f x t  is the externally applied force per unit length, and  
eff

A  is 

the mass per unit length (Inman, 2007). For the case of a bimorph beam segment, this term is 

given by 

    2
2

s s p p

s s p peff

t bL t bLm
A b t t

L L

 
  


     (2) 

where m  is the mass of the beam (not counting the tip mass), L  is its length, b  is its width, 

s  and st  are the density and thickness of the substrate, and p  and pt  are the density and 

thickness of one of the piezoelectric layers, respectively. As can be seen in Eq. (2), if the 

segment is monolithic,  
eff

A  is simply the product of the density of the material and the 

cross-sectional area. The externally applied force per unit length can be written as the sum 

of the distributed inertial force along the beam and the inertial force of the tip mass – which 

arise because the non-inertial frame of the base is taken as the reference – and the magnetic 

force applied at the center of the tip mass: 

              
2 2

, t mageff

d y t d y t
f x t A m x L f t x L

dt dt
         (3) 

where tm  is the mass of the tip mass,  magf t  is the magnetic force, and     is the Dirac 

delta function. In this study, the magnetic force is assumed to be purely in the y-direction. 

Although there is a stiffening effect due to the axial attractive force, it is considered 

negligible. The negative sign on the magnetic force indicates that it is an attractive force. 

The internal bending moment is the net contribution of the stresses in the axial direction in 

the beam. The stress within the piezoelectric layers is found from the linearized constitutive 

equations 

 1 11 1 31 3

3 31 1 33 3

E

S

T c S e E

D e S E

 

 
 (4) 

where T  is stress, S  is strain, E  is electric field, D  is electric displacement, c  is Young’s 

Modulus, e  is piezoelectric constant, and   is dielectric constant. The subscripts indicate 

the direction of perturbation; in the cantilever configuration shown in Fig. 1, 1 corresponds 

to axial and 3 corresponds to transverse. The superscript  E
  indicates a linearization at 

constant electric field, and the superscript  S  indicates a linearization at constant strain 

(IEEE, 1987). The use of Eq. (4) assumes the hypothesis of plane stress, which is reasonable 

since the beams are not directly loaded in the other directions, and small deflections. The 
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stress within the substrate layer is given simply by the linear stress-strain relationship 

1 11, 1sT c S , where 11,sc  is Young’s Modulus of the substrate material in the axial direction. 

Since deformations are assumed small, the axial strain is the same as the case of pure 

bending, which is given by  2 2
1 ,S y w x t x    (Beer & Johnson, 1992), and the transverse 

electric field is assumed constant and equal to  3 pE v t t  , where  v t  is the voltage 

across the electrodes, and the top and bottom layer have opposite signs due to the parallel 

configuration wiring. (This approximation is reasonable given the thinness of the layers.) 

Consider the case of a bimorph beam. The bending moment along the length of the beam is 
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where  H   is the Heaviside step function. In Eq. (5), the constant multiplying the 

 2 2,w x t x  term is defined as  
eff

EI , the effective bending stiffness. (Note that if the 

beam segment is monolithic, this constant is simply the product of the Young’s Modulus 

and the moment of inertia.) The constant multiplying the  v t  term is defined as  , the 

electromechanical coupling coefficient. Substituting Eq. (5) into Eq. (1) yields 
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which is the transverse mechanical EOM for the beam. 

The electrical EOM can be found by integrating the electric displacement over the surface of 

the electrodes, yielding the net charge  q t  (IEEE, 1987): 
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 (7) 

where the constant multiplying the  v t  term is defined as 0C , the net clamped capacitance 

of the segment. Eqs. (6–7) provide a coupled system of equations; these can be solved by 

relating the voltage  v t  to the charge  q t  through the external electronic interface. 

2.2. Modal decoupling 

The system of coupled equations (6–7) can be solved by assuming that the transverse 

deflection of the beam can be written as a convergent series expansion of eigenfunctions, 

i.e. 

      
1

, i i
i

w x t x t 



  (8) 

where  i x  is the ith transverse mode shape function, and  i t  is the ith modal 

displacement. Given the configuration in Fig. 1 with a tip mass having a nontrivial mass tm  

and moment of inertia tI , the eigenvalues i  corresponding to the mode shapes must 

satisfy 

        
2

3 4 2

3 2 24

2
sin sinh 0t t t t t t t t
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      (9) 

where 1 cos coshcfF     are the clamped-free, sin cosh cos sinhcpF       are the 

clamped-pinned, sin cosh cos sinhcrF       are the clamped-rolling, and 

1 cos coshccF     are the clamped-clamped eigenvalue terms, respectively (Oguamanam, 

2003). The mode shape functions are given by 



 

Small-Scale Energy Harvesting 218 

 

 

     

     

2

2

cos cosh

sin sinh sin sinh cos cosh

cos cosh cos cosh sin sinh

sin sinh

i i i

t t
i i i i i i i i

eff

t t
i i i i i i i i

eff

i i

x x
x

L L

m d

LA L

m d

LA L

x x

L L

  

       


       


 

   
    

   
 

     
 


 

     
 

    
     

    

 (10) 

These functions may be scaled arbitrarily and still be admissible, and in the present case are 

done to satisfy the following orthogonality condition: 
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where ij  is the Kronecker delta. 

Substituting (8) into (6) and applying the orthogonality condition (11) results in 
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at which point a modal damping term has been inserted. The kth modal short-circuit (i.e. 

  0v t  ) natural frequency k  is given by 
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for Euler-Bernoulli beams. Eq. (12) constitutes the EOM for the kth transverse vibrational 

mode. The modal influence coefficients appearing in Eq. (12) are given by 
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k  is the modal electromechanical coupling coefficient, k  is the modal influence 

coefficient of the distributed inertial force along the beam, and k  is the modal influence 
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coefficient of the concentrated force at the tip. A similar decoupling of the electrical EOM (7) 

yields 

      0
1

i i
i

q t r t C v t



    (15) 

It remains to write the applied magnetic force  magf t  in terms of the modal coordinates. Due 

to the assumption of a symmetrical tip mass, this force is applied at its centroid, as shown in 

Fig. 3. It is further assumed that the ferromagnetic structures are placed uniformly with 

spacing md  and that distant structures do not influence the magnetic force (a reasonable 

assumption given the 31 r dependency). Additionally, the rotation of the tip mass is 

assumed small compared to its absolute translation (base motion + relative deflection), and so 

its effect on the magnitude of the magnetic force is ignored. Thus, the magnetic force is 

approximately sinusoidal with wavelength md , and so it can be written in the form 

       2
sin ,mag mag m

m

f t F w x t y t
d

 
  

  
 (16) 

where mx  is the x-coordinate of the tip mass centroid. The magnitude of this force magF  is a 

complicated function of the material properties and geometry of the tip mass and the 

ferromagnetic structures that is beyond the scope of this work (see Moon, 1978; Stanton et 

al., 2010). magF is normalized by the maximum static tip load the beam can support without 

failing. In this study, a maximum strain of 0.1% is chosen, resulting in a maximum static tip 

load of 
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Figure 3. Tip mass coordinates used for locating the centroid in terms of modal coordinates. 
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The position of the tip mass centroid, shown in Fig. 3, can be written in terms of the modal 

coordinates: 

        
1

,
, ,m t i i

ix L

w x t
w x t w L t d t

x







  

   (18) 

3. Estimates of expected power harvested 

3.1. Linear case, frequency domain 

In order to establish a baseline against which the effects of the magnetic force can be 

compared, in this section the magnetic interactions are not considered, i.e. 0magF  . The 

most prevalent (e.g. duToit et al., 2005; Lefeuvre et al., 2005; Liao & Sodano, 2008; Shu & 

Lien, 2006) assumption of constant-amplitude, sinusoidal base excitation forms the basis for 

analysis of more complex periodic forcing. In this study, it is assumed that the base 

acceleration is a weakly stationary random process. This general framework includes the 

special cases of harmonic (single or multiple frequencies), white noise, band-limited noise, 

and periodic in mean square processes (Anderson & Wickenheiser, 2012; Lin, 1967). The 

average power dissipated by the load after transients have died out is given by 
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where E     is the expectation operator,  vvR   is the autocorrelation function of the 

voltage,  H   is the frequency transfer function of the energy harvester between 

acceleration and voltage, and  AA   is the spectral density of the base acceleration (Lin, 

1967). Since the system is assumed to be stable, the power output is seen to approach a 

weakly stationary process as t  . 

In order to calculate the frequency transfer function, it is assumed that the electrical load can 

be represented by a resistor with value lR . Eq. (15) can then be rewritten as 
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Since the system of equations (12,19) is linear, the modal responses  k t  and output 

voltage  v t  are sinusoidal at the driving frequency of the base excitation. The frequency 

transfer function between base displacement and voltage can be derived from the EOMs, 

yielding 
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where 1i    and   is the base excitation frequency (Wickenheiser & Garcia, 2010b). The 

frequency transfer function between base acceleration and displacement is simply 

    21Y A    . In this study, however, only the fundamental mode is assumed to be 

excited; hence, the j  subscript is dropped and the fundamental natural frequency is written 

as n . 

In order to use Eq. (18), an estimate of the spectral density of the base acceleration  AA   is 

required. An overview of spectral density estimation methods can be found in (Porat, 1994), 

any of which can provide an approximation of the base excitation signal of the form 
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where the component amplitudes kA , frequencies k , and phase angles k  are obtained 

from the spectral density estimate. The number of terms needed N  is often determined by a 

user-defined error tolerance used to capture the “quality” of the signal approximation in 

some optimal manner. The spectral density is then given by 
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Consider first the case 2N  , where the base excitation is composed of the sum of two 

sinusoids. Then, without loss of generality, 
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Integrating the first term in the integrand and taking the limit yields 
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Each of the other integrated terms also averages out to 0 in the long run; hence, 
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Then, by mathematical induction, 
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Using this result in Eq. (23) gives 
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Using Eqs. (19,29), the average power harvested can be simplified: 
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Eq. (30) indicates that the frequency transfer function  H   need only be evaluated at the 

component frequencies of the base acceleration. This equation can be rewritten in the form 
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where kC  can be interpreted as the gain of the harmonic of frequency k . This gain is given 

by the formula 
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where 

          3 2 22 1 2 1k k k k e ki i i k i                 (33) 

The following non-dimensional parameters are employed in Eqs. (32-33): 
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where k  is the ratio of the frequency of the acceleration component to the fundamental 

natural frequency, 2
ek  is the modal electromechanical coupling coefficient, and   is the 

ratio of the load resistance to the modal impedance. 
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3.2. Nonlinear case, time domain 

In the presence of the magnetic field, the EOMs become nonlinear, and the analysis based 

off of the frequency transfer function detailed in the previous section is no longer valid. 

Instead, the vibrations induced by the spatially periodic magnetic field are interpreted as a 

series of plucks that occur each time the tip mass crosses an unstable equilibrium point 

between the ferrous structures. Each pluck is followed by a free response – underdamped in 

this case – superposed on the relatively slow base motion. An example response showing 

these two superposed motions is depicted in Fig. 4. The free response at the fundamental 

frequency of the beam, as opposed to the frequency of the base motion, drives the majority 

of the energy harvested. 

 

Figure 4. Absolute base and tip displacements: 
max

0.75
mag

F F , 5 mm
m

d  ,    siny t Y t , 

15 mmY  , 2 Hz  . The shaded areas are the basins of attraction of the stable equilibria 

(Wickenheiser & Garcia, 2010b). 

To analyze the energy harvested from a pluck, first the effect of the magnetic field strength 

on the free response is considered. To simplify the analysis, the inertial force due to base 

excitation is assumed to be negligible, and the effect of the energy dissipated by the resistor 

is approximated by an additional damping term. Hence, the total effective modal damping 

ratio is written as eff e    , the sum of the mechanical and electrical damping. The 

electrical damping term can be accurately approximated as 

 
2

22 12 1

e
e

e

k

k







 (35) 

in the case of steady-state oscillations (Davis & Lesieutre, 1995); this formula is validated for 

free oscillations in the sequel. Using this damping model, the modal EOM, Eq. (12), can be 

written as 



 

Small-Scale Energy Harvesting 224 

 
          

2
2

2

2
2 sineff n n mag

m

d t d t
t F t y t

dt ddt

       
 

     
  

 (36) 

Linearizing Eq. (36) about the point   my t kd ,   0t  , where k  is an integer, gives 
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Thus, the term in parentheses is the square of the effective natural frequency, 2
,n eff . 

The amplitude of each pluck, and hence, the initial condition of the free response, is 

determined by the location of the unstable equilibrium between each pair of ferrous 

structures. In equilibrium, 

       2 2
sinn mag

m

t F t y t
d

   
 

   
  

 (37) 

again assuming that the effect of the electromechanical coupling is negligible. First, consider 

the case when the base is moving upward, i.e.   0y t  . In this case, the pluck occurs when 

     2
sin 1

m

t y t
d

 
 

  
  

 (38) 

When this condition occurs, any more vertical motion of the tip results in a decreased 

downward magnetic force. At this point, the beam has passed over a local maximum in the 

magnetic potential, and it begins accelerating towards the next stable equilibrium. The 

response after cresting the potential hill is approximated by Eq. (36). By plugging Eq. (38) 

into Eq. (37), the amplitude of the pluck can be found: 
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If the times of the plucks are denoted kt , then solving Eq. (38) for kt , and using the fact that 

   sink ky t Y t , yields 
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A similar formula can be derived for the pluck times when   0y t  : 
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  (41) 

By examining Eq. (36), the (in this case) underdamped free response can be found to be 
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    ,

0 ,coseff n eff t

d efft e t
   

  (42) 

where 2
, , 1d eff n eff eff     is the effective damped natural frequency, and the initial 

amplitude 0  is given by Eq. (39). This solution can now be plugged into Eq. (20) to find the 

voltage response  v t  after the pluck. Assuming that the voltage is 0 at the time of the 

pluck, the solution is given by 

      , ,0
1 1 , 2 ,cos sineff n eff eff n effl

t tt R C
d eff d effv t X e X e t X e t

          (43) 

where 
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and ,eff n eff n   . 

The energy harvested during the free vibrations can be adequately approximated by the 

following formula: 
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 (44) 

The accuracy of this approximate formula can be seen in Fig. 5. The results of the 

simulation of the original EOMs, Eqs. (12,20), are plotted using a solid line, whereas Eq. 

(44) is plotted using a dashed line. To arrive at Eq. (44), it is assumed that the initial 

transients and the oscillating terms in  2v t  integrate out to 0; hence, the result is a smooth 

exponential curve. Although instantaneously the approximate curve may not be accurate, it 

matches the overall growth of the exact solution. Hence, Eq. (44) is an accurate 

representation of the energy harvested from a free vibration with a non-zero initial 

deflection and a zero initial velocity. 

For a sequence of plucks, which is what occurs with the frequency up-conversion technique, 

it is assumed that the plucks are instantaneous and that the deflection is “reset” to the value 

given by Eq. (39) after each pluck. Hence, the total energy harvested during a half cycle of 

the base excitation is 

  1
1

N

total k k
k

E E t t


   (45) 
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Figure 5. Energy harvested during one free vibration after an initial pluck, comparison between 

simulation using exact EOMs and approximation using Eq. (44).  Parameters used are listed in Table 1. 

4. Simulated response to sinusoidal base excitation 

In this section, the response of the system to sinusoidal base excitation,    siny t Y t , is 

presented in both the time and frequency domains. The geometry and material properties 

used in the following simulations are listed in Table 1. The tip mass tm  is approximately 

one-third of the overall beam mass, and its moment of inertia tI  is calculated assuming the 

mass is roughly cube-shaped. The resistor value chosen for this study is the optimal value 

for energy harvesting at the fundamental frequency in the limit of small electromechanical 

coupling, i.e.  0 ,11 SCR C   (Wickenheiser & Garcia, 2010c). 

The first three natural frequencies of the beam are ,1 34.1 HzSC  , ,2 271.6 HzSC  , and 

,3 806.8 HzSC  . Since frequencies around and below the fundamental frequency are of 

interest in this study, a three-mode expansion of the beam displacement is deemed 

sufficient. Furthermore, since the magnetic force is applied at the tip of the beam, only the 

fundamental mode is significantly excited by the plucking. 

The transfer functions for power harvested (normalized by 2 3Y  ) are plotted in Fig. 6. Five 

different values for the magnetic force strength magF  are plotted alongside the baseline case 

of an inactive tip. For the cases with a nonzero magnetic force, the transfer functions are 

derived numerically. The system is simulated for 50 cycles of base motion, and the relative 

tip deflection is averaged over the last 20 cycles of each run in order to minimize the effects 

of initial transients. This process is completed 10 times at every frequency, and the results 

are averaged. 
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Beam properties: 

L  length 100 mm 

b  width 20 mm 

st  thickness of substructure 0.5 mm 

pt  thickness of PZT layer 0.4 mm 

s  density of substructure 7800 kg/m3 

p  density of PZT 7800 kg/m3 

11,sc  Young’s modulus of substructure 102 GPa 

11
Ec  Young’s modulus of PZT 66 GPa 

31e  piezoelectric constant -12.54 C/m2 

33
S  permittivity 15.93 nF/m 

  modal damping ratio 6.4% 

Tip mass properties: 

tm  mass 10 g 

td  centroid displacement 5 mm 

tI  moment of inertia 1.7x10-7 kg–m2 

Derived properties: 

 
eff

A  mass per length 0.20 kg/m 

 
eff

EI  bending stiffness 0.25 N–m2 

0C  net clamped capacitance 160 nF 

2
ek  electromechanical coupling coefficient 0.049 

R  resistance 29.3 k
 

Table 1. Geometry and material properties. 
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The overall trend of the responses indicates that the magnet has an increasing effect as the base 

excitation frequency decreases to 0. As is discussed in the sequel, at low frequencies relative to 

the fundamental resonance, the response converges to a sequence of free responses. In this 

regime, the inertial forces are negligible, and so the disturbances due to the magnetic force are 

relatively large. The normalized power approaches half an order of magnitude below its 

resonance value as 0 due to the energy harvested from the plucks. As the driving 

frequency increases, the beam tip has less time to oscillate in each potential well, and, thus, its 

motion tends to converge towards the motion of the baseline case. As ,1SC  , the 

frequency of the base motion approaches the frequency of the impulse response of the beam 

from the magnetic force. Hence, the time in which the beam is in free response decays to 0, and 

so all of the frequency response functions converge towards the baseline function, as shown in 

Fig. 5. A discussion of the variation in frequency response with respect to the magnet 

parameters magF  and md  can be found in (Wickenheiser & Garcia, 2010b). 

 

Figure 6. Normalized power harvested transfer function: 5 mm
m

d  , 15 mmY   (Wickenheiser & 

Garcia, 2010b). 

Fig. 7 compares two methods of simulating the tip deflection response: using the original 

EOMs and assuming a series of undamped free responses give by Eq. (42). The most notable 

difference that can be seen from the figure is that the free response assumption does not take 

into account the base motion, which causes the solution to the EOMs to drift upward or 

downward depending on the sign of the base velocity. Another difference between the two 

models is that the assumed time of the plucks, indicated by the vertical lines and given by 

Eqs. (40,41), generally occur before the plucks in the actual solution. This happens because 

the beam has enough inertia to resist the pull of the next magnet, i.e. to overcome the 

potential well barrier between magnets. Only after the beam’s velocity decays sufficiently 

does it become trapped in the next potential well in the sequence. 
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Fig. 8 depicts the voltage response during the same simulation that has been plotted in Fig. 

7. A comparison of the two curves plotted shows an excellent agreement between the 

simulation results and the predicted voltage given by Eq. (43). There is a slight asymmetry 

in the curve representing the simulation results due to the base excitation. This discrepancy 

is much less pronounced than in Fig. 7 since the voltage is dominated by the velocity of the 

tip deflection, which is not affected directly by the base motion, unlike the tip position. The 

primary difference between the two curves in Fig. 8 is the error in predicting when the 

plucks occur, as discussed in the previous paragraph. This error causes an over-prediction 

in the number of cycles of free oscillation, but this error is small compared to the duration of 

the free response between plucks. The initial magnitude of the voltage free response is well 

predicted, however; this prediction is much more significant in the estimation of voltage 

given by Eq. (43). 

 

 

Figure 7. Comparison of simulated tip deflection from EOMs (solid) and a series of plucks, Eq. (42) 

(dashed). Vertical lines indicate the estimated times of plucking according to Eqs. (40,41). 

Fig. 9 shows the comparison between the power frequency transfer functions of the 

simulation, the approximation by a series of plucks, and the linear system (without 

magnets). This plot is generated using the same procedure as the one used to produce Fig. 6. 

The most striking feature of this plot is that the simulation results are seen to converge to the 

approximation by a series of plucks for low frequencies and converge to the linear system 

approximation at frequencies approaching the fundamental resonance. As previously 

mentioned, at frequencies around the fundamental resonance, the beam is not allowed to 

vibrate freely because the pluck frequency exceeds its natural frequency. Hence, there is no 

exponential decay in the amplitude of the tip deflection between plucks. In this case, the 

forced response (i.e. particular solution) dominates the motion, and so the frequency 

transfer function of the nonlinear system approaches that of the linear system. At low 

frequencies, the base excitation term becomes negligible, and so the mechanical EOM 
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reduces to Eq. (36), the basis for the series of plucks approximation. In this scenario, the 

magnetic force drives the excitation of the beam, whereas the inertial force due to the base 

excitation is negligible. This is manifested in the decrease in the linear response at low 

frequencies. 

 

Figure 8. Comparison of simulated voltage from EOMs (solid) and a series of plucks, Eq. (43) (dashed).  

 

Figure 9. Comparisons of normalized power frequency transfer functions between EOMs (solid), a 

series of plucks (dashed), and the linear system (dash-dot). 

5. Conclusions 

This chapter presents an accurate means of approximating the non-linear response of the 

frequency up-conversion technique as a series of free responses. This simplification is based 
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on the assumption that the base excitation is negligible, and so it only holds at low 

frequencies compared to the fundamental resonance of the beam. This approximation, 

however, is useful in the design of energy harvesters utilizing this technique as it enables 

power to be generated at very low frequencies. This means that the device can be designed 

for a fundamental frequency much higher than the nominal base excitation frequency, 

which tends to result in smaller and lighter transducers. At low frequencies, the 

approximation derived herein is shown to agree well with the simulation results of the full 

non-linear equations of motion in terms of displacement, voltage, and power harvested. It is 

confirmed through analysis of the frequency transfer function that the non-linear system 

converges to the approximation by a series of free responses at low frequencies and to the 

linear system response at frequencies around the fundamental. Hence, a combination of 

analytical solutions can be used to predict the energy harvesting performance of this non-

linear device in lieu of simulation of the full dynamics equations. 
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