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1. Introduction 

Microbial biofilm development is observed on virtually all submerged surfaces in natural 

and industrial environments. Biofilms are also observed at interfaces as pellicles, or in the 

bulk of aquatic environments as flocs or granules [1, 2]. A biofilm is a complex structure 

made of aggregates of microbial cells within a matrix of extracellular polymeric substances 

(EPS) (Figure 1). The matrix structure constitutes the elastic part of the biofilm. Interstitial 

voids and channels separating the microcolonies contain a liquid phase, mainly constituted 

by water. This liquid phase is the viscous part of the biofilm. The EPS matrix provides the 

biofilm with mechanical stability through these viscoelastic properties [3]. 

All major classes of macromolecule, i.e., polysaccharides, proteins, nucleic acids, 

peptidoglycan, and lipids can be present in a biofilm. Although extracellular 

polysaccharides are considered as the major structural components of the biofilm matrix, 

extracellular DNA plays an important role in the establishment of biofilm structure [4]. 

Moreover, nucleases can be regulators of biofilm formation [5]. To get a better 

understanding of the role of extracellular polysaccharides in the biofilm architecture and 

mechanical properties, it is necessary to take a look at the properties of a limited number of 

components, which can be isolated. Most microbial exopolysaccharides are highly soluble in 

water or dilute salt solutions, and capsule-forming polysaccharides are attached to the cells 

surface through covalent bonds to other surface polymers. Many of the extracellular 

polysaccharides produced in biofilms are insoluble and not easily separated from the cells, 

complicating the precise determination of their chemical structures and physical properties. 

Jahn et al. extracted a mixture of polymers from Pseudomonas putida biofilm material and 

found it to be very heterogeneous [6]. Most bacterial exopolysaccharides can exist either in 

ordered or disordered forms. Elevated temperatures and extremely low ionic concentrations 

favour the disordered forms. Polysaccharide molecules can interact with themselves or with 
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heterologous ions and molecules to yield gels, often with multivalent cations playing a 

significant role in the process. Polysaccharides also interact with proteins molecules both as 

solutes and when attached to the surface of the microbial cells. The polysaccharide - protein 

interactions in the matrix induce both structural and functional properties. Indeed, some of 

these proteins are enzymes constituting an external digestion system [7]. 

Biofilms in differing environments can be exposed to a very wide range of hydrodynamic 

conditions, which greatly affect the matrix and the biofilm structure [8]. The shear rate 

determines the rate of erosion of cells and regions of the matrix from the biofilm. 

Polysaccharides of the matrix exhibit flow and elastic recovery; because of the flexibility of 

the matrix its shape can change in response to an applied force. The shear stress to which a 

biofilm is exposed also affects the physical morphology and dynamic behaviour. Biofilms 

grown under higher shear are more strongly adhered and have a stronger EPS matrix than 

those grown under lower shear [9]. Biofilm density can be influenced by the fluid shear 

during growth [10]. Pseudomonas biofilms grown under laminar flow generally consist of 

hemispherical mound-shaped microcolonies, which form an isotropic pattern on the surface 

[9]. The biofilm microcolonies grown in turbulent flow are elongated in the downstream 

direction to form filamentous streamers. The streamers are attached to the glass substratum 

by an upstream head while the downstream tails are free to oscillate in the flow. Thus, 

hydrodynamics conditions influence both the structure and the material properties of 

biofilms [9]. This may be related to the physical arrangement of individual polymer strands 

in the biofilm EPS matrix [11]. The constitution of the biofilm matrix of S. enteritidis varies 

with pressure forces applied to the biofilm. Indeed in the absence of pressure, the sugars in 

the biofilm matrix are mainly composed of glucose and very little fucose. However in the 

presence of power flow, the share of fucose in the biofilm matrix is increased from 11% to 

about 30% [12]. 

In this chapter, after the presentation of exopolysaccharides extraction and purification from 

the biofilm matrix, the structural and physical properties of bacterial alginates, cellulose and 

other exopoysaccharides related to biofilm formation are discussed. An illustration of the 

complexity of the biofilm matrix architecture and the role of exopolysaccharides in the 

properties of the matrix is given through biofilms formation at the surface of nanofiltration 

membranes used for drinking water production. 

2. Exopolysaccharides extraction and purification from the biofilm matrix 

This section focuses on specific extraction methods targeting exopolysaccharides. General 

extraction methods for exopolysaccharides are first presented, followed by a presentation of 

the corresponding exopolysaccharides properties and carbohydrate contents. 

2.1. Methods for exopolysaccharides extraction 

Exopolysaccharides constitute the main EPS in many biofilms. They form the backbone of a 

network where other EPS components can be included. The stability of the biofilm matrix is 
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dominated by entanglement of EPS and weak physicochemical interactions between 

molecules. These interactions correspond to various binding forces such as electrostatic 

attractive forces, repulsive forces (preventing collapsing), hydrogen bonds, van der Waals 

interactions and ionic attractive forces [13].  

 

Figure 1. Schematic representation of a mature biofilm. In the centre, overall diagram of the structure of 

a biofilm to an interface solid / liquid: bacteria are attached to the solid surface and included in a self-

induced polymer matrix. In the area of contact between bacteria and surface, the microbial cells can 

interact with the surface via several protein and polysaccharide appendages (pili, flagella, LPS, capsular 

polysaccharides) depending on the type of bacteria. On the basis of the biofilm, bacterial cells are 

embedded in a matrix containing high eDNA concentrations, in addition to proteins and 

polysaccharides. The eDNA plays a major role in early biofilm formation. In the core of the biofilm, 

channels of water carrying ions and nutrients cross the biofilm matrix containing high concentrations of 

exopolymeric substances. All these exocellular compounds form a protective gel around the 

microorganisms. In the biofilm detachment area, microbial enzymes destroy the exopolymeric matrix 

and release the cells that regain mobility, to be able to colonize new surfaces. 

The exopolysaccharides recovery from the biofilm matrix in order to get a better 

understanding of their nature, requires to break down the interactions between EPS and 

selectivity separate them from other EPS and from matrix cells without cell lysis. The 

Ionic attractive forces 

Electrostatic attractive forces 

Van der Waals interactions 

Hydrogen bonding 

Repulsive forces  

Ionic attractive forces 

Electrostatic attractive forces 

Van der Waals interactions 

Hydrogen bonding 

Repulsive forces  

Cytoplasm 

Lipids 

bilayer 

Lipids bilayer 

Peptidoglycan 

Periplasm 

Cytoplasm 

Teichoic acid 

Chromosome 

Lipoprotein 

Capsular protein 

Capsular 

polysaccharide 

Flagella 

Pili Deposited proteins 
and polysaccharides 

Surface 

Gram - Gram + 

Adhesion area 

Ca2+ 

Ca2+ Ca2+ Ca2+ 

Water chanel 

Ca2+ 

Mg2+ 

Cellulose 

PIA 

Alginate 

gel  

B
ac

et
ria

l 

ce
ll 

Protein 

 Core of Biofilm  Detachment area 

 Basis of Biofilm 

Water chanels 

Ca2+ 

Mn2+ 

Mg2+ 

Mobile bacteria 

Surface 

Enzyme 
eDNA 

Exopolysaccharide 

Mg2+ 

Bacterial cell 



 
The Complex World of Polysaccharides 

 

374 

evaluation of cell lysis can be performed by measuring activity of the intracellular marker 

enzyme glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49). Thus, substantial cell 

lysis occurring during the EPS extraction is commonly observed [14]. Regarding extraction 

methods, publications dealing with selective extraction of exopolysaccharides are missing, 

as already reviewed by Denkaus et al. [15]. Indeed, procedures described in the literature 

mainly deals with EPS extraction. 

Physical and/or chemical methods are used to extract EPS from biofilms. Some EPS are tightly 

associated to the biofilm structure, sometimes through covalent bounds to the cells surface and 

are not directly extracted. Others free EPS are directly released. The easily released EPS can be 

separated using physical methods such as high-speed centrifugation and ultrasonication. 

Indeed, centrifugation is often used to separate soluble EPS from bacterial cells from pure 

cultures. Firmly cells-associated EPS require chemical methods of extractions. EPS cross-linked 

by divalent cations can be released from the biofilm matrix by complexing agents such as 

ethylenediamine tetraacetic acid (EDTA), by cation-exchange resins such as Dowex or by a 

formaldehyde treatment with or without sodium hydroxide [14, 16]. 

Various methods used to extract EPS can be applied to the extraction of exopolysaccharides 

as illustrated on Figure 2. 

 

Figure 2. Pathways of exopolysaccharides extraction methods from biofilms 
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EPS extraction can be done from pure cultures of from complex microbial communities. For 

example, EPS material can be removed from Pseudomonas aeruginosa bacteria by 

centrifugation at 40 000g for 2 hours at 10°C. Purification of alginate is mostly obtained by 

precipitation in the presence of organic solvents from culture supernatants and treatment 

with enzymes such as nucleases and proteases to remove contaminating nucleic acids and 

proteins [14]. EPS from activated sludge samples can also be extracted by a centrifugation 

protocol. Then, residual bacteria can be removed from the supernatant by filtration on 

cellulose acetate membranes (0.2 µm). For removal of low molecular weight material, the 

supernatants can be dialyzed against deionised water. Depending on the studies, dialysis 

tubings can have various molecular weight cut-off. Then, dialysate is concentrated by 

lyophilisation. Other processes of exopolysaccharides extraction from various biofilm 

species are presented in Table 1. 

 

 
 

Table 1. Extraction condition and determination of exopolysaccharides from various biofilm species 

 

Biofilm source/ support Sample preparation 

Method

of 
determination 

Reference 

Pseudomonas fluorescens / 

polymethyl methacrylate 
plates 

 extraction by EDTA 1.5%, 5°C, 3 h 

 dialyse against deionized water (14 kDa) 
 precipitation of proteins by pH adjsutement  

 

phenol- 

sulfuric acid 
method 

 

Oliveira  

et al., 
[17] 

Enterobacter cloacae /zinc 
selenide crystal 

 extraction by EDTA 
or NaOH  

 

phenol- 
sulfuric acid 

method 

Boualam et 
al., 

 [18] 

 
Leuconostoc mesenteroides 
strains 

/stainless steel 

 scraping and washing biofilm material  
 extraction by deionized water 

 centrifugation at 10 000 rpm, 30 min 
 hydrolysis (endodextranase) 
 methylation  

 

GC-MS 

Leathers and 
Bischoff  

[19] 
Leathers and 

Cote  

[20] 
 

Thermus aquaticus YT-

/cellophane membrane 

 extraction by NaCl 0.9%

 centrifugation, 8 000g, 15 min  
 precipitation with alcohol 95 %, 4°C, one 

night  
 centrifugation, 2500g, 0°C, 15 min 
 dissolution in double deionized water and 

lyophilization 
 

size-exclusion 
chromatography, 

GC-MS, 
HPAEC-PAD*, 

MS/MS, 

NMR 

Lin et al., 
[21] 

aerobic activated sludge 

from a wastewater treatment  

Comparison of five extraction processes : 

 extraction by 
- EDTA 2 %, 4 C, 3 h 
- cation exchange resin, 4°C, 1 h 

- formaldehyde, 4°C,1 h 
- formaldehyde plus NaOH 1 N, 4 C, 3 h 
- formaldehyde plus ultrasonication (60 W), 

2.5 min 
 high-speed centrifugation 20 000g, 20 min, 
 filtration (0.2 µm)  

 dialysis (3,5 kDa),  
 lyophilization, -50 C, 48 h 
 

anthrone method 
Liu and 
Fang,  

[16] 

*HPAEC-PAD: High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection 
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The content of the EPS extracts is done by chemical analyses. The exopolysaccharide content 

of EPS can be determined by the phenol-sulphuric acid method described by Dubois et al. 

[22] or by using the anthrone method according to Dreywood [23], with glucose as the 

standard. The protein content of EPS can be determined by the Bradford method [24] or by 

using the bicinchoninic acid reagent [20] with bovine serum albumin as the standard. 

As mentioned by several authors, yields of EPS extracted from biofilms depend on the 

extraction method used. Pan et al. [26] reported that chemical methods significantly increased 

the extraction yield from natural biofilm compared to physical methods. Nevertheless, the use 

of chemical methods can modify the composition of the EPS extracted. Indeed, added chemical 

extractants such as EDTA or formaldehyde can be present in the EPS extracts as contaminants 

and then can modify the EPS quantification efficiency. Moreover, chemicals can induce the 

release of intracellular components from treated cells and contaminate extracellular substances 

by intracellular material. These contaminants may be eliminated. 

2.2. Exopolysaccharides of the biofilm matrix 

The ability to synthesize exopolysaccharides is widespread among microorganisms, and 

microbial exopolysaccharides play important roles in biofilm formation, pathogen persistence, 

and have several applications in the food and medical industries. Exopolysaccharides are 

considered to be important components of the biofilms matrix [27]. However, some studies 

suggest that exopolysaccharides may not always be essential for biofilm formation [28]. Most 

of the matrix exopolysaccharides are very long with a molecular weight of 500-2000 kDa. They 

can be homo-polymers such as cellulose, curdlan or dextran, or hetero-polymers like alginate, 

emulsan, gellan or xanthan. Exopolysaccharide chains can be linear or branched. They are 

generally constituted by monosaccharides and some non-carbohydrate substituents such as 

acetate, pyruvate, succinate, and phosphate [29]. Various examples of exopolysaccharides 

encountered in bacterial biofilm are presented in Table 2. 

2.3. Carbohydrate content of exopolysaccharides 

Composition as well as conformation of sugar monomers may modify the properties of the 

exopolysaccharides and thus of the biofilm matrix. Mono-carbohydrate constituted 

exopolysaccharides are often D-glucose, D-galactose, D-mannose, L-fucose, L-rhamnose, L-

arabinose, N-acetyl- D-glucose amine and N-acetyl-D-galactose amine as well as the uronic 

acids D-glucuronic acid, D-galacturonic acid, D-manuronic acid and L-guluronic acid. Other 

sugar monomers less frequently occurring are D-ribose, D-xylose, 3-keto-deoxy-D-

mannooctulosonic acid and several hexoseamineuronic acids [29]. Some examples of 

carbohydrate content in biofilm are presented in Table 3. 

In conclusion of this section, it is clear that the extraction of exopolysaccharides from 

biofilms usually require a multi-method protocol. Furthermore, there is no standard 

extraction procedure established, making difficult the meaning, comparison and 

interpretation of published results. However, recent studies tend to evaluate whether 

molecular diversity of EPS are potential markers for biofilm macro-scale characteristics [40]. 
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Table 2. Examples of exopolysaccharides of bacterial biofilms 

 

Table 3. Carbohydrate content of various biofilms 

Exopolysaccharides Biofilm species Reference

alginate Azotobacter vinelandii
Pseudomonas aeruginosa  

Pseudomonas fluorescens 
 

Gorin and Spencer [30] 
Sabra et al., [31] 

Donati and Paoletti [32] 

curdlan Agrobacterium sp. ATCC 31749 Ruffing and Chen [33]  

1,3-β-curdlan-type Cellulomonas flavigena Kenyon et al., [34] 
curdlan-type 
 

Cellulomonas sp.
 

Young and Reguera [35]  
 

xanthan Xanthomonas citri subsp. citr Guo et al., [36]  
 
1,6-α-glucan 

1,3-α- glucan 
 

Streptococcus mutans Aires et al., [37]  

glucan 

Leuconostoc mesenteroides strain NRRL B-1355 Cote and Leathers [38]  alternan 
dextran 

pyruvated galactan Methylbacterium sp. (isolated from a Finnish 
paper machine) 

Verhoef et al., [39] 

Biofilm source/ original
source 

Carbohydrate nature (concentration) Method of 
carbohydrate 
characterization 

Reference 

European intertidal mudflat 

(Marennes-Oléron Bay, 
France) 

galacturonic acid (20%) 

mannose (19,5%) 
glucose (19%) 
arabinose (15%) 

xylose (8%) 
galactose (7%) 
 

GC-MS Pierre et al.,  

[41] 

Pseudomonas fluorescence
Biovar II 

mannose (14%)
glucose (<5%) 
arabinose (28%) 

xylose (<5%) 
galactose (45%) 
fucose (6%) 

rhamnose (<5%) 
ribose (<5%) 
 

GC-MS Hung et al.,  
[42] 

Pseudomonas aeruginosa
PAO1,  

PDO300, 
algD,  
PA14 

mannuronic acid (0-100) % 
glucose 0-56 % 

rhamnose (0- 20.7 %) 
galactose (0-12.4 %) 
mannose (0-13.9 %) 

xylose (0-9.7 %) 
ketodeoxyoctulosonate (0-9.1%) 
N-acetyl galactosamine (0-1.9 %) 

N-acetyl fucosamine (0-7.5 %) 
N-acetyl glucosamine 0-3.8 % 
N-acetyl quinovosamine 0- 18.1%  

unknown amino sugar 0-5 % 
 

GC-MS Wozniak et al., 
[28]  

Membrane 

bioreactor/fouling 

uronic acid* 

glucose* 
mannose*  
fructose*  

xylose*  
ribose*  
arabinose*  

N-acetylglucosamine*  
glucuronic acid*  

galacturonic acid*  
maltose*  
saccharose* 

HPLC-SM 

 

Al-Halbouni et 

al., [43] 

(*) not indicated	
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3. Structure and function of different polysaccharides from the biofilm 

matrix 

The most famous exopolysaccharides present inside biofilms are alginate, cellulose and 

poly-N-acetyl glucosamine. This section focuses on their structures and their function inside 

biofilms. 

3.1. Bacterial alginates 

Alginate, a polysaccharide which occurs in brown algae and in different bacteria like 

Azotobacter vinelandii [30] and P. aeruginosa [44] has been extensively studied. Alginate is an 

exopolysaccharide with a relatively high molecular mass (104-106 g/ml). It consists of the uronic 

acid residues β-D-mannuronate (M) and its C-5 epimer, α-L-guluronate (G) [45] (Figure 3). 

 

Figure 3. Structure of alginate 

Generally, the monomers form a block copolymer with homopolymeric regions of poly-β-D-

mannuronate (M-blocks) and poly-α-L-guluronate (G-blocks) as well as heteropolymeric 

regions (MG-blocks). The absence of G-blocks differentiates alginates produced by P. 

aeruginosa from alginates expressed by algae or by A. vinelandii [46]. The functional 

properties of the alginates strongly correlate with the composition (M/G ratio) and with the 

uronic acid sequence. 

There are 24 genes located on the bacterial chromosome, involved in the production and 

secretion of alginate in P. aeruginosa [45]. Eight genes are implicated in the exportation of 

alginic acids (Figure 4), and twelve in the biosynthesis of the polysaccharide [47]. The four 

remaining genes are involved in the regulation of the synthesis. 

Alginates can form a gel in the presence of chelating divalent cations. This structure formed 

is called a Grant “egg-box” [47]. The alginate gel is formed by ionic bonds between the G-

rich blocks and divalent cations. The mechanical properties of alginate gels can vary 

depending on the amounts of guluronic acid present in the polymer. Moreover, alginate gels 

can be formed in vitro in the presence of proteins such as gelatin [48]. 
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Figure 4. Biosynthesis of bacterial alginate 

3.2. Cellulose 

Cellulose is the most abundant sugar polymer found on the surface of the planet. It is found 

throughout the living world: in plants, animals, fungi and in bacteria such as Salmonella, E. 

coli, Acetobacter, Agrobacterium and Rhizobium [49]. 

Salmonella and E. coli produce cellulose as a crucial component of the extracellular matrix 

[50]. Cellulose consists of a β-1-4 linked linear glucose (Figure 5). The formation of cellulose 

fibers is provided by hydrogen bonds between the chains of glucose. These formed sheets 

are very stable and their number varies depending on the nature of the environment. 

Cellulose has a crystalline structure. Each crystal of cellulose contains numerous glycan 

chains in parallel orientation. The reducing ends are at one terminus while the non-reducing 

ends are at the opposite terminus. The structure is not uniform and amorphous regions 

cohabit with highly crystalline regions. 
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Figure 5. Structure of cellulose 

Genes involved in the production of cellulose in E. coli and S. typhimurium are called bcs for 

bacterial cellulose synthesis (Figure 6). The four bcs genes called bcsA, bcsB, bcsZ and bcsC 

are organized as an operon. The bcs operon is partially regulated by AgfD, a thin 

aggregative fimbriae which increases the production of cellulose and curli [49]. 

 

Figure 6. Cellulose biosynthesis 
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Cellulose can form a gel at adequate temperatures. Cellulose solutions are liquid at room 

temperature. Gels can form in a cellulose solution at either high temperature (above 50 °C) 

or low temperature (less than 10 °C). After gelification, cellulose solutions remain more or 

less stable in the gel state at room temperature [51, 52]. The gel structure of cellulose may 

explain the mechanical properties of biofilms formed by bacterial species producing this 

polymer. 

3.3. Poly-N-acetyl glucosamine 

The polysaccharide intercellular adhesin (PIA) or the related poly-N-acetyl glucosamine 

(PNAG) polymer is required for bacterial adherence and biofilm formation of some bacterial 

species. This polysaccharide family was first described in Saphylococcus species [53], and 

further in E. coli [54]. PNAG is a positively charged linear homoglycan composed of β-1,6-N-

acetylglucosamine residues with approximately 20% deacetylated residues [55] (figure 7). 

 

Figure 7. Structure of PNAG 

The genes involved in the biosynthesis of PIA are named ica for intercellular adhesion. This 

operon is composed of a regulation gene icaR and four biosynthetic genes: icaADBC [56, 57] 

(Figure 8). 

PNAG forms a protective matrix around bacterial cells that is also involved in cell-to-cell 

interactions [53, 54]. PNAG can also interact with eDNA, reinforcing the biofilm matrix 

structure [58]. 

3.4. Other polysaccharides involved in biofilm formation 

Individual strains or one strain put in different environmental conditions, are able to 

produce several different extracellular polysaccharides. In mucoid strains of P. aeruginosa 

isolated from patients with cystic fibrosis, mucoidy is due to the overproduction of alginate 

that is the major constituent of the biofilm matrix. Nevertheless, biofilms formed by non 
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mucoid strains do not contain alginate. A glucose-rich polymer named PEL (pellicle), and a 

mannose-rich polymer named PSL (polysaccharide synthesis locus), makes significant 

contribution to P. aeruginosa biofilm structure [59]. The pel genes are present in several 

strains but some commonly used reference strains, such as PAK and PAO1 do not express 

strongly these genes under common laboratory conditions. The psl genes are only present in 

some strains, but not in the well known PA14 laboratory strain. In some instance, PEL, and 

PSL can be present together in the biofilm matrix of P. aeruginosa. 

Other polymers are present in the matrix of the biofilm of S. epidermidis for example: teichoic 

acid [60]. There are two types of teichoic acid in S. epidermidis: teichoic acid associated with 

the bacterial membrane (CW TA) and extracellular teichoic acid (EC TA). The EC TA is 

responsible for the increased viscosity of the colony. The EC TA is a (1-3)-linked 

poly(glycerol phosphate), substituted at the 2-position with α-glucose, α-N-acetylglucose, 

D-alanine and α-glucose-6-alanine (Figure 9).  

 

 
 

Figure 8. PNAG biosynthesis 

 

 
 

Figure 9. Structure of teichoic acid 

In E. coli, colanic acid, a sugar polymer composed of galactose, fructose and glucose, is 

regularly found in the biofilm matrix [61] (Figure 10).  
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Figure 10. Structure of colanic acid 

It must be remembered that although different strains can apparently synthesize the same 

EPS, there can be differences in physical properties especially with respect to viscosity and 

gel formation. Several biofilm studies have used colanic acid-producing E. coli [61]. Prigent-

Combaret, C. et al. [62], yet this polymer can vary greatly in mass and viscosity, as can 

bacterial alginates. 

4. An example of complex biofilm: biofilm formation at the surface of 

nanofiltration membranes used for drinking water production. 

We and others have previously studied very complex biofilms formed on nanofiltration 

(NF) membranes during surface water filtration in drinking water production processes [63, 

64]. After several years of filtration, the foulant consists in a brown viscous layer covering 

the entire surface of the membrane [65] (Figure 11). 

 

Figure 11. Visual examination of a fouled NF membrane 

Dry weight of the foulant is about 2 g/m2. The NF biofilms harbours mainly 

exopolysaccharides and proteins, as shown by characteristic ATR-FTIR signals near 1650 cm-

1 (amide I), 1550 cm-1 (amide II), 1450 cm-1 (due in part to C-H deformation), 1400 cm-1 (due 

in part to symetric stretch for the carboxylate ion), 1250 cm-1 (P=O and C-O-C stretching 

and/or amide III), and in a broad complex region from 1250 to 900 cm-1 (due in part to C-O-
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C, C-O, ring-stretching vibrations of polysaccharides and the P=O stretch of 

phosphodiesters) (Figure 12). 

 

Figure 12.  ATR-FTIR spectra of a virgin membrane (plain line) and of a fouled membrane (dotted line) 

Fluorescence microscopy observations after nucleic acid staining with DAPI and 

polysaccharides staining with lectins labelled with fluorescein isothiocyanate or 

tetramethylrhodamine isothiocyanate indicate a high spatial heterogeneity inside the foulant 

matter with a mean thickness of 32.5 ± 17.7 µm [66] (Figure 13). Examples of lectins that can 

be used for such polysaccharides staining experiments are peanut agglutinin (PNA) 

targeting β-gal(1->3)galNAc residues, wheat germ agglutinin (WGA) targeting (glcNAc)2 

and NeuNAc residues, Bandeiraea simplicifolia (BS-1) agglutinin targeting α-gal and α -

galNAc residues and Concanavalin A (ConA) targeting α-man and α-glc residues. 

 

Figure 13. CLSM visualization of the heterogeneity of a NF biofilm after staining with DAPI, TRITC 

and TITC-labelled lectins. Magnification x630 
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The microbial cells, mainly composed of bacteria, are localized in the superficial layer of the 

fouling material and are organized as microcolonies interspersed at the membrane surface. 

Some algae are also present, as shown by autofluorescence properties. The presence of a 

dense and wide polysaccharide matrix harbouring few microbial cells at the NF membrane 

surface has been associated with differences in the efficiency of cleaning procedures against 

different foulants categories [65, 67]. Polysaccharide residues are found in areas where 

microcolonies are present and in areas devoid of microbial cells. This polysaccharide 

organization has been previously observed with environmental biofilms grown in vitro with 

river water as the sole source of carbon and nutrients [68]. High staining with PNA and BS-

1, respectively reveals high occurrence of galactosides residues in the polysaccharide 

components of the foulants. The BS-1 lectin staining pattern indicates a high degree of 

spatial organisation with the observation of long and entangled fibers. WGA staining shows 

short fibers and cloud stained areas. PNA and ConA lectin staining are more interspersed. 

The polysaccharide composition of the fouling layer changes quantitatively and 

qualitatively during spring and summer [64]. Lectin staining increases from March to 

September for all the lectins used. Staining with BS-1 increases constantly in March, June 

and September. A high increase of binding with PNA, and ConA is observed between 

March and June, but the binding of these two lectins does not change between June and 

September. Staining with the WGA is weak in March and June and is higher in September. 

The lectin-binding changes with time may be linked to an increase of the biomass attached 

at the membrane surface and to changes among the populations of attached cells. Nutrients, 

oxygen level and the concentration of metals can influence the exopolymer abundance of 

environmental model biofilms grown in vitro with river water as the sole source of carbon 

and nutrients [69]. The modification of these parameters leads to a shift in the 

glycoconjugate makeup of the biofilms. 

Biofilms may be considered to be highly porous polymer gels [70] and diffusion studies 

demonstrate gel-like characteristics [71]. Previous work has suggested that laboratory-

grown and some natural biofilms are viscoelastic in nature [3, 8, 72]. During rotation 

analysis, a rheofluidification behaviour is observed for NF biofilms [66]. Different 

mechanisms can explain shear thinning of a biofilm. Break down of links between polymers 

in the biofilm matrix or deflocculation of particles corresponding to an irreversible 

modification of the biofilm structure can occur. Such irreversible modifications are unlikely 

in the experimental conditions published because of the reversibility of viscosity changes 

with shear rate [66]. Shear thinning of NF biofilms may be related to the polymeric 

composition of the biofilm matrix. With shear acceleration, polymers may follow the 

direction of the flow leading to viscosity decrease. This has been previously observed with 

purified polysaccharides like cellulose [73]. Moreover, bending of biofilm structures in the 

shear direction during the application of shear stress has been mentioned to explain the 

viscoelastic response of a mixed culture biofilm [72]. NF biofilms have been submitted to 

oscillation analysis with a cone-plate rheometer [66]. In such experiments, a sinusoidal 

oscillation of defined maximum strain and oscillatory frequency is applied to a sample and 

the storage (G’) and lost (G”) modulus are measured. The storage modulus characterizes the 
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ability of the material to store energy, whereas the loss modulus characterizes energy 

dissipation in the material under dynamic excitations. If the material is perfectly elastic then 

the resultant stress wave is exactly in phase with the strain wave. By contrast, when the rate 

of change of the sinusoidal oscillation is a maximum and the strain is zero, for purely 

viscous systems, the resultant stress wave will be exactly 90° out-of phase with the imposed 

deformation. For NF biofilms, during oscillation analysis, values of storage modulus (G’) 

stay higher than values of loss modulus (G”) over the entire range of frequencies covered, 

indicating that the NF biofilm behave like a highly elastic physical gel [74]. Polysaccharides 

alone, like alginates, are known to realize a sol-gel transition under adequate 

physicochemical conditions [75]. The physicochemical microenvironment inside NF biofilms 

may be permissive to exopolysaccharides sol-gel transition. The gel state is resistant enough 

and presents a micro porosity favourable for resistance to flow forces, microcolonies 

development and cell nutrition inside the biofilm structure. This model of sol-gel transition 

of polysaccharides inside biofilms is consistent with rheological properties previously 

demonstrated for other biofilms: Streptococcus mutans biofilms have elasticity and viscous 

behaviour analogous to NF biofilms for a range of frequencies between 0.1 to 20 Hz [76]. The 

rheofluidification behaviour and gel-type rheological properties shared by different type of 

biofilms and purified polysaccharides suggest that the critical components of the biofilm 

matrix determining the biofilm texture are polysaccharides. 

The time-dependent strain response observed in the creep curves clearly indicated that NF 

biofilms exhibited viscoelastic behaviour. Viscoelasticity is thought to be a general mechanical 

property of biofilms. A very wide range of elasticity and viscosity values has been previously 

observed for a wide sample of biofilms formed artificially in laboratory experiments or coming 

from natural aquatic environments [4, 72, 76]. Thus, it wasn't surprising to observe that the 

rheological properties of NF biofilms are different from the ones of natural biofilms from 

different aquatic environments like Nymph Creek (Yellowstone National Park) and Chico Hot 

springs (Montana) algal biofilms [4]. These differences in viscosity and elasticity between 

biofilms can be related to different exopolysaccharide contents and to different shearing 

strains. Bacterial and algal alginates are known to have different monomeric composition 

leading to a stronger binding of cations for bacteria, a property involved in the formation of a 

stable gel in the presence of ambient Ca2+ cations [77]. 

The specificity of NF biofilms may be the necessity to resist shear forces applied to the 

membrane during the filtration process. In the Méry-sur-Oise plant, NF membranes are 

operated at feed pressure of approximately 10 bars [78]. The high membrane feed pressures 

may influence the rheological properties of NF biofilms by increasing cohesive forces in the 

biofilm bulk, increasing forces, which keep the exopolymers to the membrane surface, and 

thus strengthening the mechanical stability of the biofilm. This may explain at least in part 

the NF biofilms resistance to industrial cleaning [65]. 

Shaw et al. have previously shown that the elastic relaxation time varied much less between 

biofilms of different origins.  was estimated to be the time required for viscous creep length 

to equal elastic deformation length (so that memory of initial conditions is lost), i.e.,  ≈ η /G. 
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The elastic relaxation time of about 30 minutes lies within the range previously determined 

for various biofilms [4]. The universality of the viscoelastic transition of biofilms has been 

suspected to have critical survival impact [4]. The ability of biofilms to deform in response 

to mechanical stress may be a conserved strategy of defence to enable persistence on 

surfaces in different flow conditions. 

5. Conclusion 

Extracellular polysaccharides are considered as the major structural components of the 

biofilm matrix. A large variety of polysaccharides required for bacterial adherence and 

biofilm formation have been described. Polysaccharide molecules can interact with 

themselves or with ions and proteins. These interactions result from electrostatic attractive 

forces, repulsive forces, hydrogen bonds, van der Waals interactions and ionic attractive 

forces. All these forces influence the structure and the stability of the biofilm matrix and the 

way EPS and polysaccharides can be extracted from the biofilm bulk. A universal protocol 

for extracellular polysaccharide extraction from the biofilm matrix does not exist. Each 

study may adapt usual extraction procedures to biofilm specificities and to the nature of the 

polysaccharide studied. The viscoelasticity nature of biofilms is universal but biofilms in 

differing environments exposed to different hydrodynamic conditions will encounter 

changes in the structure, composition and then physical properties of their matrix. Biofilm 

science is highly exciting since it is a mixture of biology, biophysic, chemistry and much 

more. 
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