
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 6 

 

 

 
 

© 2012 Caetano, licensee InTech. This is an open access chapter distributed under the terms of the Creative 
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Integration of Seismic Information in Reservoir  

Models: Global Stochastic Inversion 

Hugo Caetano 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/52308 

1. Introduction 

The stochastic models for reservoir properties characterization are a known important tool 

for reserve management, as well as reservoir quality and thickness that play a key role in 

deciding optimal well locations in any producing fields. Today’s production reservoirs are 

each day more complex, and the majority of them, are of difficult access (off-shore), which in 

technical and cost terms, represents a lack of information. 

In petroleum applications, stochastic modeling of internal properties (porosity and 

permeability), lithofacies and sand bodies of reservoirs, normally use core and log data 

which in the area provides detailed reservoir parameters, spatially it is limited to a few 

subsurface locations, scarce and expensive but it is reliable information. 

The models created, with the lack of information, are models with great level of 

uncertainty. It is in this category of models that it is possible to find the stochastic 

simulation – Sequential Indicator Simulation to the morphological characterization of 

lithoclasses in [1], the Sequential Gaussian Simulation in [2] and recently, the Direct 

Sequential Simulation in [3]. 

The integration of different types of information in a unique and coherent stochastic 

model has been one of the most important, and still current, challenges of the 

geostatistical practice of modeling physical phenomena of natural resources and in order 

to make decisions regarding the development of well locations the geoscientists need to 

use all available data. 

The recent trend of the scientific community regarding development and research for 

reservoir characterization is creating models which integrate other kind of information 

(secondary or auxiliary) normally available – the seismic information. 
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The seismic data which can cover the entire reservoir space has a high uncertainty given the 

quality and the vertical coarse resolution of seismic. This varies from 25 by 25 meters in 

horizontal and 1 to 4 milliseconds, in 3-D seismic acquisitions. This data sample is much 

coarser that the data measured in wells, which vary from some centimeters to a few feet. It is 

important information never the less, but in almost all applications the seismic data cannot 

have a direct link to the wells properties (lithology, porosity and permeability), and are 

difficult to use directly in the models one wishes to create. 

The reservoir models based only in seismic information (3-D or 4-D), are normally limited to 

the structural information. This relationship derives from the major horizons and faults 

systems, interpreted in the coarse seismic, and it does not take in account the available well 

information, related to the internal characteristics of the reservoir (porosity, permeability 

and water saturation). On the other side, the characterization of reservoir models based only 

in the information of wells, like the recent geostatistical stochastic models, can have a great 

improvement by the integration of seismic information, which normally is available in the 

initial phases of prospecting and production. 

The integration of these two types of information, with different special coverage and with 

totally different uncertainty levels is a challenge that even today dazzles the scientific 

community linked to the earth science modeling. 

2. Objective 

The main objective of this work is the development and implementation of a stochastic 

model algorithm for seismic inversion to improve reservoir characterization. 

The methods of integration of seismic data can be roughly divided in two approaches. The 

methods that rely on a statistical relationship between seismic data and internal properties, 

or lithofacies, to characterize local distributions of these properties in any location of the 

reservoir by using, for example, co-simulations as [4,5], and others different approaches are 

posed as an inverse problem framework where the solution, the known amplitudes of 

seismic, are physically related with the unknown acoustic impedances (or porosity) by mean 

of a convolution model. Among them there is the so called geostatistical inversion in [6]. 

The major disadvantages and drawbacks of the direct models, are that the correlation found 

in the wells locations between the seismic and the internal properties (porosity and 

permeability), are normally low and sometimes spurious, condemning all the models from 

there to a great uncertainty. 

From the recent deterministic inversion models, the great drawback, is caused by the lack of 

production of any measure of uncertainty and from not being robust (a great dependency 

from the seismic quality) and having little liability in almost all of the more complex 

reservoirs. 

In 1993 Bortolli, launched the embryo of what is considered a liable alternative to the 

existing inverse models, the stochastic inversion. In this method the sequential gaussian 
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simulation is used to transform, using an interactive process, each of the N verticals columns 

of the seismic cube. 

Since then, the geostatistical seismic inversion has been a commonly used technique to 

incorporate seismic information in stochastic fine grids models.  

Essentially, geostatistical inversion methods as in [7-9], perform a sequential approach in 

two steps: 

i. Acoustic impedance values are simulated in each trace (a column of a 3D grid) based on 

well data and spatial continuity pattern as revealed by the variograms; 

ii. The acoustic impedance values are transformed, by a convolution with a known 

estimated wavelet, into amplitudes giving rise to a synthetic seismogram that can be 

compared with the real seismic.  

A “best” simulated trace is retained, based on the match of an objective function (function of 

the similitude between real seismic trace and seismogram), and another trace is visited to be 

simulated and transformed. The sequential process continues until all traces of acoustic 

impedances are simulated. In each step as long as the “best” transformed trace is accepted, 

the traces of simulated acoustic impedances are incorporated as “real” data for the next 

sequential simulation step. This can lead to artificially good matches in local areas where the 

bad quality of seismic prevails. 

The base idea of this research work is precisely to incorporate stochastic simulation and co-

simulation methodologies to conceive and implement a model of global seismic inversion 

and creating uncertainty linked to areas with different seismic quality. 

The use of geostatistics for the creation and transformation of images (acoustic impedances) 

and the genetic algorithms for the modification and generation of better images, allow the 

convergence of the inverse process. 

The methodology is proposed based on a global perturbation, instead of trace-by-trace, to 

reach the objective function of the match between synthetic seismogram and real seismic. 

Using the sequential simulation and co-simulation approaches it creates several realizations 

of the entire 3D cube of acoustic impedances that are simulated in a first step, instead of 

individual traces or cells. 

After the convolution, local areas of best fit of the different images are selected and 

“merged” into a secondary image of a direct co-simulation in the next iteration. 

The iterative and convergent process continues until a given match with an objective 

function is reached. Spatial dispersion and patterns of acoustic impedances imposed are 

reproduced at the final acoustic impedance cube.  

As the iterative process is based on global simulations and co-simulations of impedances, 

there is no local imposing of artificial good fit, i.e. areas of bad seismic tend to remain with 

bad match coefficients, as it does not happens in most trace-by-trace approaches. 
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At each iterative step one knows how close is one given generated image from the objective, 

by the global and local correlation coefficients between the transformed traces and the real 

seismic traces. These correlation coefficients of different simulated images are used as the 

affinity criterion to create the next generation of images until it converges to a given 

predefined threshold. 

In a last step, porosity images can be derived from the seismic impedances obtained by 

seismic inversion and the uncertainty derived from the seismic quality is assessed based on 

the quality of match between synthetic seismogram and real seismic. 

For the case of characterization of the reservoir in terms of facies distribution several 

methods for the integration of the seismic data in facies models have been proposed, several 

of which rely on the construction of a facies probability cube by calibration of the seismic 

data with wells. If only post-stack seismic data is considered, is typically inverts the seismic 

amplitudes into a 3D acoustic impedance cube, and then converts this impedance into a 3D 

facies probability using a calibration method of choice. 

This facies probability can serve as input of several well-known geostatistical algorithms to 

create a facies realization, such as the use the cube as locally varying mean on indicator 

kriging or the use of the tau model in [10], in a multi-point simulation to integrate the facies 

probability cube with spatial continuity information provided by a training image.  

While this provides satisfactory results in most cases, the resulting facies realization does 

not necessarily match the original seismic amplitude from which the acoustic impedance 

was inverted. Indeed, if one would forward simulate, for example a 1D convolution on a 

single facies realizations, then this procedure does not guarantee that the forward simulated 

seismic matches the field amplitudes. 

Another objective of this work is to present a geostatistical methodology, based on 

multipoint technique that generates facies realization compatible with the field seismic 

amplitude data, and therefore this new procedure has two main advantages, matching field 

seismic amplitude data in a physical sense, not merely in a probabilistic sense and using 

multi-point statistics, not just the two-point statistics (variogram). 

3. Seismic inversion 

The seismic data is the best source of spatially extensive measurement over the reservoir, 

but as explained previously, is very coarse vertically. From the wells we can use the acoustic 

impedance (AI) which is the result of multiplying the lateral interval velocity by the layer 

density, that later can be transformed in to seismic amplitude, this is possible because the 

difference between the different geological materials is linked to the response of the seismic 

signal.  

The advantages of working with AI instead of the recorded seismic data are that is layer 

property rather than an interface property and hence more like geology and therefore it has 
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a more physical meaning and during the inversion process all the well data is tied to the 

seismic data giving better understanding of the quality of both datasets. 

So, the integration of the amplitude seismic data with the acoustic impedance data from 

wells requires some kind of transformation. There are two methods that transform one in to 

the other, an inverse method and a direct or forward method. 

Both of them use wavelets for the transformation. These can be summarized as one-

dimensional pulse and the link between seismic data and geology and they are a kind of 

impulse of energy that is created when a marine air gun or land dynamite source is released 

during the acquisition of seismic surveys. 

The first method, “inverse process”, transforms the amplitudes from seismic to acoustic 

impedance by removing the wavelet from the amplitudes and obtaining a model of the 

acoustic impedance. The problem of simultaneously inverting reservoir engineering and 

seismic data to estimate porosity and permeability involves complex processes such as 

fluid flow through porous media, and acoustic wave propagation and cannot be solved by 

linear inversion methods as [11]. On the other hand, the process of sending a wavelet into 

the earth and measure the reflection is called forward process. Here we need to know 

what it is in the subsurface in terms of geological models divided in layers and each 

characterized by his acoustic impedance. Forward modeling combines the sequence of 

differences in the acoustic impedances with a seismic pulse to obtain a synthetic 

amplitude trace. 

In the forward model if we compare those sequences of synthetic amplitude variations with 

the real ones, we can identify and quantify the differences and try to minimize them. 

3.1. Synthetic seismogram 

It is known that the propagation of waves or sounds that pass through earth can be 

explained by an elastic wave equation. One simple, but powerful and commonly used 

approach for computing the seismic response of a certain earth model is the so-called 

convolutional model as in [12-14], which can be derived from an acoustic approximation of 

an elastic equation. 

This convolutional model (equation 1) creates a synthetic seismic trace Sy(t), that is the 

result of convolving a seismic wavelet w(t) with a time series of reflectivity coefficients r(t), 

with the addition of a noise component n(t), as follows:  

 Sy(t) = w(t) * r(t) + n(t) (1) 

An even simpler assumption is to consider the noise component to be zero (equation 2), in 

which case the synthetic seismic trace is simply the convolution of a seismic wavelet with 

the earth’s reflectivity: 

 Sy(t) = w(t) * r(t) (2) 
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The reflection coefficient is one of the fundamental physical concepts in the seismic method. 

Basically, each reflection coefficient may be thought of as the response of the seismic 

wavelet to an acoustic impedance change within the earth and represents the percentage of 

the energy that is emitted compared to the one that is reflected 

Mathematically, converting from acoustic impedance to reflectivity involves dividing the 

differences in the acoustic impedances by the sum of them. This gives the reflection 

coefficient at the boundary between the two layers. 

Each layer can have different rock acoustic impedance, which is a function of two porosity-

dependent rock properties: bulk density and velocity (equation 3). For instance, the P-wave 

acoustic impedance is given by: 

 AI(t) = density(t) * P-Velocity(t) (3) 

So the reflectivity coefficient (equation 4) can be computed from: 

 
1

1

AI AI

AI AI
t t

t
t t

r 







 (4) 

where AI represents the acoustic impedance and the subscripts t and t+1 refer to two 

subsequent layers in the stratigraphic column. 

The wavelet is usually extracted from the seismic survey through deconvolution (the 

methodology of extraction the wavelet from the seismic signal). During the deconvolution, 

the wavelet extraction does not take in account the low frequency of the earth model, this 

represents the compaction of the porous media in depth, which in some seismic inversion 

algorithm and in the inverse modeling, are ignored or only take in account adjacent geology 

units, not the full vertical analysis. 

In this work, the problem is resolved by the algorithm of generation of the acoustic 

impedance model, consider the trend that are represented in the wells log data, by creating 

initially a model only conditioned by the wells data (AI). 

3.2. Correlation coefficient comparison 

Using the convolution algorithm described previously, one can forward an entire model (or 

cube if one considers a model as a cartesian grid) of AI created only by using the wells and 

its spatial continuity to a synthetic seismic amplitude cube that can be compared with the 

real amplitude seismic cube. This comparison will give the mismatch between those two 

cubes of amplitudes. 

The mismatch between the synthetic and the field amplitudes is calculated as a simple co-

located correlation coefficient as in [15-17]. Alternatively, this mismatch could be calculated 

in the form of a least-square difference between both amplitude cubes. 
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In a first step, each of the N synthetic seismic amplitude cubes are divided into layers (figure 

1).The choice of number of layers is a tuning parameter of the algorithm. 

The amount of mismatch between each pair of columns of the synthetic and the real 

amplitude is calculated and stored in a new cube (figure 1), named the mismatch cube. 

Essentially, this new cube provides information on which locations in the reservoir are 

fitting the seismic and which need improvement. 

 

Figure 1. Calculus of the mismatch cube. 

A mismatch cube is calculated for each of the simulated models using their corresponding 

synthetic seismic models. 

3.3. Co-generation of acoustic images 

The generation of an acoustic impedance model is the main objective of this work, but until 

an optimized one is created, it is submitted to a convergence genetic modification. 

These images are generated through stochastic simulation, i.e. generation of different 

models with the same probabilistic and spatial distribution. This means that if the 

parameters that are used to the creation of the models are too tight, the produced images 

are almost identical, if the parameters allow more freedom, these models are totally 

different. 

Using this idea, the proposed methodology uses two approaches for image generation, two 

different programs are used. The first one is the DSS (Direct Sequential Simulation) for the 

generation of the first unconditioned images and then for the convergence is used the Co-

DSS (Direct Sequential Co-Simulation) that uses a soft or secondary data to simulation 

conditioning as in [3,18,19]. 

The second algorithm is the Snesim (Single Normal Equation SIMulator), a multi point 

simulation algorithm described in [20,21]. This version is used to create the first 

unconditional facies models. A second version with modification in [2], uses the influence of 

secondary data to create the models that are conditioned to more information. Both these 
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programs use secondary data for the co-simulations, and this secondary or soft data is the 

one that makes the algorithm converge. 

For the use of Direct Sequential Co-Simulation for global transformation of images as in [17], 

let us consider that one wishes to obtain a transformed image Zt(x), based on a set of Ni 

images Z1(x), Z2(x),…ZNi(x), with the same spatial dispersion statistics (e.g. correlogram or 

variogram and global histogram): C1(h) , 1(h) , Fz1(z). 

Direct co-simulation of Zt(x), having Z1(x), Z2(x),…ZNi(x) as auxiliary variables, can be 

applied as in [3]. The collocated cokriging estimator (equation 5) of Zt(x) becomes: 

    0 0 0 0 0 0
1

( ) * ( ) ( ) ( ) ( ) ( )
Ni

t t t t i i i
i

Z x m x x Z x m x x Z x m x 

  


             (5) 

Since the models i(h), i=1, Ni, and t(h) are the same, the application of Markov 

approximation is, in this case, quite appropriated, i.e., the co-regionalization models are 

totally defined with the correlation coefficients t,i(0) between Zt(x) and Zi(x). 

The affinity of the transformed image Zt(x) with the multiple images Zi(x) are 

determined by the correlation coefficients t,i(0). Hence, one can select the images with 

which characteristics we wish to “preserve” in the transformed image Zt(x). So, a local 

screening effect approximation can be done, by assuming that to estimate Zt(x0) 

(equation 5) the collocated value Zi(x0) of a specific image Zi(x), with the highest 

correlation coefficient t,i(0), screens out the influence of the effect of remaining 

collocated values Zj(x0), j  i. Hence, equation 6 can be written with just one auxiliary 

variable: the “best” at location x0: 

    0 0 0 0 0 0( ) * ( ) ( ) ( ) ( ) ( )t t t t i i iZ x m x x Z x m x x Z x m x 

              (6) 

With the local screening effect, Ni images Zi(x) give rise to just one auxiliary variable. The  

Ni images are merged in on a single image based on the local correlation coefficient 

criterion. 

Basically, the correlation or least mismatch of each of the previously simulated images at 

each x0 is converted to a single image where the best of each x0 is selected, this way. 

In practice, the algorithm chooses in each x0 of the simulated acoustic impedance model the 

best genes and the correlation that those genes have. Based on figure 2, the process is 

explained as follows: 

The process starts by analyzing each of the mismatch cubes that were created previously, 

and in each position of the cubes (x0) it compares which has the higher value of correlation 

or lower mismatch. In this case the example used is the correlation, so, the points 1a and 1b 

are compared, and since it is the 1a that has the higher value of correlation, that value is 

copied (1c) to the Best Correlation Cube. 
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At the same time, since it was from the first simulation that has better coefficient of correlation 

(CC) with the real seismic, another cube is created with the correspondent acoustic impedance 

(AI) value (1d). Next, it starts comparing the next set of values from the CC cubes, and the 

process is the same. With a comparison between the sets 2a and 2b, and since in this case it is 

the second cube that has the higher value of cc, it is this values that is copied to the Best CC 

cube (2c). The same is done from the AI cube of this simulation, copying the acoustic 

impedance values to the Best AI (2d). This process continues until all the N simulated models 

have been analyzed and to all the values of the cubes. Through this way two new cubes are 

created, one with the best genes from each acoustic impedance model (Best AI) generated 

previously and another cube with the confidence factor of each part (Best CC). 

 

Figure 2. Process of creating “Best Correlation Cube” and ”Best Acoustic Impedance cube” 

Since the process is an iterative one, in the very first steps of the iterative process, the 

secondary image (Best AI) do not have the spatial continuity pattern of the primary 

(simulated AI), as it results from a composition of different parts of a set of simulated 

images. As the process continues, the secondary image tends to have the same spatial 

pattern of generated images by co-simulation, because the correlation values are becoming 

higher and the freedom of the co-simulation is diminishing. Finally these two new data sets 

are used as soft data for the next iteration. 

4. Algorithm description using direct sequential simulation 

The proposed stochastic inversion algorithm is settled with the following key ideas in mind: 

generation of stochastic images, transformation of the images in synthetic seismograms, 

chose and keep the best “genes” from each of the images and then use them through the 

exercise of the genetics algorithm formalism and the stochastic co-simulation to create a new 

generation of images and the convergence of the process. It can be summarized in the 

following steps; 

2a

1a

1c

1d

1b

2b
2c

2d
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i. Generate a set of initial 3D images of acoustic impedances by using direct sequential 

simulation. Instead of individual traces of cells; 

ii. Create the synthetic seismogram of amplitudes, by convolving the reflectivity, derived 

from acoustic impedances, with a known wavelet; 

iii. Evaluate the match of the synthetic seismograms, of entire 3D image, and the real 

seismic by computing, for example local correlation coefficients; 

iv. Ranking the “best” images based on the match (e.g. the average value or a percentile of 

correlation coefficients for the entire image). From them, one selects the best parts (the 

columns or the horizons with the best correlation coefficient) of each image. Compose 

one auxiliary image with the selected “best” parts, for the next simulation step; 

v. Generate a new set of images, by direct sequential co-simulation, using the best locals 

correlation as the local co-regionalization model and return to step ii) starting an 

iterative process that will end when the match between the synthetic seismogram and 

the real seismic is considered satisfactory or until a given threshold of the objective 

function is reached; 

vi. The last step of the process is the transformation of the optimized cube of acoustic 

impedance in internal reservoir characteristics. 

At each iterative step one knows how closer is one given generated image from the 

objective, by the global and local correlation coefficients between the synthetic seismogram 

and the real seismic. These correlation coefficients of different simulated images are used as 

the affinity criterion to create the next generation of images until it converges to a given 

predefined threshold. A simplified diagram is show in figure 3. 

 

Figure 3. Diagram of the proposed algorithm 



 
Integration of Seismic Information in Reservoir Models: Global Stochastic Inversion 129 

4.1. Case study 

A case study of a Middle East reservoir will be presented but only a small part of the full 

reservoir is studied due to data confidentiality and the coordinates presented are modified. 

The field described in [22,23] is a carbonate reservoir with a deposition geology that holds in 

some zones a strong internal geometry with clinoforms. These are sedimentary deposits that 

have a sigmoidal or S shape. They can range in size from meter, like sand dunes, to 

kilometers and can grow horizontally in response to sediment supply and physical limits on 

sediment accumulation. 

This type of geological phenomenon increases the complexity of the internal reservoir, 

making the geophysics interpretation of seismic a very difficult job, mainly when the 

resolution of acquisition is very coarse. It also causes a great impact in oil production in 

wells and reservoir characterization and modeling. 

From the calibration of the acoustic impedance data of the wells with the seismic, a wavelet 

was extracted and there were 19 wells in the study area but only two were used, because 

only these two have the velocity log, and without the velocity log the acoustic impedance 

data cannot be calculated. On those wells the acoustic impedance was determined, then 

calibrated with the seismic and finally upscaled to fit the seismic scale of 4 ms. 

The convolution for well 11 is show in figure 4. 

 

Figure 4. Calculation of the AI, convolution and match with seismic of well 11. 
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As one can notice, there is a very good match with the synthetic amplitude (red line on right 

side) calculated with the acoustic impedance (white line in the middle) from the wells and 

the real seismic amplitude extracted from the seismic cube (cyan line in the right side). 

4.2. Results 

The first sets of 32 images of acoustic impedances are generated with the direct sequential 

simulation conditioned to well data (AI) and the chosen variogram model. In the first 

iteration, the generated acoustic models (figure 5) are not constrained to any soft data, so  

 

Figure 5. Acoustic Impedance model of simulation #1 (left) and #15 (right). 

 

Figure 6. Correspondent Synthetic Seismic model of simulation #1 (left) and #15 (right). 
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only the wells are reproduced. This causes a high variability between the synthetic models 

(figure 6) and wide range standard deviation when calculated using all 32 simulations. 

As it can be noticed, the two models have a totally different spatial distribution, although 

the histograms and variograms are the same. 

That different spatial distribution is visible in the correlation cubes between the synthetic 

models and the real seismic (figure 7). 

 

Figure 7. Correlation cubes between the synthetic seismic model and the real seismic, of simulation #1 

(left) and #15 (right). 

 

Figure 8. Average (left) and Standard Deviation (right) of acoustic impedance of all 32 simulations of 

this iteration. 
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To confirm this variability, the average cube and standard deviation (figure 8) of all 32 

simulations were determined and the influence of the wells in the average of the 

unconditioned simulations is highly visible principally around well 1, as the variogram is 

reproducing the well log spatial variability. 

As perceived in the average model, the small scale variability has disappeared, however this 

cube can be considered the Low Frequency Model, because it reproduces the main trends 

that are represented in the wells logs. Also noticeable the practically constant value of 

standard deviation, representing the variability of unconditional stochastic simulations, 

except the small decline of values in the middle of the figure, which is the influence of the 

well 1. 

Still, these first 32 simulations were used to build the “Best Correlation Cube” and ”Best 

Acoustic Impedance cube” that will be used as soft data for the next iteration (figure 9). 

 

Figure 9. ”Best Acoustic Impedance cube” (left) and “Best Correlation Cube” (right) derived from first 

iteration. 

It is visible the delineation of the structural layers in the Best Acoustic Impedance model 

(BAI) and in the Best Correlation Cube (BCC) a selection of correlation coefficients high 

values. 

This assembled acoustic impedance model, has lost all the spatial distribution that the 

original acoustic impedance models had (figure 5), but this is a simple intermediate result 

and not the final one since these will be used as secondary or soft data for the next iteration 

that will impose the variogram spatial distribution and wells global histogram. 

The algorithm has made six iterations, one of them, the first, was unconditional to any 

secondary or soft data, only the last five had the Best Correlation Cube and Best Acoustic 

Impedance cube as secondary or soft data imposition. 
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Since the algorithm will always choose the best genes from each iteration, the patterns that 

are in the real seismic will start to become more visible in each iteration and the correlation 

will became higher and more continuous in all cube positions. 

The convergence of the process is inevitable until a local maximum correlation is attained 

(figure 10). This maximum does not represent the best that the original seismic can produce, 

but rather a simulation that the entire process has created. If one has run the same process 

with the same data but with a different seed for the generation of the acoustic impedance 

model the result could be a different one, but not so totally different. 

 

Figure 10. Convergence progress of the algorithm. 

The 32 images of acoustic impedances of iteration 5 (considering that the first iteration is 

called 0, because it is an unconditional to soft data) are generated with the direct sequential 

co-simulation conditioned to well data (acoustic impedances), the chosen variogram model 

and the soft or secondary data (BAI and BCC) of the forth iteration. 

One can clearly see the fast convergence from iteration zero to iteration 1 and 

afterwards the process starts to stabilize. The algorithm chooses the parts that have 

higher correlation values in the end of iteration 0 and after iteration 1, almost every 

simulation has its correlation values around 1, making the selection of each part of 

simulation, a very detailed event (sometimes in the third of forth decimal of the 

correlation value). 

The obtained final results demonstrate that the conditional data is imposing a very strong 

effect in all 32 simulations. The variability of different models generated with different seeds 

is now almost none existing (figure 11 and 12) and they practically look the same. 

As it can be noticed the two models have an almost equally spatial distribution, but some 

differences can be found, since they are two independent realizations. 
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Figure 11. Acoustic Impedance model of simulation #3 (left) and #28 (right). 

 

 

Figure 12. Correspondent Synthetic Seismic model of simulation #3 (left) and #28 (right). 

Those small differences are easier to distinguish in the correlation cubes between the 

synthetic models and the real seismic (figure 13), since the correlation coefficient is very 

sensible to little variations in patterns. 

In these examples the layer set sizes were big enough to show the differences. 
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Figure 13. Correlation cubes between the synthetic seismic model and the real seismic, of simulation 3 

(left) and 28 (right). 

To confirm this lack of variability (figure 14), the average cube is almost equal to a 

simulation, and validated by the lower values of standard deviation of all 32 simulations. 

 

Figure 14. Average and standard deviation of acoustic impedance of all 32 simulations of this iteration. 

In figure 14 the same color scale for standard deviation, was used, for comparison with the 

standard deviation of the first iteration model (figure 8). 

The values of standard deviation for the final iteration only vary from 0 to 6900, with an 

average of 1600 which is a reduction of almost 80% in variability, comparing with the 

variation between 0 and 11500 and average of 8000 of the first iteration. 
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The influence of the wells is no longer visible because all data of wells are integrated in the 

full model.  

4.3. Remarks 

In spite of the scarcity of the log data, the proposed method achieved extremely good 

results. In case of data abundance, if the data is not well calibrated it could compromise the 

quality of the convergence and the influence of the not calibrated wells in the final model 

would be noticeable. 

In this case, both synthetic seismic data and acoustic impedance cube captured the main 

geologic features of these complex reservoirs, noticeable in the correlation coefficients 

between the seismic and the synthetic amplitudes. The quality of the seismic data takes a 

minor role since the method overcomes the situation of imposition of artificial correlations 

as it happens in the standard methods; 

Since the co-simulation of the impedances uses a local coefficient correlation, it is possible to 

compute the local uncertainty associated to the seismic acoustic impedances; 

The uncertainty of the seismic acoustic impedance could be used to access the uncertainty 

associated with the porosity model, as presented in [24]. 

Tests prove that the variation of the final correlation coefficient is about 2% with the 

modification of the initial seed, it means that others parameters such as the number of layers 

and the size of it, as other parameters can be optimized to produce better results. But these 

results are more difficult to reach when the complexity of the geology and the structural 

model became more elaborated. 

To handle different geology scenarios such channels or specific shape reservoirs, an adapted 

approach is proposed in the next part of this work. 

5. Multipoint statistics 

The objective of this work is to build a reservoir model with multiple alternatives, thereby 

assessing uncertainty about the reservoir, integrating information from different sources 

obtained at different resolutions: 

 Well-data which is sparse but of high resolution, in the scale of a foot; 

 Seismic data which is exhaustive but of much lower resolution, in the scale of 10’s feet 

in the vertical direction; 

 Conceptual geological models, which could quantify reservoir heterogeneity from the 

layer scale to the basin scale. 

This last point has been possible using a variogram in algorithms such as DSS and Co-DSS, 

previously described, which allow integration of well and seismic data using a pixel-based 

approach. Those variogram based models are inadequate in integrating geological concepts 

since the variogram is too limited in capturing complex geological heterogeneity and is a 
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two-point statistics that poorly reflects the geologist’s prior conceptual vision of the 

reservoir architecture, e.g., sand channels as in [20]. 

Integration of geological information beyond two-point variogram reproduction becomes 

critical in order to quantify more accurately heterogeneity and assess realistically the 

uncertainty of model description. 

A solution was initiated by practitioners from the oil industry in Norway, where Boolean 

objects-based algorithms were introduced in the late 1980’s to simulate random geometry as 

in [25,26]. These parametric shapes, such as sinusoidal channel or ellipsoidal lenses, are 

placed in simulated volume. Through an iterative process this shape is changed, displaced 

or removed to fit the conditioning statistics and local data. 

The simulated objects finally resemble the geologist drawings or photographs of present day 

depositions 

Passed the enthusiasm, the limitation of objects-based simulation algorithms became 

obvious, this iterative, perturbation type, algorithm for data conditioning did not converge 

in the presence of dense hard data or could not account for diverse data types, such as 

seismic used as soft data. 

Also the limitation of not simulating continuous variables, time and CPU demanding in 

large 3D cases, enroll on the drawbacks of the methodology. 

Strebelle in [20], following the works of Srivastava in [27] and Caers in [28] has proposed an 

alternative approach of Multipoint statistics that combines the easy conditioning of pixel-

based algorithms with the ability to reproduce “shapes” of object-based techniques, without 

relying on excessive CPU demand. 

Multipoint statistics uses a training image instead of a variogram to account for geological 

information. The training image describes the geometrical facies patterns believed to 

represent the subsurface.  

Training images does not need to carry any local information of the actual reservoir, they 

only reflect a prior geological/structural concept. 

Basically, multipoint statistics consists of extracting patterns from the training image, and 

anchoring them to local data, i.e. well logs and seismic data. Several training images 

corresponding to alternative geological interpretations can be used to account for the 

uncertainty about the reservoir architecture.  

Training images, identical to the variogram, can be a questionable subject when the model to 

be generated has few hard data or no pre-conceptual model has been studied by geologists 

or geomodelers. 

Using this new tool a new objective is to illustrate the multipoint statistical methodology to 

seismic inversion. 
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5.1. Seismic inversion using multipoint statistics 

For the case study, the Stanford VI synthetic reservoir dataset described in [29], was used. 

This synthetic reservoir (figure 15), consists of meandering channels, sand vs mud system, 

and each facies were populated with rock impedance, using sequential simulation. 

To mimic a seismic inversion, this high resolution rock impedance model were smoothed by 

a low-pass filter to obtain a typical acoustic impedance response and then convoluted to an 

amplitude model that will be considered as reference seismic amplitude. 

 

Figure 15. Facies model (left), high resolution rock impedance (middle left), smothered rock impedance 

(middle right) and forwarded seismic synthetic amplitude (right) 

5.2. Probabilistic approach 

For comparison of the methodology, is presented the application of a traditional 

probabilistic modeling on the Stanford VI acoustic impedance, i.e. calibrate acoustic 

impedance into a 3D facies probability cube, and then use it as soft data constraint for 

multiple-point geostatistical simulation. 

Several techniques exist to calibrate one or more seismic attributes with well data, such as 

PCA, ANN, etc., one use a simple Bayes’ approach (equation 7) as documented in [30]. In a 

Bayesian method one uses the histogram of impedance for each facies denoted as: 

    | , 1,2,...fP AI facies f   (7) 

Using Bayes’ rule one can calculate the probability for each facies for given impedance 

values as (equation 8): 

   ( | ) ( )
|

( )

f f

f

P AI facies P facies
P facies AI

P AI


  (8) 

where P(faciesf) is the global proportion of faciesf and P(AI) is derived from the histogram of 

the impedance values. The final result is a cube of probabilities for each facies type based on 

the acoustic impedance cube. In figure 16, one can see the result of the application of this 

method to the case study data. 

This probability data can be used by different geostatistical algorithms to create a facies 

model. In our case the simulated facies are obtained with the multi-point method snesim, 

conditioned to the probability cubes previously calculated, to the training image and to the 

rotation and affinity cubes. 
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Figure 16. Result of the Bayesian approach for the calculus of the probabilities cubes for case study and 

the simulated facies model. 

To verify our hypothesis that this facies model does not match the field amplitude, the facies 

model is forwarded simulated to a synthetic amplitude dataset. We assumed the ideal 

situation where an exact forward model was available. Figure 17 confirm that the forward 

modeled amplitude does not match the field data. In fact, the co-located correlation 

coefficient is 0.20. 

 

Figure 17. “Real” seismic amplitude (left) vs forward modeled amplitude derived from the simulated 

facies model using a traditional probabilistic approach (right). 

5.3. Algorithm description using multipoint statistics 

For the case of using multi-point statistics, the seismic inversion algorithm has gone through 

some changes, manly caused by the simulation algorithm that does not creates acoustic 

impedance models directly, but facies models, that can be populated with acoustic 

impedance values later. 

So the method is initialized by simulating N facies models only conditioned to the wells and 

training images using snesim, in this case, additional channel azimuth and affinity (as 

interpreted from seismic or geological understanding) constraints are enforced (figure 18). 

Probability Cubes 
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Simulated Facies Acoustic Impedance 
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Figure 18. Initial simulations conditioned only to the training image and rotation/affinity. 

The facies models are then populated with acoustic impedances, converted in synthetic 

seismograms and chose and keep the best “genes” from each of the images (see figure 19). In 

the next step there is also a modification, since one cannot use directly the correlation values 

in the snesim simulator. So a modification of the probability perturbation method as in [31] 

is used to create a probability for each facies. 

This facies probabilities cube is then used as soft constraint to generate the next set of N 

cubes. This is done using Journel’s tau-model as in [10], to integrate probabilistic 

information from various sources. The process converges as the previous algorithm and it 

can be summarized in the following steps: 

i. Generate a set of initial 3D images of facies by using snesim. 

ii. Populate the facies models with acoustic impedances. 

iii. Create the synthetic seismogram of amplitudes, by convolving the reflectivity, derived 

from acoustic impedances, with a known wavelet. 

iv. Evaluate the match of the synthetic seismograms, of entire 3D image, and the real 

seismic by computing, for example local correlation coefficients. 

v. Ranking the “best” images based on the match (e.g. the average value or a percentile of 

correlation coefficients for the entire image). From it, one selects the best parts (the 

columns or the horizons with the best correlation coefficient) of each image. Compose 

one auxiliary image with the selected “best” parts, for the next simulation step. 

vi. Transform the cube with the best parts and the corresponded best values to a 

probability cube to each facies to be simulated. 

MPS 

Training Image 

Affinity 

N 

Simulated Facies 

Rotation 
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vii. Generate a new set of images using snesim adaptation to integrate secondary 

information, with the probability cubes used as the local co-regionalization model and 

return to step ii) starting an iterative process that will end when the match between the 

synthetic seismogram and the real seismic is considered satisfactory or until a given 

threshold of the objective function is reached. 

viii. The last step of the process can be the transformation of the optimized facies cube in 

acoustic impedance, porosity or any internal reservoir characteristics. 

As noted in previously algorithm, in step vi), in the very first steps of the iterative process, 

the probability data can not have the spatial continuity pattern of the primary simulated 

facies, as it results from a composition of different parts of a set of simulated images. As the 

process continues, that soft secondary image (probability cubes) tend to have the same 

spatial pattern of generated images by co-simulation, i.e. the imposed training image altered 

by the affinity and azimuth 

5.4. Co-generation of acoustic images with multipoint statistics 

The major change made for the adaptation to MPS, is that the acoustic impedance values are 

estimated or populated in the simulated facies model. This can cause some reservations but if 

one considered that the main objective is comparing the reflection coefficients between the real 

and the simulated seismic amplitude, those reflection coefficients are more accentuated in the 

change of terrain type, and those can be considered a channel or crevasse. Inside the channels 

the rock type does not vary too much and that is visible in the seismic profiles by the presence 

of low amplitude seismic. So this difference in the algorithm can be considered a valid one. 

The second difference is that to co-simulate a facies model, one can not use acoustic 

impedance values (a continuous variable) as soft data, so instead of choosing from the 

simulated acoustics model, the algorithm build the Best Facies cube from the simulated 

facies models (figure 19). 

 

Figure 19. Process of creating “Best Mismatch cube” and ”Best Facies cube”. 
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As the methodology for acoustic impedance models, the process starts by analyzing each of 

the mismatch cubes that were created previously, and in each position of the cubes (x0) it 

compares which has the higher value of correlation. 

The point set 1a and point set 1b are compared, from those is the 1a that has a higher value 

of correlation so, it is copied (1c) to the Best Mismatch cube. 

At the same time, since the first simulation showed better coefficient of correlation (CC) 

with the real seismic, another cube is created with the correspondent facies values (1d). 

The process follow to the next set of values from the CC cubes, and it is the same, 

comparison between the sets 2a and 2b, that in this case it is the second cube that has the 

higher value of cc (or lower mismatch), it is these values that are copied to the Best 

Mismatch cube (2c). The same is done from the facies cube of this simulation, copy of the 

facies values to the Best Facies (2d). This process continues until all the N simulated models 

have been analyzed and to all the values of the cubes. 

Through this way two new cubes are created, one with the best genes from each facies 

model (Best Facies) generated previously and another cube with the confidence factor of 

each part (Best Mismatch). As noticed above, the “least mismatch cube” can be seen as a 

summary of the least mismatch of all N realizations. The “best facies cube” can be seen as 

facies model combined from all N facies models that best matches the seismic data. 

However the “best facies cube” does not have the same geological concept as the training 

image and may have various artifacts, since it is constructed by copying several sets from 

independently generated facies models. 

The third difference is that, these two new cubes can not be used for the co-simulation of the 

new generation of facies models, but the “best facies cube” can be used indirectly to 

improve the existing N facies models. 

In order to do this, one uses a modification of the probability perturbation method as in [24]. 

Caers’ method was developed to solve non-linear inverse problems under a prior model 

constraint. It allows the conditioning of stochastic simulations to any type of non-linear 

data. The principle of this method relies on perturbing the probability models used to 

generate a chain of realizations that converge to match any type of data. 

In this methodology the unknown pre-posterior probability – Prob(Aj | C) – is modeled 

using a single parameter model in the following equation 9: 

   (0)| ( ( ) 1| ) (1 ) ( ) ( ), 1,...,j j c B j c jP A C P I u C r i u r P A j N          (9) 

where A is unknown data, B is well data and previously simulated facies indicators and C 

will be the “best facies cube”, rC is not dependent on uj and is between [0,1], and 
    0

,  1,...,B ji j Nu  is an initial realization conditioned to the B-data only. 

According to the methodology proposed in this work, the equation 9 is adapted with rC now 

representing the mismatch between the field and synthetic seismic as summarized with the 
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least-mismatch cube (correlation coefficient), and  0
Bi  corresponding to the presence of the 

facies with the least mismatch. This adaptation leads to the following equation 10: 

  | ( ) ( ) (1 ( )) ( ), 1,...,j c j c jP A C u I u u P A j N        (10) 

where ρC is the correlation coefficient, between [0,1], extracted from the “least mismatch 

cube”, I(uj) is the sand indicator extracted from the “best facies cube” with j=1,…,N 

facies, and P(Aj) is the global proportion of the considered facies. This expression 

generates a “facies-probability cube” which is a mixture of global proportion and the 

“best facies cube”. 

This facies probabilities cube is then used as soft constraint to generate the next set of N 

cubes. This is done using Journel’s tau-model to integrate probabilistic information from 

various sources (see equation 11 and figure 20); 

 
x c

b a
  (11) 
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 a is the information of the global facies proportion, b is the influence of the training image, 

and c is the conditioning of the soft probability cube. 

 

Figure 20. Next generation of simulations conditioned to the training image, rotation/affinity and 

probability cubes. 
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This iterative algorithm is run until the global mismatch between the synthetic seismic of the 

facies model and the field seismic data reach an optimal minimum. 

5.5. Results 

To illustrate the method, 6 iterations were computed with N=30 simulations on the Stanford 

VI dataset. Note that one assumed the availability of perfect geological information and a 

perfect forward model. 

The algorithm converges as shown by a systematic increase in the global correlation 

coefficient between model and amplitude data (figure 21). The facies model with the highest 

correlation out of 30 models in the last iteration has a correlation of 0.88. 

 

Figure 21. Convergence of the algorithm. 

 

Figure 22. Comparison between the two methods 
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The final facies model (top left in in figure 22) does not contain any artifacts, i.e. reproduces 

well the geological continuity of the training image. 

To check how well the seismic amplitude data is reproduced, is forward modeling the best 

facies model to seismic synthetic (see figure 22). Clearly the method matches well the field 

seismic, particularly when compared with the probabilistic approach. 

In figure 23 some slices of the results are presented, where it is possible to see some 

similarities between the seismic response of the proposed approach and the reference data 

seismic amplitude. 

 

 

 

Figure 23. Correlation slices 

In summary, as stated previously, the local maximum correlation or local minimum 

mismatch depends on the parameters used to calculate the mismatches. Some parameters 

sensitivity is further analyzed: 

 Number of iterations 

In the first iteration the main optimization is obtained, after this the process tends to 

stabilize (figure 24). Hence, without changing any of the other parameters, the number of 

iterations does not have a big influence on the optimization. 

Figure 24 compares the values of correlation and average difference of the simulation model 

with the best result for different number of facies models N simulated. These values are 

presented only for the first and last iterations.  

For the first iteration the difference is not very noticeable, but in the last iteration the 

correlation value is higher as the number of simulations increases. 
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 Number of facies simulations (N) per iterations 

This parameter can have a major influence on the optimization: with numerous simulations 

the process has a wide variety of possibilities to choose from, and can build a more precise 

best-facies cube, but if the simulations are very alike, the choice of N will not matter. 

 

Figure 24. Influence of different number of iterations (1 to 6) and simulations (20, 30 and 40). 

 Criterion of convergence 

The criterion of differences is more precise than the correlation, since the correlation gives us 

a value of the similarity between two sets of data, while the difference is more susceptible to 

different patterns or small variation in the patterns. But to calculate the probabilities the 

correlations are needed. 

 Size of the columns 

In the previous test the cubes were divided in 4 layers with 20 values each column. Since the 

correlation has some sensitivity to the number of data used, the results also change. For a 

largest column the convergence will tend to be slower, since it is more difficult to match an 

entire column than piece-wise matching. In general we recommend that the number of 

layers chosen depends on the vertical resolution of the seismic data, i.e. for lower resolution 

less layer could be retained. 

6. Conclusions 

The algorithm proposed uses two different approaches to create a stochastic model of a 

reservoir property that are conditioned to both well and seismic data, since this two data are 

totally different, this process was to be an iterative one, that used the maximum correlation 

or minimum mismatch as the objective function. 
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The first approach uses the direct sequential co-simulation as the method of “transforming” 

3D images, in an iterative process. Hence it generates, at each iterative step, global acoustic 

impedances images with the same spatial pattern, without imposing artificially good match 

in areas of low confidence in seismic quality. 

It means that in those areas the final images will reflect high uncertainty. This uncertainty of 

the seismic acoustic impedance is used to access the uncertainty associated with the porosity 

model, by co-simulate the porosity model and using the generated final acoustic impedance 

model and its correlation coefficient cube as soft or secondary data. 

Another example is the capacity to improve the seismic resolution, if the acoustic impedance 

model is created below the original resolution of the seismic. This is possible since the data 

from wells, that is mainly used to create the model, has a much lower resolution than the 

seismic. 

Time consuming is no more a drawback as it is implemented in a parallel computing 

platform in [32]. 

This algorithm has been implemented and benchmarked tested with several real reservoirs, 

e.g. [33]. 

For the case of the multipoint approach, it is a new application for the newest stochastic 

generation of images and is a complement for the first approach. 

The modifications made from the first approach to the second, are not too complex, 

except the population of the acoustic impendence cube, which for this example, a 

technique of simple populate the channels was used with previous simulated acoustic 

impedance values. 

To resolve this bypass, an algorithm by [34], simulates any variable within the channel, 

making this step a more realistic one. 

The program still needs to be improved and the algorithm can be optimized for real case 

applications and the lack of training images that could implement it to all kind or examples 

is still in research. 
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