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1. Introduction

The first attempts to describe the behaviour of porous materials with the use of an additional
degree of kinematical freedom, in order to refine the Cauchy’s theory, are due principally to
Nunziato and Cowin [1, 2] and co-workers. Nevertheless, their voids theory can be considered
as a particular case of a general theory of continua with microstructure [3] and so, when we
have to consider more complex media with nano-pores, we need to use suggestions of this
last theory [4]. In fact, a nano-pore in a thermoelastic solid is roughly ellipsoidal, unlike
small lacunae finely dispersed in the solid matrix that can be supposed all spherical and
for which the volume fraction suffices to describe the microdeformation (see, also, [5, 6]).
Cowin itself remarked the importance of the shape of the holes in the description of lacunae
containing osteocytes or of bone canaliculi [7, 8]: in the human bone, e.g., the lacunae are
almost ellipsoidal with mean values along the axes of about 4 µm, 9 µm and 22 µm. And,
as a matter of fact, the voids theory does not predict size effects in torsion of bars in an
isotropic material, while they occur both in torsion and in bending, as observed for bones
and polymer foam materials in [9]. Even if some problem of physical concreteness or of
mathematical hardness could arise [10, 11], a better improvement of the voids theory, within
a microstructured scheme, is necessary in order to characterize the more complex structure.

A direct way to proceed is to consider the thermoelastic solid with nano-pores as a continuum
with an ellipsoidal microstructure (see [4, 12]) which describes media whose each material
element contains a large cavity, that does not diffuse through the skeleton, filled by an
elastic inclusion, or an inviscid fluid, both of negligible mass (e.g., composite materials
reinforced with chopped elastic fibers, porous media with elastic granular inclusions, real
ceramics, etc.): this cavity is able to have a microstretch different from, and independent
of, the local affine deformation deriving from the macromotion and so can allow distinct
microstrains along the principal axes of microdeformation, in absence of microrotations . The
“tortuosity” matrix, a macroscopic geometrical symmetric tensor that expresses the effects
of the geometry of the microscopic pores’ surface, was previously presented in [13], but in
[14] the model of a microstretched medium has been firstly used to study materials with
distributions of aligned ellipsoidal vacuous pores and explicit computations have been carried
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out for matrix materials subjected to axisymmetric and plane strain loading conditions; then
the model has been used to formulate more general multiphase theories of microstructured
media [15]. Furthermore, some tension tests and numerical results have been presented
in [16] for a similar model of a microstretched medium. The quoted model [4] is surely
complementary to the use of the Cosserat theory [9], when microrotations are of interest in the
analysis, but no the microdeformations: merely, we wish to observe that our theory contains
naturally the voids theory by constraining the microstrain to be spherical. In particular, in
[12] it has been observed that, during quasi-static homogeneous motion, the porous solid
behaves like an isotropic simple material with fading memory in the linear range and it
reduces to a viscoelastic medium when the microstructural variable remains spherical as in
[2]. More generally, for complete microdeformations, the framework of media with affine
structure better depicts macro- and micro-motion (see [3, 17]). Finally, our model [4] was
used to analyze nonlinear wave propagation in constrained porous media [18] and to examine
adsorption and diffusion of polluttants in soils, viewed as an immiscible mixture of materials
with, and without, microstructure [19, 20].

In this chapter, we extend the linear theory [12] of elastic solids with nano-pores to
the thermoelastic case and include a rate effect in the holes’ response, which results in
internal dissipation from experimental evidence [21]; after we make a complete study of
the propagation of linear waves. In particular, in §2 we apply the general theory of
continua with microstructure to the ellipsoidal case and furnish balance equations and jump
conditions; in §3 we present constitutive equations for kinetic energy and co-energy density
and for dependent constitutive fields and, after, we use thermodinamic restrictions; in §4
we define small thermoelastic deformations from the reference placement and obtain the
linear field balance equations; in §5 we study linear micro-vibrations for which we obtain
three admissible modes; in §6 we analyze the propagation of harmonic plane waves and
comment the secular equations governing the eight solutions: two shear optical micro-elastic
modes, two coupled transverse elastic waves and four coupled longitudinal thermo-elastic
waves; in §7 we get the propagation conditions of the macro-acceleration waves for
either a heat-conducting or non-conducting isotropic thermoelastic material with nano-pores
(corresponding, respectively, to homothermal and homentropic waves), as well as for generalized
transverse waves; in §8 we gain the growth equations which govern the propagation of the
macro-acceleration waves and discuss the couplings between the higher order discontinuities.

2. Balance laws and jump conditions

We identify the continuous material body with nano-pores B with a fixed homogeneous and
free of residual stresses region of the three dimensional Euclidean space G, called the “natural"
reference placement B∗ (see, e.g., §83 of [22]). We suppose that each material element of the
continuum contains a nano-pore which is capable to have a microstretch different from, and
independent of, the local affine deformation ensuing from the macromotion. Therefore, if
we denote the generic material element of B∗ by x∗, the thermomechanical behaviour of B
is described by three smooth mappings on B∗ × ℜ (ℜ is the set of real numbers): the spatial
position x ∈ G, at time τ, of the material point which occupied the position x∗ in the reference
placement B∗, the left Cauchy–Green tensor of the micro-deformation U ∈ Sym+, at time τ, of
the associated nano-pore (Sym+ being the collection of second-order symmetric and positive
definite tensor fields) and the absolute positive temperature θ > 0.
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The spatial position x(x∗, τ) is a one-to-one correspondence, for each τ, between the reference
placement B∗ and the current placement Bτ = x(B∗, τ) of the body B and, so, the deformation
gradient F := ∇x(x∗, τ) (= ∂x/∂x∗) is a second order tensor with positive determinant.
Through the inverse mapping x∗(x, τ) of x, we can consider all the relevant fields in the theory
as defined over the current placement Bτ = x(B∗, τ) as well as over the reference placement
B∗ of the body B.

Hence, a body with nano-pores is like a medium with ellipsoidal microstructure [4] and a
rotation Q = e−Es of the observer of characteristic vector s, where E is Ricci’s permutation
tensor and e the basis of natural logarithms, causes the symmetric tensor U to change into
Us = QUQT ; moreover, the infinitesimal generator A of the group of rotations on the
microstructure in Sym+, i.e., the operator describing the effect of a rotation of the observer
on the value Us of the microstructure to the first order in s (see §3 of [3]), is given by

A(U) :=
dUs

ds

∣

∣

∣

∣

s=0

, (1)

that is, in components:

Aijk = UilEl jk + EiklUl j. (2)

A is a third-order tensor, symmetric and positive definite in the first two indices, that is Ac ∈
Sym+ for all vectors c.

The expression of the kinetic energy density per unit mass of microstructured bodies is the
sum of two terms, the classical one 1

2 ẋ2 due to the translational inertia and the microstructured
one κ(U, U̇) due to the inertia related to the admissible expansional micromotions of the pores’
boundaries (the superposed dot denotes material time derivative). This additional term is a

non-negative scalar function, homogeneous in U, such that κ(U, 0) = 0 and ∂2κ
∂U̇2 �= 0, and it is

related to the kinetic co-energy density χ(U, U̇) by the Legendre transform

∂χ

∂U̇
· U̇ − χ = κ (3)

(see, also, [23]). The kinetic co-energy χ, as κ, must have the same value for all observers at
rest, i.e., it must be invariant under the Galilean group and hence satisfy the condition

Ȧ∗ ∂χ

∂U̇
= −A∗ ∂χ

∂U
, (4)

where the third-order tensor A∗ is defined through the relation (A∗C) · c := C · (Ac), for all
second-order tensors C and all vectors c. The use of Eq. (2) into Eq. (4) and the multiplication
of both sides by the Ricci’s tensor E gives the following kinematic compatibility relation

skw

[

U̇
∂χ

∂U̇
+ U

∂χ

∂U

]

= 0, (5)

where ‘skw’ denotes the skew part of a second–order tensor: skw (·) := 1
2

[

(·)− (·)T
]

(

the symmetric one being sym (·) := 1
2

[

(·) + (·)T
]

)

.
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All the admissible thermo-kinetic processes for porous solids with large irregular voids are
governed by the following general system of balance equations proposed in [4]; they are the
mass conservation, the Cauchy equation, the micromomentum and moment of momentum
balances, the Neumann energy equation and the entropy inequality in the Lagrangian
description, respectively:

ρ∗ = ρ det F, (6)

ρ∗ ẍ = ρ∗f + Div P, (7)

ρ∗

[

d

dτ

(

∂χ

∂U̇

)

− ∂χ

∂U

]

= ρ∗B − Y + Div Λ, (8)

E (PFT) = A∗Y + (∇A∗)Λ, (9)

ρ∗ ε̇ = P · Ḟ + Y · U̇ + Λ · ∇ U̇ + ρ∗λ − Div h, (10)

ρ∗θη̇ ≥ ρ∗λ − Div h + θ−1h · ∇ θ, (11)

where ρ is the mass density and ρ∗ its referential value; Div means the trace of the nabla:
Div (·) := tr (∇ (·)); f is the vector body force, P the Piola-Kirchhoff stress tensor, ε the
specific internal energy density per unit mass, λ the rate of heat generation due to irradiation
or heating supply, h the referential heating flux, η the density of entropy.

Moreover, on the left hand side of the balance of micro-momentum (8) the Lagrangian
derivative of the kinetic co-energy χ appears, while, on the right hand side, ρ∗B and −Y are
the resultant second-order symmetric tensor densities of external and internal microactions,
respectively: the first one is interpreted as a controlled pore pressure and the other one
includes interactive forces between the gross and fine structures as well as internal dissipative
contributions due to the stir of the pores’ surface. Finally, Λ is the referential microstress
third-order tensor, symmetric in the first two indices, which is related to the capability of
recognizing boundary microtractions, even if, in some cases, it expresses weakly non-local
internal effects due to the impossibility of defining a physically significant connection on the
manifold of the microstructural kinetic parameter U (see [24]).

The balance of moment of momentum (9) assumes a more significant expression when we use
the representation (2) for A; in fact we have

skw (PFT) = 2 skw [UY +∇U ⊙ Λ] , (12)

where the tensor product ⊙ between third-order tensors is so defined:

(∇U ⊙ Λ)ij := Uih,LΛjhL. (13)

Remark. We observe that the voids theories [1, 5] are immediately recovered when the
microstretch U is constrained to be spherical (see, also, §5 of [4]).

In addition to balances (6-8) and (10-12), we need the balance equations at a surface of
discontinuity, namely a propagating wave Σ. As it is customary, we assume that the smooth
movable surface Σ, that traverses the body B, is oriented and we denote by n the unit normal
vector to Σ in the reference placement B∗ and by υn the corresponding non-zero normal speed
of displacement of Σ at point (x∗, τ) in the reference placement. We further assume that some
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field related to the motion of B (excepting x, U and θ) suffers jump discontinuity across Σ and
so we employ the usual notation [[ ·]] for jumps, so that

[[ f ]] = f+ − f−, (14)

where f+ or f− refers to the limit of f as the wave is approached from the right or left,
respectively.

Therefore, we can write classical Kotchine’s equations, as modified in order to take into
account microstructural effects, and a relation that restricts the jump of micromomentum (see
[25]-[27]) as it follows:

[[ ρ∗(υn − ẋ · n)]] = 0, [[ ρ∗υn ẋ + P n]] = 0,

[[

ρ∗υn
∂κ

∂U̇
(U, U̇) + Λ n

]]

= 0, (15)

[[

ρ∗υn

(

ǫ +
1

2
ẋ2 + κ(U, U̇)

)]]

=
[[(

h − PT ẋ − Λ
∗U̇

)

· n
]]

, [[ ρ∗υnθη]] ≥ [[ h · n]]. (16)

The form of the jumps across a propagating wave of higher order time derivatives of principal
fields can be obtained from the balance equations (6-8) and (10).

3. Thermodynamic restrictions on the constitutive assumptions

The first proposal is of kinematic character and leads to an expression for the microstructural
kinetic co-energy χ for B. We are interested in the linear theory from the next section, so the
simplest assumption is to assume the function χ to be quadratic in U̇

χ =
1

2
(U̇J∗) · U̇, (17)

where the second-order referential microinertia tensor field J∗ ∈ Sym+ is constant (see [3, 12,
28]). As a consequence of this definition, the left-hand side of Eq. (8) reduces to (ρ∗ÜJ∗) and
we meet also the requirements of positivity and quadratic form for κ: in fact from (3) we have

κ = χ =
1

2
(U̇J∗) · U̇. (18)

In order to study thermodynamic restrictions for thermoelastic materials with nano-pores we
must define the Helmholtz free energy density per unit mass ψ := ǫ − θη and insert it in
the axiom of dissipation (11); after, by using Eq. (10), we obtain the reduced version of the
entropy inequality:

ρ∗
(

ψ̇ + θ̇η
)

≤ P · Ḟ + Y · U̇ + Λ · ∇ U̇ − θ−1h · ∇ θ. (19)

Here we generalize constitutive prescriptions presented in [12, 26] by considering both
conduction of heat and inelastic surface effects associated to changes in the deformation
of nano-pores in the vicinity of the hole boundaries. Therefore, let us call the array S :=
{F, U,∇U, θ} of independent variables the elastic state of the material with nano–pores and,
assuming the equipresence principle, let us postulate the following constitutive relations of
thermoelastic kind:

{ψ, η, P, Y, Λ, h} =
{

ψ̃, η̃, P̃, Ỹ, Λ̃, h̃
}

(S , U̇,∇ θ). (20)
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Now we have to check the compatibility of these prescriptions with the Clausius-Duhem
inequality in its reduced version (19) that must be valid for any choice of the fields in the
set (S , U̇,∇ θ). Consequently, by using the chain rule of differentiation, when the terms are
appropriately ordered, the inequality reads:

(

ρ∗
∂ψ

∂F
− P

)

· Ḟ +

(

ρ∗
∂ψ

∂U
− Y

)

· U̇ +

(

ρ∗
∂ψ

∂(∇U)
− Λ

)

· ∇ U̇ +

+ρ∗

(

η +
∂ψ

∂θ

)

θ̇ + ρ∗
∂ψ

∂U̇
· Ü + ρ∗

∂ψ

∂(∇ θ)
· ∇ θ̇ +

1

θ
h · ∇ θ ≤ 0. (21)

The left-hand member of 21 is linear with respect to Ḟ,∇ U̇, θ̇, Ü and ∇ θ̇, quantities that take
up arbitrary values; thus the respective coefficients in the linear expression must vanish, and
hence:

ψ = ψ̃(S), P = ρ∗
∂ψ

∂F
, Λ = ρ∗

∂ψ

∂(∇U)
, η = − ∂ψ

∂θ
. (22)

These relations mean that the Helmholtz free energy ψ, the Piola-Kirchhoff stress tensor P, the
microstress Λ and the entropy η depend upon the elastic state of the material only; moreover,
P, Λ and η are determined as soon as the constitutive equation for ψ is known.

The residual inequality defines the dissipation D of the thermo-kinetic process

D := H · U̇ +
1

θ
h · ∇ θ ≤ 0, (23)

where H := ρ∗
∂ψ̃
∂U (S) − Ỹ(S , U̇,∇ θ) is the dissipative part of internal microactions, a

symmetric second-order tensor.

For a thermally isotropic porous material which is a definite heat conductor [29], Fourier’s law
gives

h = −ξ(S)∇ θ, with ξ ≥ 0; (24)

thus, by using in the energy Eq. (10) relations (22), (24) and ǫ = ψ + θη, we have that, for a
thermoelastic medium with nano–pores, it becomes

ρ∗θ
dη

dτ
+ H · U̇ = ρ∗λ + Div (ξ ∇ θ). (25)

4. Linear field equations

Now we need to introduce the displacement field u of a material element of the body: it is

u(x∗, τ) := x(x∗, τ)− x∗; (26)

therefore, the deformation gradient F is expressed by:

F(x∗, τ) = I +∇u (27)

The natural reference placement B∗ is homogeneous, free of residual macro- and
micro-stresses, so S∗ = {I, I, O, θ∗} and P∗, Y∗, Λ∗, ψ∗ all vanish in B∗ (I := (δik) is
the identity tensor); moreover, the reference microinertia tensor field J∗ has spherical value:

66 Wave Processes in Classical and New Solids



Linear Wave Motions in Continua with Nano-Pores 7

J∗ = κ∗I, where κ∗ ≥ 0 is the non-negative microinertia coefficient depending on the reference
geometric features of the pores.

Besides, we may take the displacement field u, the infinitesimal strain tensor E, the microstrain
tensor V, with its reference gradient ∇V, and the temperature ϑ and mass ̺ variations from
the reference placement as measures of “small” thermoelastic deformations from the reference
placement B∗; they are defined by Eq. (26) and as it follows:

E := sym (∇u), V := U − I, ∇V = ∇U, ϑ := θ − θ∗ and ̺ := ρ − ρ∗. (28)

Hence, in the linear theory we can change the choice of variables of the elastic state S , the new
ones being the following S̃ := {E, V,∇V, ϑ}; then, in the natural reference placement B∗, it is
S̃∗ = {0, 0, O, 0}.

As observed in the previous section, the free energy ψ determines much of the behaviour
of the nano-porous material, thus we suppose that the reference placement B∗ of the body
is also a placement of minimum for the free energy and, therefore, we choose the most
general homogeneous, quadratic and positive definite form for the free energy ψ valid for
a centrosymmetric isotropic linear thermoelastic solids with nano-pores (see [12, 30, 31]):

ψ(S̃) = (v2
l − 2v2

t )

2
(tr E)2 + v2

t E · E +
κ∗λ3

2
(tr V)2 + κ∗λ4 V · V + κ∗λ5 (tr E) (tr V) +

+ κ∗λ6 E · V + κ∗(v2
tm − v2

sm)Div V · Div V +
κ∗
2

v2
sm ∇V · ∇V + (29)

+ κ∗λ1∇ (tr V) · Div V +
κ∗λ2

2
∇ (tr V) · ∇ (tr V) +

γ1

2
ϑ2 + γ2 ϑ tr E + κ∗γ3 ϑ tr V,

where tr (·) denotes the trace of a tensor, i.e., tr E := E · I .

The positiveness of the expression in (29) assures us that the thirteen constant thermoelastic
coefficients vl , vt, λi (i = 1, . . . , 6), γj (j = 1, 2, 3), vtm and vsm must resolve the following
system of inequalities:

3v2
l > 4v2

t > 0, (3v2
l − 4v2

t )(3 λ3 + 2 λ4) > κ∗(3 λ5 + λ6)
2, 4 λ4v2

t > κ∗λ2
6,

v2
tm > v2

sm > 0, v2
sm

(

6λ1 + 9λ2 + 2v2
tm + v2

sm

)

> 4(v2
tm − v2

sm)
2, γ1 > 0,

γ1

[

ρ∗κ−1
∗ (3v2

l − 4v2
t )(3 λ3 + 2 λ4)− (3 λ5 + λ6)

2
]

+ 6γ2γ3(3 λ5 + λ6) >

> 3γ2
2κ∗−1(3 λ3 + 2 λ4) + 3γ2

3(3v2
l − 4v2

t ), γ1(3λ3 + 2λ4) > 3κ∗γ2
3;

(30)

alternatively to the last inequality of relation (30), the following one holds:

γ1(3v2
l − 4v2

t ) > 3γ2
2. (31)

Finally, we need to express the dissipative part H of internal microactions Y and the referential
heating flux h within the same linear approximation as the other constitutive terms in the
balance equations, thus, since H must vanish whenever V̇ = 0, we take

H = −ρ∗κ∗
[

ω(tr V̇)I + 2 σ V̇
]

and h = − ξ∗∇ θ, (32)

67Linear Wave Motions in Continua with Nano-Pores
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with ω and σ inelastic constants and ξ∗ := ξ(S̃∗). By inserting relations (32) in the dissipation
imbalance (23), we obtain in the linear approximation

ρ∗κ∗
[

ω(tr V̇)2 + 2 σ V̇2
]

+
ξ∗
θ
(∇ θ)2 ≥ 0, (33)

which is verified if and only if

3ω + 2σ ≥ 0, σ ≥ 0, and ξ∗ ≥ 0. (34)

Therefore, we derive from constitutive equations (22) and (32) and the definition of H (see,
also, [12]) the following linear constitutive expressions for the dependent fields:

P = ρ∗
{[

(v2
l − 2v2

t ) tr E + κ∗λ5 tr V + γ2ϑ
]

I + 2 v2
t E + κ∗λ6V

}

,

Y = ρ∗κ∗
{[

tr
(

λ3V + λ5E + ωV̇
)

+ γ3 ϑ
]

I + 2 λ4 V + λ6 E + 2 σ V̇
}

,

Λ = ρ∗κ∗{2 (v2
tm − v2

sm) syml (Div V ⊗ I) + v2
sm∇V + (35)

+λ1 [I ⊗ Div V + syml (∇ (tr V)⊗ I)] + λ2 I ⊗∇ (tr V)},

η = −γ1ϑ − γ2 tr E − κ∗γ3 tr V,

where the left-symmetric part “syml ” of a third-order tensor Ω means:

(syml Ω)ijl :=
1

2

(

Ωijl + Ωjil

)

, ∀ i, j, k = 1, 2, 3. (36)

In addition we need the expression of the determinant of the deformation gradient F in the
linear theory:

det F = det(I +∇u) ≃ 1 + Div u
[

⇒ (det F)−1 ≃ 1 − Div u
]

. (37)

Remark. When the pores are absent, vl and vt reduce to be the usual propagation speeds of
dilatational and distortional waves in the linear isothermal elasticity, respectively.

The balance equations for a thermoelastic solid with nano-pores, governing the mass density
ρ, the displacement field u, the microstrain tensor V and the temperature change ϑ, are
obtained by substituting constitutive relations (17) and (35) and Eq. (37)2 into the Eqs. (6)-(8)
and after by using (28)1 and the fact that J∗ = κ∗I; besides, last equation is get by Eq. (25)
when linearized relations (28)4, (32) and (35)4 are applied:

̺ = −ρ∗Div u, (38)

ü = v2
t Δu +∇

[

(v2
l − v2

t )Div u + κ∗λ5 tr V + γ2ϑ
]

+ κ∗λ6 Div V + f, (39)

V̈ = v2
sm ΔV + 2(v2

tm − v2
sm) sym [∇ (Div V)] + λ1∇ 2(tr V) +

+
[

λ1Div (Div V) + λ2Δ(tr V)− tr (λ3V + ωV̇)− λ5Div u − γ3ϑ
]

I − (40)

−λ6 sym (∇ u)− 2λ4V − 2σV̇ + κ−1
∗ B and

0 = γΔϑ + γ1ϑ̇ + γ2Div u̇ + κ∗γ3tr V̇ + θ−1
∗ λ, (41)

with γ := ξ∗(ρ∗θ∗)−1 ≥ 0.

68 Wave Processes in Classical and New Solids



Linear Wave Motions in Continua with Nano-Pores 9

Moreover, we observe that the balance of moment of momentum (12) in the linear
approximation assumes the following more simple expression: skw (P − 2Y) = 0, which is
satisfied by the symmetric tensors (35)1,2 identically.

At the end we can write the linear equations of jumps by inserting constitutive relations (35)
in Eqs.(15) and (16) and by ignoring terms of higher order: therefore they are the following
ones:

[[ ρ∗(υn − ẋ · n)]] = 0, (42)
[[

υnu̇ +
[

(v2
l − 2v2

t )Div u + κ∗λ5 tr V + γ2ϑ
]

n
]]

+

+
[[

v2
t [Div (u ⊗ n) +∇ (u · n)] + κ∗λ6Vn

]]

= 0, (43)

[[

υnV̇ + 2 (v2
tm − v2

sm) sym (Div V ⊗ n) + v2
sm (∇V) n

]]

+

+ [[λ1 {(n · Div V)I + sym [∇ (tr V)⊗ n]}+ λ2 [n · ∇ (tr V)] I]] = O, (44)

[[υn (γ1ϑ + γ2 Div u + κ∗γ3 tr V)− γ ∇ ϑ · n]] = 0, (45)

last imbalance being satisfied identically by Eq. (45).

Now we can uncouple the spherical and deviatoric components of the linear balance of
micromomentum (39) to obtain, respectively:

ν̈ =

(

1

3
v2

sm +
2

3
v2

tm + 2λ1 + 3λ2

)

Δν +
[

2(v2
tm − v2

sm) + 3λ1

]

Div (Div VD)−

−(3λ3 + 2λ4) ν − (3ω + 2σ)ν̇ − (3λ5 + λ6)Div u − 3γ3ϑ + ι, (46)

V̈D = v2
sm ΔVD + 2(v2

tm − v2
sm)

{

sym
[

∇ (Div VD)
]}D

− 2λ4VD − 2σV̇D +

+

[

2

3
(v2

tm − v2
sm) + λ1

]

(∇ 2ν)D − λ6 [sym (∇ u)]D + κ−1
∗ BD, (47)

where ν and ι are the traces of V and κ−1
∗ B, respectively, while the deviatoric part is defined

by: AD := A − 3−1(tr A)I, for each symmetric second-order tensor A.

With the same procedure, the respective jump (44) is splitted in the following spherical and
deviatoric relations, respectively:

[[

υn ν̇ +
[

1
3 (v

2
sm + 2v2

tm) + 2 λ1 + 3 λ2

]

∇ ν · n + [2 (v2
tm − v2

sm) + 3 λ1]Div VD · n
]]

= 0,

[[

υnV̇D + v2
sm

(

∇VD
)

n+

+
{

sym
{[

λ1∇ ν + 2 (v2
tm − v2

sm)
(

Div VD + 1
3∇ ν

)]

⊗ n
}}D

]]

= O.

(48)

5. Micro-vibrations in solids with nano-pores

Micro-vibrations, produced during various operations from railway and/or roads to foot
traffic and propagated from one medium to another, are one of the main factor for fatigue
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in structures; moreover, they could also cause serious damages in producing micro and
nano scale equipments, other than errors during experiments in high-precision laboratories
equipped with lasers, sensors or microscopes.

To study their propagation, let us assume that external volume contributions are null, i.e.
f = 0, B = O and λ = 0; moreover, there are no macro-displacements in the system, i.e. u = 0
and ̺ = 0, then let us consider solutions of Eqs. (39), (46), (47) and (41) of the form of thermal
micro-vibrations in absence of dissipation as the following ones:

ν = ν̂ eibτ , VD = V̂ eibτ , ϑ = ϑ̂ eibτ , ω = σ = 0, (49)

where ν̂, V̂ and ϑ̂ are constant amplitudes, b is the frequency and i is the imaginary unit. Then
Eq. (39) is satisfied identically, while the other equations become

(

b2 − 3λ3 − 2λ4

)

ν̂ = 3γ3ϑ̂,
(

b2 − λ4

)

V̂D = O, γ1ϑ̂ + κ∗γ3ν̂ = 0. (50)

Therefore we have the following admissible results:

◦) dilatational mode:

bd =
√

3λ3 + 2λ4 − 3κ∗γ−1
1 γ2

3,

V̂11 = V̂22 = V̂33 (⇒ ν̂ = 3 V̂11), V̂ij = 0, ∀ i �= j, ϑ̂ = −κ∗γ−1
1 γ3ν̂;

(51)

we observe that the frequency bd of this spatio-thermal oscillation is real for the restriction
(30)8 of the free energy density ψ to be a positive definite form;

◦) extensional modes with a constant volume:

be =
√

λ4, ν̂ = ϑ̂ = 0 (⇒ V̂33 = −V̂11 − V̂22), V̂ij = 0, ∀ i �= j; (52)

also in these modes the frequency be of the micro-oscillations is real for the restriction (30)3,
while no thermal vibrations are present;

◦) shear modes:

bs =
√

λ4, V̂ij �= 0, ∀ i �= j, V̂ii = 0, ∀ i, ⇒ ν̂ = ϑ̂ = 0; (53)

their frequency bs coincides with the real frequency be of the extensional modes and neither
here there are thermal vibrations.

Remark. When we neglect thermic phenomena, our oscillating solutions recover three of the
mechanical micro-vibrations obtained for general microstructure in [17].

6. Dispersion relations for plane waves

Now we draw here some results on the propagation of plane wave motion in a linear
thermoelastic solids with big pores. We seek solutions of the system of linear balance Eqs.
(38), (39), (46), (47) and (41) in the form of traveling harmonic waves (see, also, [32]):

u = φ(x∗, τ)w, ν = µ φ(x∗, τ), VD = φ(x∗, τ) S, ϑ = ϑ̄ φ(x∗, τ), ̺ = ¯̺ φ(x∗, τ) (54)
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where w, µ, S ϑ̄ and ¯̺ are constants which represent the wave amplitude of, respectively,
the macro-displacement vector, the micro-strain trace, the deviatoric part of the micro-strain
tensor and the temperature and mass fluctuation; besides, the wave function φ can be
generally represented by the real (or the imaginary) part of a complex function

φ(x∗, τ) = exp(ibτ − δ n · x∗) with δ := a + ib/c, (55)

where δ is the wave number; b > 0 is the frequency; a(b) > 0 and c(b) are the wave attenuation
and the wave speed, respectively; n is the unit vector representing the direction of wave
propagation, while the unit vector ŵ defines the direction of motion. The specific loss l is
defined by l := 4π

∣

∣

ac
b

∣

∣.

Again we suppose that all external sources are zero, i.e. f = 0, B = O and λ = 0, hence, by
substituting Eqs. (54) and (55) in the linear system (38), (39), (46), (47) and (41), we obtain the
following relations:

(b2 + v2
t δ2)w + (v2

l − v2
t )δ

2(w · n)n − κ∗δ

[

λ6Sn +

(

λ6

3
+ λ5

)

µ n

]

− γ2δϑ̄n = 0, (56)

[

b2 +

(

1

3
v2

sm +
2

3
v2

tm + 2λ1 + 3λ2

)

δ2 − 2λ4 − 3λ3 − ib(2σ + 3ω)

]

µ +

+
[

2(v2
tm − v2

sm) + 3λ1

]

δ2(Sn) · n + (λ6 + 3λ5) δ(w · n)− 3γ3ϑ̄ = 0, (57)
(

b2 + v2
smδ2 − 2λ4 − 2iσb

)

S + 2(v2
tm − v2

sm)δ
2 [sym (Sn ⊗ n)]D +

+λ6δ [sym (w ⊗ n)]D +

[

2

3
(v2

tm − v2
sm) + λ1

]

δ2µ(n ⊗ n)D = O, (58)

(iγδ2 − bγ1)ϑ̄ + γ2bδw · n − κ∗γ3bν = 0 and ¯̺ = ρ∗ψhn. (59)

This algebraic system of eleven equations may be combined into five independent systems
through linear combinations of those equations: two uncoupled relations, two coupled
systems of two equations each and one coupled system of five equations. The study of all
five systems needs the introduction of two unit vectors, e and f, in the plane orthogonal to the
direction of propagation n and such that e · f = 0. Therefore, we have the following particular
occurrences.

6.1. Shear optical waves

From the deviatoric Eq. (58), we obtain two independent dispersion relations relating
frequencies b and wave numbers δ; they are two different shear optical micro-waves :

(

b2 + v2
smδ2 − 2λ4 − 2iσb

)

Se f = 0 and (60)
(

b2 + v2
smδ2 − 2λ4 − 2iσb

)

(See − S f f ) = 0, (61)

where the subscripts indicates tensor components.

These shear optical micro-modes propagate with attenuation as = σc
v2

sm
and velocity given

by c2
s = v2

sm

2σ2

[

2λ4 − b2 +
√

(2λ4 − b2)
2 + 4 σ2b2

]

without modifying the thermo-elastic
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features of the matrix material of the porous medium; then the specific loss is ls =

4π

∣

∣

∣

∣

∣

2λ4−b2

2bσ +

√

1 +
(

2λ4−b2

2bσ

)2
∣

∣

∣

∣

∣

.

For high frequencies all quantities grow with b, while for low frequencies, the speed and the
attenuation approach vsm

√
2λ4/σ and

√
2λ4/vsm, respectively, while ls is big. Moreover, it is

also possible a static solution with attenuation as =
√

2λ4
vsm

.

6.2. Transverse waves

We get also two different systems of transverse waves, for j = e, f , from Eqs. (56) and (58):

(b2 + v2
t δ2)wj − κ∗λ6δ Snj = 0, (62)

λ6δ wj + 2
(

b2 + v2
tmδ2 − 2λ4 − 2iσb

)

Snj = 0. (63)

This homogeneous system has a nontrivial solution for the amplitudes wj and Snj if and only
if the following dispersion relation is satisfied by δ:

2
(

v2
t δ2 + b2

) (

v2
tmδ2 + b2 − 2λ4 − 2iσb

)

+ κ∗λ2
6δ2 = 0. (64)

Eq. (64) is similar to the dispersion relation for plane thermoelastic waves studied in [33] and
our analysis will use results there obtained. The first transverse solution of (64) is associated
predominantly with the elastic properties of the material (vt) and denoted by δt; the second
one, δtm, with the properties governing elastic and dissipative changes in porosity (vtm, λ4, λ6

and σ).

The analytical solutions of the dispersion relation (64) are quite cryptic and they are
summarized in Table 1 of [34] (modulo some innocuous identification in notations); in this work
we only report their physical interpretation without big difficulties. The coupling of motion
Eqs. (56) and (58) of linear macro- and micro-momentum does the wave of dispersive kind,
while the presence of big voids adds a dissipative mechanism associated with nano-pores
which yields both waves to attenuate. If the dissipation coefficient σ is null, then we recover
the presence of the resonance.

When frequencies are low, the elastic wave propagates with speed vt
√

1 − ζ, where 0 ≤
ζ
(

:=
κ∗λ2

6

4λ4v2
t

)

< 1 for the inequality (30)3, while the attenuation coefficient and the specific

loss remain very small and approach zero with the frequency itself. The predominantly

micro-transverse wave propagates with constant speed vtm
σ

√

2λ4(1 − ζ) and with constant

attenuation

√
2λ4(1−ζ)

vtm
; nevertheless, its specific loss ltm = 2λ4(1−ζ)

σb is large and in inverse
proportion to the frequency b.

At high frequencies, the predominantly elastic transverse wave propagates with the classical
speed vt and, as the frequency approaches infinity, the attenuation coefficient ate and the
specific loss lte are very small and approach zero, as for low frequencies. Instead the
predominantly micro-transverse wave propagates with attenuation σ/vtm and with constant
speed vtm, but with a small specific loss which approach zero when the frequency approaches
infinity.
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The amplitude ratio R of the micro-wave to the macro-wave is obtained from (62):

R =
Snj

wj
=

(b2 + v2
t δ2)

κ∗λ6δ
. (65)

For the solution predominantly elastic δt at large frequencies, the ratio Rt is a constant; at
small frequencies it approaches zero with the frequency itself. Instead, the micro-mode δtm at
large frequencies gives a ratio Rtm very big, while at low frequencies it is constant.

At the end, we can also have a static solution with attenuation atm =

√
2λ4(1−ζ)

vtm
in which the

amplitudes are related by wj =
κ∗λ6

v2
t a

Snj, for j = e, f .

6.3. Longitudinal waves

The remaining equations of the system (56)-(59) furnish the solutions for the longitudinal
waves, the only ones which present thermal effects:

(b2 + v2
l δ2)wn − κ∗δ

[

λ6Snn +

(

λ6

3
+ λ5

)

µ

]

− γ2δϑ̄ = 0, (66)

[

b2 +

(

1

3
v2

sm +
2

3
v2

tm + 2λ1 + 3λ2

)

δ2 − 2λ4 − 3λ3 − ib(2σ + 3ω)

]

µ +

+ (λ6 + 3λ5) δwn +

[

2

3
(v2

tm − v2
sm) + λ1

]

δ2Snn − 3γ3ϑ̄ = 0, (67)

2

3
λ6δ wn +

[

b2 +
1

3

(

4v2
tm − v2

sm

)

δ2 − 2λ4 − 2iσb

]

Snn + (68)

+
2

3

[

2

3
(v2

tm − v2
sm) + λ1

]

δ2µ = 0,

γ2bδ wn − κ∗γ3bµ + (iγδ2 − bγ1)ϑ̄ = 0 and ¯̺ = ρ∗ψwn. (69)

Last equation rules the propagation of mass wave and it relates the mass amplitude ¯̺ directly
with that of normal displacement wn, so when this is calculated, the first one is get by Eq.
(69)2.

For the residual amplitudes wn, µ, Sn and ϑ̄, we must pose the determinant of their coefficients
equal to zero in order to have a nontrivial solution of the system (66)-(69)1; therefore, we get
a 4th-order equation in δ2, which can be resolved with the Ferrari-Cardano derivation of the
quartic formula, after the application of the Tchirnhaus transformation by mean of numerical
techniques (see [32] and [35]). By the way, an exact analytical solution of the dispersion
relation for longitudinal waves is very complicated and without interest to be reported here
explicitly: instead we are concerned to summarize the behaviour of all wave numbers δ2

e , δ2
d , δ2

v

and δ2
th, which are dominated by displacement, deviatoric and spherical parts of microstrain

and thermal fields, respectively. Hence, there exist four coupled longitudinal waves: the first
one δ2

e is predominantly an elastic wave of dilatation, the second one δ2
d is associated with an

equivoluminal microelastic wave, the third one δ2
v is predominantly a volume fraction wave
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of pure dilatation, the last one corresponding to δ2
th is similar in character to a thermal wave;

from numerical outcomes, the two micro-waves result to be slower than elastic and thermal
waves, the elastic one being the fastest: this is in accordance with experimental evidence.

By disregarding micro-rotation and thermal effects, we are able to observe that the micro-wave
solution above can be acknowledged in some developments of §8 of [17] for elastic plates and,
peculiarly, the velocity of the elastic wave is less than that which would be calculated for
classical elasticity vl due to the phenomenon of the compliance of pores. In addition, if we
neglect non-spherical contributions to the microstrain in constitutive equations (35), we find
solutions of voids theory [36].

The longitudinal waves are all dispersive in character, because of the coupling of Eqs.
(66)-(69)1, and suffer attenuation (the thermal mode with a large coefficient) due to the thermal
coupling and to the presence of voids. Furthermore, if the two dissipation coefficient σ and ω
are zero, we can observe the phenomenon of the resonance.

For low frequencies, there is no damping effect in either of the four modes. The only
significant wave is the δe-one, because the other three modes almost do not exist and their
attenuation coefficients remain very small and approach zero with the frequency itself; instead
the velocity vl of the δe-wave is increased by a small amount due to the thermomechanical
coupling, but decreased significantly because of nano-porosity effects; the attenuation is a
quite small constant.

If frequencies are high, the δd micro-wave, of speed v2
d = 2v2

tm − v2
sm + λ1 > 0 by inspection,

and the δv one, which travels with velocity v2
v = 5

3 v2
sm − 2

3 v2
tm + 3λ2 > 0 for (30)4,5, are

not accompanied by elastic or thermal modes, which are instead coupled, and vice versa;
attenuation coefficients for micro-modes remains small but constant. Elastic mode propagates
with the classical speed vl and attenuation coefficient which approaches zero slowly with the
frequency itself; instead the propagation velocity and the attenuation coefficient of the thermal
wave δth sharply increase with the frequency itself, being diffusive in nature. We notice
that the high frequency limits of the two micro-elastic waves correspond to the velocities of
acceleration waves in the same material, undeformed and at rest, obtained in [26].

Finally, it can be observed numerically that the specific loss l is significantly large when the
wave velocity has quite small value in some regions of frequency. The loss due to energy
dissipation is comparatively high in case of δe and δth-modes and moderate for predominantly
dilatation micro-elastic modes.

7. Macro-acceleration waves

We are now in a position to study acceleration wave propagation. We shall consider the
surfaces Σ that are weak singularities, defined as those carrying only jumps of the derivatives of
order 2 of the macro- and micro-displacement vectors and of order 1 of the thermal variables;
these singular surfaces of order 2 are called macro-acceleration waves and all external forces and
supplies, i.e. f, B and λ, are supposed continuous across them with all the derivatives (see,
also, [1, 37]).

Therefore, these peculiar discontinuity surfaces suffer 2nd-order derivative jumps of the
displacement u and 1st-order derivative jumps of the temperature variation ϑ and of the
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microstrain tensor V, which is, in our context, directly related to the left Cauchy-Green tensor
U of the micro-deformation.

Remark: It is noteworthy that our definition of macro-acceleration wave differs from usual
definitions of acceleration waves in, e.g., [27, 38, 39] because they examine singularities of
order 2 for both macro- and micro-structural kinematic variables u and V. Moreover, our
study of standard acceleration waves in [26] shows that, in the linear theory, these jumps are
in general uncoupled unless the instantaneous acoustic macro- and micro-tensor have some
eigenvalue coincident (see, also, the comments about the non-linear theory in §8 of [39]).

The normal velocity of displacement υn of the macro-acceleration wave is continuous
everywhere in the body and, hence, the following Hugoniot-Hadamard compatibility
condition for the jump across Σ of the derivatives of an arbitrary field Ψ in B∗ holds (see,
e.g., (2.7)2 of [40]):

[[∇Ψ]] = ∇ [[Ψ]]− υ−1
n [[ Ψ̇]]⊗ n. (70)

In particular, if the field Ψ is continuous in B∗, Eq. (70) reduces to

υn[[∇Ψ]] = −[[ Ψ̇]]⊗ n. (71)

7.1. Homothermal case

In the linear approximation, jump Eqs. (42) and (43) along a macro-acceleration wave Σ are
identically satisfied; instead the jump balance of energy (45) reduces to the Fourier condition

− γ[[∇ ϑ]] · n = γυ−1
n [[ ϑ̇]] = 0, (72)

where Eq. (71) were used. Thus, in linear porous thermoelasticity, the first derivatives of ϑ are
continuous and every macro-acceleration wave is homothermal.

The last jump condition (44) gives the following relation

υn[[ V̇]] + v2
sm[[∇V]] n + 2(v2

tm − v2
sm) sym ([[Div V]]⊗ n) +

+λ1 [(n · [[div V]]) I + sym ([[∇ ν]]⊗ n)] + λ2 (n · [[∇ ν]]) I = O, (73)

while the jumps of the balance laws (39) and (41) and of the derivative of Eq. (38) furnish
these other ones, when Eq. (72) is also used:

[[ ü]] = v2
t [[Δu]] + (v2

l − v2
t )[[∇ (Div u)]] + κ∗ (λ5[[∇ ν]] + λ6[[Div V]]) , (74)

γ [[Δϑ]] + γ2[[Div u̇]] + κ∗γ3[[ ν̇]] = 0, [[ ρ̇]] + ρ∗[[Div u̇]] = 0. (75)

Now we can use the Hugoniot-Hadamard condition (71) to get a system of algebraic
equations where the amplitudes of the discontinuities [[ ρ̇]], [[ ü]], [[ V̇]] and [[ ϑ̈]] are the unknown
quantities. With this end in view, we employ the following definitions of instantaneous
homothermal acoustic macro-tensor U (n ⊗ n) and micro-tensor C(n ⊗ n) (see, for analogy,
[26, 39]):
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U (n ⊗ n) :=
[

v2
t I + (v2

l − v2
t )n ⊗ n

]

, (76)

C(n ⊗ n) := [v2
sm I + (v2

tm − v2
sm)(Φ ⊗ n + n ⊗ I ⊗ n) +

+λ2 I ⊗ I + λ1 (I ⊗ n ⊗ n + n ⊗ n ⊗ I)], (77)

where we introduced the fourth-order tensor I and third-order tensor Φ of components,
respectively: Iijkl := δikδjl and Φijk := δiknj.

Therefore, from Eqs. (73)-(75), we are able to write the system of equations for the unknown
amplitudes in the following manner (see, also, [41]):

υn[[ ρ̇]] = ρ∗ [[ ü]] · n, (78)
[

υ2
nI − U (n ⊗ n)

]

[[ ü]] = −κ∗υn(λ5 n ⊗ I + λ6 I ⊗ n)[[ V̇]], (79)
[

υ2
n I − C(n ⊗ n)

]

[[ V̇]] = 0, (80)

γ [[ ϑ̈]] = κ∗γ3υ2
n I · [[ V̇]]− γ2υn[[ ü]] · n. (81)

In conclusion, the jump of macro-acceleration [[ ü]], ruled by Eq. (79), is in general coupled to
the discontinuities in the microstructural variable [[ V̇]], unlike the purely acceleration waves
studied in [26], as observed in the previous remark.

Hence to classify possible macro-acceleration waves Σ we must analyze in advance Eq. (80)
that gives three possible speed of displacement υn for the surface Σ related to:

◦) Two shear optical micro-waves, whose speed propagation is υn = vsm; the amplitude of the
discontinuity is [[ V̇]]sm = α(e ⊗ e − f ⊗ f) + β(e ⊗ f + f ⊗ e), where α and β are the scalar
components of the wave amplitude and, as before in the plane waves study, e and f are the
unit vectors in the plane orthogonal to n such that e · f = 0.

By inserting this solution in the other three Eqs. (78), (79) and (81), we obtain, in general,
that [[ ü]]sm = 0, [[ ρ̇]]sm = 0 and [[ ϑ̈]]sm = 0, that is, in essence, the waves carry
predominantly a change in the nano-pore structure without altering the thermoelastic
features of the matrix material.

Observation. Instead, in the particular case in which one eigenvalue of U coincides with
that of C, i.e., vt = vsm, (or vl = vsm), there could be also an associated transverse (or
longitudinal, respectively) macro-wave of free amplitude which not alters (or which alters,
respectively) mass and temperature fields; in this last case we have [[ ρ̇]]sm = ρ∗v−1

sm [[ ün]]sm

and [[ ϑ̈]]sm = −γ−1γ2vsm[[ ün]]sm.

◦) Two transverse micro-waves, with propagation velocity υn = vtm. Their amplitude is of the
form [[ V̇]]tm = χe(n ⊗ e + e ⊗ n) + χ f (n ⊗ f + f ⊗ n), with χe and χ f the components of
the amplitude itself. Now, there is a coupled transverse macro-wave, obtained by the study
of equation (79), of amplitude:

[[ ü]]tm =
κ∗vtmλ6

v2
t − v2

tm

(χe e + χ f f), (82)
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but no discontinuities along Σ in the mass and temperature fields, for equations (78) and
(81), as in the classical case, in fact [[ ρ̇]]tm = 0 and [[ ϑ̈]]tm = 0.

◦) One extensional micro-wave, whose vector amplitude is

[[ V̇]]em = δ(ζ n ⊗ n + e ⊗ e + f ⊗ f);

here δ is its scalar amplitude, ζ the constant so defined: ζ := 2(v2
tm−v2

sm+λ1)−λ2+
√

D
2(λ1+λ2)

, D the

discriminant D := 12λ1(λ1 + λ2) + 9λ2
8 + 4(v2

tm − v2
sm)(v

2
tm − v2

sm + 2λ1 − λ2) > 0 by
inspection for inequalities (30)4,5. This wave propagates at a constant speed υn = vem,

with v2
em := v2

tm + λ1 +
3
2 λ2 +

1
2

√
D: v2

tm + λ1 +
3
2 λ2 > 0 for the same inequalities and so

vem > vtm; obviously this result holds only if (λ1 + λ2) �= 0.

The coupled macro-wave is now longitudinal, that is,

[[ ü]]em = δ ̟ vem n, with the constant ̟ :=
κ∗

v2
l − v2

em
[2λ5 + (λ5 + λ6)ζ], (83)

and the discontinuity amplitudes in the mass and temperature variations are, respectively:

[[ ρ̇]]em = ρ∗δ ̟ and [[ ϑ̈]]em = δ ϑ̌, (84)

with the constant ϑ̌ := γ−1v2
em[κ∗γ3(2 + ζ)− γ2̟].

Remark. The longitudinal micro-waves of compaction or distention, usually predicted in the
voids theory [1, 38], is here excluded, in general, unless we impose the additional condition
of the subsequent point ii) on the constitutive thermoelastic constants.

If (λ1 + λ2) = 0, we have other two significant subcases:

i) one purely transverse micro-wave, of vector amplitude [[ V̇]]pm = ̺(I − n ⊗ n) and speed

v2
pm := v2

sm − 2λ1, which corresponds to another longitudinal macro-, mass, temperature wave
of amplitudes

[[ ü]]pm = ̺ ς vpm n, with ς =
2κ∗ λ5

v2
l − v2

pm
, (85)

[[ ρ̇]]pm = ρ∗̺ ς, [[ ϑ̈]]pm = ϑ̺̃, with ϑ̃ :=
v2

pm

γ
(2κ∗γ3 − γ2ς); (86)

ii) a purely longitudinal micro-wave, which recovers the quoted prediction of voids theories
and which propagates at constant speed v2

lm := 2v2
tm − v2

sm + λ1; the amplitude of the

discontinuity is [[ V̇]]lm = δ̂ n ⊗ n: thus it is a wave of compaction, if the scalar amplitude
δ̂ < 0, and of distention, if δ̂ > 0. In this last case the coupled wave is again longitudinal
and the connected amplitudes are

[[ ü]]lm = δ̂ ˆ̟ vlm n, with ˆ̟ =
κ∗(λ5 + λ6)

v2
l − v2

lm

, (87)

[[ ρ̇]]lm = ρ∗ δ̂ ˆ̟ , [[ ϑ̈]]lm = ϑ̂δ̂, with ϑ̂ :=
v2

lm

γ
(κ∗γ3 − γ2 ˆ̟ ). (88)
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7.2. Homentropic modes

In the particular case when the solid with nano-pores does not conduct heat, i.e., h ≡ 0
whatever ∇ ϑ we choose, then the energy balance (25) may be written, in the linear theory,
in the following form θ∗η̇ = λ and the jump across a macro-acceleration wave Σ shows that

[[ η̇]] = 0. (89)

Thus, we have established the following result: In a non-conducting thermoelastic body with
nano-pores, every macro-acceleration wave is homentropic.

The jump Eqs. (78) and (80) remain unchanged, while, since [[ ϑ̇]] �= 0, Eqs. (79) and (81) are
replaced by the following ones:

[

υ2
nI − U (n ⊗ n)

]

[[ ü]] = −κ∗υn(λ5 n ⊗ I + λ6 I ⊗ n)[[ V̇]]− γ2υn[[ ϑ̇]]n, (90)

γ1 υn[[ ϑ̇]] = γ2[[ ü]] · n − κ∗γ3υn I · [[ V̇]], (91)

where the relation (35)4 and the condition (71) were used in the jump of Eq. (39) and in Eq.
(89); by substituting Eq. (91) into Eq. (90) we obtain the following jump, similar to (79),

[

υ2
nI − Ũ (n ⊗ n)

]

[[ ü]] = −κ∗υn(λ̃5 n ⊗ I + λ6 I ⊗ n)[[ V̇]], (92)

but where we introduced the instantaneous homentropic acoustic macro-tensor

Ũ (n ⊗ n) :=
[

v2
t I +

(

ṽ2
l − v2

t

)

n ⊗ n
]

, (93)

with ṽ2
l := v2

l − γ2
2γ−1

1 , and the constant λ̃5 := λ5 − γ2γ3γ−1
1 .

The linear algebraic system of Eqs. (78), (92) and (80) for the amplitudes of the macro-
acceleration waves Σ in the homentropic case has the same five solutions with the same
propagation speeds, as the homothermal one: two shear optical micro-waves, two transverse
micro-waves and one extensional micro-wave. The only variation is in the extensional one
and consists in the change of constants vl and λ5 with ṽl and λ̃5, respectively.

Finally, the temperature jump (91) is absent in all shear optical and transverse micro-waves,
while in the extensional one we have:

[[ ϑ̇]]em = γ−1
1 [γ2ς − κ∗γ3(2 + ζ)] δ, (94)

with the constant ˜̟ := κ∗
ṽ2

l −v2
em
[2λ̃5 + (λ̃5 + λ6)ζ].

7.3. Generalized transverse case

This last subsection concerns the behaviour of macro-acceleration waves that are both
homothermal and homentropic and which are usually called generalized transverse waves. In
physical terms these waves are uninfluenced by thermo-mechanical coupling effects in the
transmitting matrix material of the porous solid.
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Both conditions [[ ϑ̇]] = 0 and γ = 0 apply; thus, from Eq. (91) (or from (81)), we obtain the
following compatibility condition for the generalized transverse wave:

[[ ü]] · n = κ∗γ3γ−1
2 υn I · [[ V̇]]. (95)

Also now we have shear optical and transverse micro-waves as in the previous instances;
instead, in general, extensional macro-acceleration waves do not occur, unless the condition
(95) is satisfied, that is: γ3(2 + ζ)(v2

l − v2
em) = γ2[2λ5 + (λ5 + λ6)ζ].

8. Evolution equations for wave amplitudes

Let us study now the growth or the decay of the macro-acceleration waves Σ which travel
through the thermo-elastic material with nano-pores, thus we restrict ourselves to plane
waves which are of uniform scalar amplitude with assigned initial value, uniform in the sense
that the scalar amplitude does not vary with position on Σ.

For this purpose, we differentiate twice with respect to time each term of Eq. (38) and once
those of Eqs. (39) and (41), take into account the balance of micromomentum (40) and form
jumps of all equations across the wave Σ to have:

[[ ρ̈]] = −ρ∗[[Div ü]],

d = v2
t [[Δu̇]] + (v2

l − v2
t )[[∇ (Div u̇)]] + κ∗

(

λ5[[∇ (tr V̇)]] + λ6[[Div V̇]]
)

+ γ2[[∇ ϑ̇]],

[[ V̈]] = v2
sm[[ΔV]] + 2(v2

tm − v2
sm) sym [[∇ (Div V)]] + λ1[[∇ 2(tr V)]] + (96)

+
{

λ1[[Div (Div V)]] + λ2[[Δ(tr V)]]− ω I · [[ V̇]]
}

I − 2σ[[ V̇]],

γ[[Δϑ̇]] + γ1[[ ϑ̈]] + γ2[[Div ü]] + γ3 I · [[ V̈]] = 0,

where d (≡ dnn + dee + d f f) represents the jump in the third time-derivative of the
displacement field u.

Algebraic computations, very similar to those carried out in [26, 42], with the use of
the Hugoniot-Hadamard compatibility condition (70) and of definitions (76) and (77) of
the homothermal acoustic tensors, we obtain the following evolution equations for the
propagating wave Σ:

[[ ρ̈]] = ρ∗(υ−1
n dn − Div [[ ü]]), (97)

[

υ2
nI − U (n ⊗ n)

]

d = κ∗υn
{

υn
[

λ5∇ (tr [[ V̇]]) + λ6Div [[ V̇]]
]

−
[

λ5(tr [[ V̈]])n + λ6[[ V̈]]n
]}

+

+υn

{

(v2
t − v2

l ) [(Div [[ ü]])n +∇ ([[ ü]] · n)]− 2v2
t (∇ [[ ü]])n − γ2[[ ϑ̈]]n

}

+ γ2υ2
n∇ [[ ϑ̇]], (98)

[

υ2
n I − C(n ⊗ n)

]

[[ V̈]] = 2υn(v
2
sm − v2

tm) sym
[

(Div [[ V̇]])⊗ n +∇ ([[ V̇]]n)
]

−

−2 υn

{

v2
sm(∇ [[ V̇]])n + λ1

{

sym [∇ (tr [[ V̇]])⊗ n] + (n · Div [[ V̇]])I
}

}

− (99)

−2 υn λ2[n · ∇ (tr [[ V̇]])]I − υ2
n[ω tr [[ V̇]] I + 2 σ [[ V̇]]],

γΘ = υn
[

2γ(n · ∇ [[ ϑ̈]]) + γ2dn
]

−
−υ2

n

(

γΔ[[ ϑ̇]] + γ1[[ ϑ̈]] + γ2Div [[ ü]] + κ∗γ3tr [[ V̈]]
)

, (100)

with Θ that indicates the jump in the third time-derivative of the temperature change field ϑ.
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Therefore, the transport equations in the linearized case will give standard evolution laws of
the type f ′ = −µ f and hence f = f0 e−µφ, where µ is a constant, f0 is the strength of the wave
at τ = τ0 and φ is the increasing distance, measured along the normal to the wave, from the
wave front at the same time.

8.1. Evolution of homothermal waves

Now, since for a plane homothermal macro-acceleration wave entering the natural reference
placement B∗ the jump of ϑ̇ vanishes for the Fourier condition (72), by developing the analysis
of equations (97)-(100) we get the following consequences:

8.1.1. Shear optical case

By inserting the micro-wave solution of §7.1 of amplitude [[ V̇]]sm and speed vsm, which have
fields ü, ρ̇ and ϑ̈ continuous through the wave, we obtain that:

[[ ρ̈]] = ρ∗ dnv−1
sm ,

[

v2
smI − U (n ⊗ n)

]

d = −κ∗vsm
[

λ5(tr [[ V̈]])n + λ6[[ V̈]]n
]

, (101)
[

v2
sm I − C(n ⊗ n)

]

[[ V̈]] =

= 2v3
sm

{[

dα

dn
+

σα

vsm

]

(f ⊗ f − e ⊗ e)−
[

dβ

dn
+

σβ

vsm

]

(e ⊗ f + f ⊗ e)

}

, (102)

γΘ = γ2vsmdn − κ∗γ3 v2
sm tr [[ V̈]]; (103)

hence, from Eq. (102), it must be [[ V̈]]11 = [[ V̈]]12 = [[ V̈]]13 = 0 and [[ V̈]]33 = −[[ V̈]]22, while
[[ V̈]]22 and [[ V̈]]23 remain undefined,

α(τ) = α0 exp

(

− σ

vsm
φ

)

and β(τ) = β0 exp

(

− σ

vsm
φ

)

, (104)

with α0 and β0 the values at τ = τ0. Instead, by analysing Eq. (101)2, we have that dsm = 0
and thus [[ ρ̈]]sm = 0 and Θsm = 0.

This kind of micro-wave does not cause any disturbance in the mechanical and thermal
fields and the scalar amplitudes α and β decay to zero as the time interval (τ − τ0) increases
indefinitely (because φ behaves so).

8.1.2. Transverse micro-wave

For the transverse solutions of §7.1, whose amplitude is [[ V̇]]tm, speed vtm and jump [[ ü]]tm
given by equation (82) (while ρ̇ and ϑ̈ are continuous), the algebraic system of evolution Eqs.
(97)-(100) reduces to the following one:

[[ ρ̈]] = ρ∗v−1
tm dn,

[

v2
tmI − U (n ⊗ n)

]

d = (105)

= κ∗v2
tmλ6

v2
tm + v2

t

v2
tm − v2

t

(

dχe

dn
e +

dχ f

dn
f

)

− κ∗vtm
[

λ5(tr [[ V̈]])n + λ6[[ V̈]]n
]

,

[

v2
tm I − C(n ⊗ n)

]

[[ V̈]] = −4v3
tmsym

[(

dχe

dn
+

σχe

vtm

)

e +

(

dχ f

dn
+

σχ f

vtm

)

f

]

⊗ n, (106)

γΘ = γ2vtmdn − κ∗γ3 v2
tmtr [[ V̈]]. (107)
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Therefore, we have from Eq. (106) that all the components of [[ V̈]]tm are equal to zero except
for the undetermined [[ V̈]]12 and [[ V̈]]13, while the scalar amplitudes are given by

χi(τ) = χi0 exp

(

− σ

vtm
φ

)

, for i = e, f , (108)

with χi0 the values at τ = τ0. Instead, Eqs. (105), (107) and (108) establish that

(dn)tm = [[ ρ̈]]tm = Θtm = 0, (di)tm =
κ∗vtm λ6

v2
t − v2

tm

(

[[ V̈]]1i +
σ(v2

tm + v2
t )

v2
tm − v2

t

χi

)

, for i = e, f . (109)

Also in this case the scalar amplitudes decay to zero as the time interval (τ − τ0) increases
indefinitely, but, unlike shear optical waves, we have here a macro-acceleration jump with
a third order discontinuity related to the elastic properties of nano-pores and to a part that
decays to zero.

8.1.3. Extensional mode

In this case the solutions of §7.1 for the amplitude and the speed are [[ V̇]]em and vem,

respectively, and thus, by applying Eqs (83) and (84), we have:

[[ ρ̈]] = ρ∗dnv−1
em − ρ∗vem̟

dδ

dn
,

[

v2
emI − U (n ⊗ n)

]

d = (110)

= κ∗vem

{

vem [2λ5 + (λ5 + λ6)ζ]
v2

em + v2
l

v2
em − v2

l

dδ

dn
n −

[

λ5(tr [[ V̈]])n + λ6[[ V̈]]n
]

}

,

[

v2
em I − C(n ⊗ n)

]

[[ V̈]] = −vem

{

2
dδ

dn
[λ1ζ + λ2(2 + ζ)] + vemω(2 + ζ)δ

}

I +

+2vem

{

dδ

dn

[

(v2
sm − 2v2

tm)ζ − λ1(2 + ζ)
]

− vemσζδ

}

(n ⊗ n) (111)

−2vem

(

v2
sm

dδ

dn
+ vemσδ

)

(e ⊗ e + f ⊗ f),

γΘ = vem

(

2 γ ϑ̌
dδ

dn
+ γ2dn

)

− v2
em

(

γ1ϑ̌δ + γ2vem̟
dδ

dn
+ κ∗γ3 tr [[ V̈]]

)

. (112)

The solutions of the system (111) are [[ V̈]]ij = 0, if i �= j, and [[ V̈]]33 = [[ V̈]]22, while,

to determine δ, it is necessary to know either of [[ V̈]]11 or [[ V̈]]22 previously, otherwise it

remains undetermined and we cannot say anything about the growth or the decay of this

wave; vice versa, if we are able to assign the behaviour of the amplitude δ, we can resolve

the remaining two jumps. Moreover, from Eqs. (110) and (112), we obtain that (de)em =
(d f )em = 0, while also [[ ρ̈]]em, (dn)em and Θem suffer of the same undeterminacies already

spoken about. The micro-wave is then accompanied by second and third order discontinuities

in macro-mechanical, mass and thermal fields.

8.1.4. λ1 + λ2 = 0 case.

In this peculiar subcase we observed in §7.1:
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i) A purely transverse micro-wave of amplitude [[ V̇]]pm and speed vpm, the other jumps

being given by Eqs. (85) and (86). By performing same developments of previous

solutions, we obtain that [[ V̈]]ij = 0, if i �= j, and [[ V̈]]33 = [[ V̈]]22 (which remain

undetermined); moreover, [[ V̈]]11 =
2v2

pmω

v2
tm−2v2

pm−λ1
̺, with the scalar amplitudes ̺ given

by ̺(τ) = ̺0 exp
(

−ω+σ
vpm

φ
)

(̺0 being the value at τ = τ0). Thus, it results that

(de)pm = (d f )pm = 0, while (dn)pm = Γ̺ − 2κ∗λ5vpm

v2
pm−v2

l

[[ V̈]]22, [[ ρ̈]]pm = ρ∗v−1
pmdn and

γΘpm = γ2vpmdn − 2κ∗γ3v2
pm[[ V̈]]22 −Π ̺, where Γ and Π are constants related to previous

defined constitutive constants.

Hence the third order discontinuity of the longitudinal macro-wave, induced by the purely

transverse micro-wave, has a first part that decays to zero as the time interval (τ − τ0)
go to infinity and a second one related to the elastic properties of nano-pores, as well as

discontinuities in the mass and temperature derivatives.

ii) A purely longitudinal micro-wave of amplitude [[ V̇]]lm and speed of propagation vlm for

which we have that all [[ V̈]]ij = 0, if i �= j, [[ V̈]]11 remains undefined and [[ V̈]]33 = [[ V̈]]22 =
ω

v2
lm−v2

sm+2λ1
δ̂, with δ̂(τ) = δ̂0 exp

(

−ω+σ
2vlm

φ
)

and δ̂0 its value at τ = τ0; in addition, also

now (de)lm = (d f )lm = 0, while (dn)lm = Ξ δ̂ − κ∗vlm(λ5 + λ6)[[ V̈]]11, [[ ρ̈]]lm = ρ∗v−1
lm dn

and γΘlm = γ2vlmdn − κ∗γ3v2
lm[[ V̈]]11 −Υ δ̂, with Ξ and Υ constants related to constitutive

constants.

Therefore, also the pure micro-wave of compaction or distention is accompanied by a third

order discontinuities in the mechanical field with a first part that decays to zero with the

increasing of the time interval (τ − τ0) and a second one related to nano-pores properties.

8.2. Homentropic and generalized transverse evolution instances

◦) Homentropic macro-acceleration waves: When the solid with nano-pores does not conduct

heat (see §7.2), we have to substitute evolution Eq. (100) with the following one:

γ1[[ ϑ̈]] = γ2υ−1
n dn − γ2Div [[ ü]]− κ∗γ3tr [[ V̈]], (113)

which is obtained by deriving with respect to the time τ the energy balance η̇ = θ−1
∗ λ, by

using relation (35)4 and by taking its jump.

As we observed in §7.2, discussions about this subcase follow closely those carried out

for the homothermal one with respect to shear optical and transverse macro-acceleration

waves; instead, for the extensional, purely transverse and purely longitudinal ones the

only change consists in the choose of constants ṽl and λ̃5 in place of vl and λ5: for example,

Eq. (110)2 must be substituted by

[

v2
emI − U (n ⊗ n)

]

dem = (114)

= κ∗vem

{

vem
[

2λ̃5 + (λ̃5 + λ6)ζ
] v2

em + v2
l

v2
em − ṽ2

l

dδ

dn
n −

[

λ5(tr [[ V̈]]em)n + λ6[[ V̈]]emn
]

}

,

while Eq. (113) gives γ1[[ ϑ̈]]em = γ2v−1
em (dn)em − γ2 ˜̟ vem

dδ
dn − κ∗γ3([[ V̈]]11 + 2[[ V̈]]22).
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Hence, with this simple change of constants, the conclusions about the evolution of

amplitudes of the macro-acceleration waves remain the same as in the corresponding

homothermal case.

◦) Generalized Transverse Case: This last peculiar wave, both homothermal and homentropic,

has the same shear optical and transverse solutions as the homothermal case (see §7.2) and

so the solutions of the evolution equations have the same behaviour.

The extensional micro-wave, and so comments about its amplitude evolution, occurrs only

if the condition (95) is satisfied, i.e., γ3(2 + ζ)(v2
l − v2

em) = γ2[2λ5 + (λ5 + λ6)ζ].

9. Conclusions

The results showed in this chapter can be outlined as it follows:

a) Linear thermo-dynamic theory. We derived the linear theory of a thermoelastic solid with
nano-pores which includes inelastic surface effects associated with changes in the
deformation of the holes in the vicinity of void boundaries and which generalizes classical
voids theories. In order to get the fields equations we used the principles of objectivity and
equipresence, besides the compatibility with the Clausius-Duhem inequality.

b) Micro-vibrations. The first application to micro-vibrations in absence of dissipation gives
origin to three admissible results: a dilatational micro-thermal oscillation and two
solutions, both with no thermal vibrations, with the same frequency and with null trace: a
shear mode and an extensional mode with constant volume.

c) Plane waves. Here we presented the solutions of secular equations governing the
propagation of harmonic plane waves in the porous thermoelastic medium: there can
exist two shear optical micro-elastic waves, two coupled transverse elastic waves and four
coupled longitudinal thermo-elastic waves. The exact or approximate values of the phase
speeds, specific losses, attenuation factors and amplitude ratios are discussed for large and
small frequencies.

d) Macro-acceleration waves. Last investigation regarded the propagation conditions and
the growth equations which govern the motion of particular weak singularities, called
macro-acceleration waves, for which only jumps of the derivatives of the macro- and
micro-displacement of order 2 and of the temperature of order 1 are of interest in the theory.

We observed that, for a linear conducting homogeneous centrosymmetric isotropic
material with nano-pores, every macro-acceleration wave is homothermal and only three
speeds of propagation are possible: i) one related to two shear-optical micro-modes
completely decoupled from the mass and thermoelastic macro-properties of the matrix
material and which decay to zero when the time interval increases; ii) the second velocity
associated to two transverse micro-modes coupled with a transverse macro-acceleration
wave, spreading without perturbing mass and thermal fields: the micro-modes decay still
to zero, while the associated macro-ones have a constant part and an added contribution
that decays still to zero; iii) the third one linked to one extensional micro-wave coupled
with a longitudinal macro-wave and with discontinuities in the second and third order of
derivatives of mass and thermal fields.

Instead in the non-conducting case every wave is homentropic, but we obtained the same
number of propagation velocities and of macro-acceleration waves as in the previous
homothermal instance.
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At the end, for generalized transverse macro-acceleration waves, only the extensional
micro-mode does not occurr, in general.
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