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1. Introduction 

Although the researchers have done many efforts to perform the numerical model such as 

FEM (Finite Elements Method) to investigate the wave prorogation through the shells, the 

analytical vibro-acoustic modeling of the composite shells is unavoidable because of the 

accuracy of the model in a broadband frequency. Bolton et. al. [1] investigated sound 

transmission through sandwich structures lined with porous materials and following Lee et. 

al. [2] proposed a simplified method to analyze curved sandwich structures. Daneshjou et. 

al. [3-5] studied an exact solution to estimate the transmission loss of orthotropic and 

laminated composite cylindrical shells with considering all three displacements of the shell. 

Recently the authors [6] have presented an exact solution of free harmonic wave 

propagation in a double-walled laminated composite cylindrical shell whose walls 

sandwich a layer of porous material using an approximate method. This investigation is 

focused on sound transmission through the sandwich structure, which includes the porous 

material core between the two laminated composite cylindrical shells to predict the reliable 

results for all structures used foam as an acoustic treatment. 

Wave propagation through a composite cylindrical shell lined with porous materials is 

investigated, based on classical laminated theory. The porous material is completely 

modeled using elastic frame. The vibro-acoustic equations of the shell are derived 

considering both the shell vibration equations and boundary conditions on interfaces. These 

coupled equations are solved simultaneously to calculate the Transmission Loss (TL). 

Moreover, the results are verified with a special case where the porosity approaches zero. 

Finally, the numerical results are illustrated to properly study the geometrical and physical 

properties of composite and porous material. In addition, the effects of the stacking 

sequence of composite shells and fiber directions are properly studied. 
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2. Propagation of sound in porous media 

If the porous material is assumed a homogeneous aggregate of the elastic frame and the 

fluid trapped in pores, its acoustic behavior can be considered by the following two wave 

equations (See Eq. (22) and Eq. (25) of [1]): 

 4 2 0
1 2
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Eqs. (1) and (2) determine 2 elastic longitudinal waves and 1 rotational wave, respectively. 

In Eqs. (1) and (2)   is the vector differential operator, .se   u  is the solid volumetric 

strain, u  is the displacement vector of the solid,   u  is the rotational strain in the 

solid phase, 2 2
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, and 

t  is the wave number of the shear wave (See Eq. 10). 11 , 12  and 22  are equivalent 

masses given by: 
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where j  is the imaginary unit 2 1j   . 1  and 0  are the densities of the solid and fluid 

parts of the porous material. Moreover, parameters  , v ,  , r ,   and   are tortuosity, 

air viscosity, viscous characteristic length, flow resistivity, porosity, and angular frequency, 

respectively.  ,   and   represent material properties:  (1 )G   , G  , 2A   , 

/ 2(1 )E    and / (1 )(1 2 )A E     . E  and v  are the in vacuo Young’s modulus and 

Poisson’s ratio of the bulk solid phase, respectively. Assuming that pores are shaped in 

cylindrical form, an expression for G  is: 
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 (6) 

where   is the ratio of specific heats, 2c  is the speed of sound in the fluid phase of porous 

materials, PrN  represents the Prandtl number, and 0J  and 1J  are Bessel functions of the 

first kind, zero and first order, respectively.  a  is the inertial coupling term: 
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 0( 1)a     (7) 

The complex wave numbers of the two compression (longitudinal) waves,   and   

are: 
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where 
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and the wave number of the shear (rotational) wave is: 
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  is the shear modulus of the porous material. 

3. Simplified method 

As the full method is too complicated to model the porous layer in the curved sandwich 

structures, thus a simplified method is expanded for this category of structures [2]. The 

foundation of this approximate method considers the strongest wave between those ones. It 

includes two steps. At the first step a flat double laminated composite with infinite extents 

with the same cross sectional construction is considered using the full method. Then, only 

the strongest wave number is chosen from the results and the material is modeled using the 

wave number and its corresponding equivalent density. Thus, the material is modeled as an 

equivalent fluid. 

The strain energy which is related to the displacement in the solid and fluid phases can be 

defined for each wave component. The energy terms can be represented as follows; 1sE  and 

1 fE  for the airborne wave, 3sE  and 3 fE  for the frame wave and 5sE  for the shear wave, 

which the subscripts s  and f  represent the solid and fluid phase, respectively. For each 

new problem, comparing the ratios of the energy carried by the frame wave and the shear 

wave to the airborne wave in the fluid and solid phases: i.e., 
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show the strongest wave component in the entire frequency range. 
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4. Model specification 

Figure 1 shows a schematic of the cylindrical double shell of infinite length subjected to a plane 

wave with an incidence angle  . The radii and the thicknesses of the shells are ,i eR  and ,i eh  in 

which the subscripts i  and e  represent the inner and outer shells. A concentric layer of porous 

material is installed between the shells. The acoustic media in the outside and the inside of the 

shell are represented by density and speed of sound:  1 1,s c  outside and  3 3,s c  inside. 

 

Figure 1. Schematic diagram of the double-walled cylindrical composite shell lined with porous materials 
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5. Applying full method to two-dimensional problem 

For a two-dimensional problem as shown in the x y  plane of Fig. 2, the potential of the 

incident wave can be expressed as [1]: 

 1( )x yj x y

i e
  

   (12) 

where 1 sinx   , 1 1 cosy   , 1 1/ c  , 1c  is the speed of sound in incident Medium, 

  is the angle of incidence. 

 

Figure 2. Illustration of wave propagation in the porous layer 

Three kinds of the waves propagate in porous material, therefore six traveling waves, which 

have the same trace wave numbers, are induced by an oblique incident wave in a finite 

depth layer of porous material, as shown in Fig. 2. The x   and y   direction components of 

the displacements and stresses of the solid and fluid phases were derived by Bolton et. al. 

[1]. The displacements in the solid phase are: 
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The displacements in the fluid phase are: 
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The stresses in the solid phase are:  
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The stresses in the fluid phase are:  
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These complex relations and six constants 1 6D D  have to be determined by applying 

boundary conditions (BCs). When the elastic porous material is bonded directly to a panel, 

there exist six BCs. Also, the transverse displacement and in-plane displacement at the 

neutral axis can be followed as [1]: 
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( )tW x  and ( )pW x  are transverse and in-plane displacements. Four BCs are obtained from 

the interface compatibility: 
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where Ph  is the panel thickness and yV  is the normal acoustic particle velocity. Two BCs 

are obtained from the equations of motion, followed as: 
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where ( )l  is the mass density of the l th layer of the shell per unit midsurface area and ly  

is the distance from the midsurface to the surface of the l th layer having the farthest y  

coordinate. The material constant ( )ˆ lQ  is defined as 
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the l th ply, respectively. The fiber coordinates of ply is described, as 1 and 2, where 

direction 1 is parallel to the fibers and 2 is perpendicular to them. In BCs, the first signs are 

appropriate when the porous material is attached to the positive y   facing surface of the 

panel, and the second signs when the porous material is attached to the negative y   facing 

surface. 

6. Prediction of ratios of the energy 

The energy related to the waves in the fluid phase and solid phase are descript as follows 

[2]. 

The airborne wave: 

  
2

2
1 1 1 12

1
.

2

y

fE b b D





  



 
   
 
 

 (28) 

  
2 2

2
1 1 12 2

1
1 . 2

2

y y

sE A b D
 

 

 
  

 

  
      
  

  

 (29) 

And the frame wave: 
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where the subscripts f  and s  represents the fluid and solid phases, respectively.  

7. Formulation of the problem 

In the external space, the wave equation becomes [3]: 

 

2( )
2 1( ) 0

1 1 2

I Rp p
I Rc p p

t

 
   


 (33) 

where Ip  and 1
Rp  are the acoustic pressures of the incident and reflected waves and 2  is 

the Laplacian operator in the cylindrical coordinate system, and 1c  is the speed of sound of 

outside medium. The wave equations in the fluid phase of the porous layer and internal 

space are the same as Eq. (33) with different variable names. 

The shell motions are described by classic theory, fully considering the displacements in all 

three directions. Let the axial coordinate be z , the circumferential direction be   and the 

normal direction to the middle surface of the shell be r . Equations of motion in the axial, 

circumferential and radial directions of a laminated composite thin cylindrical shell in 

cylindrical coordinate can be written as below [7]: 
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In which the subscripts i  and e  represent the inner and outer shells. q , q , and zq  are 

external pressure components. 0u , 0v , and 0w  are the displacements of the shell at the 

neutral surface in the axial, circumferential, and  radial directions respectively. The inertia 

terms are followed as: 
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R  is cylindrical radius. Mid-surface strain and curvature can be expressed as: 
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The forces and moments are: 
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where the extensional, coupling and bending stiffness, pqA   , pqB   and pqD    are: 
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( )l
pqQ   , material constant, is the function of physical properties of each ply. The displacement 

components of the inner and outer shell at an arbitrary distance r  from the midsurface 

along the axial, the circumferential and the radial directions are [8]: 

 
0 0

1
0

cos( )exp[ ( )]e ne z
n

u u n j t z  



   (44) 

 
0 0

1
0

sin( )exp[ ( )]e ne z
n

v v n j t z  



   (45) 

 
0 0

1
0

cos( )exp[ ( )]e ne z
n

w w n j t z  



   (46) 



Acoustical Modeling of Laminated Composite  
Cylindrical Double-Walled Shell Lined with Porous Materials 45 

 0 0
3

0

cos( )exp[ ( )]i ni z
n

u u n j t z  




   (47) 

 0 0
3

0

sin( )exp[ ( )]i ni z
n

v v n j t z  




   (48) 

 0 0 cos( )exp[ ( )]
3

0
w w n j t z

i ni z
n

  


 


 (49) 

In Eqs. (44 - 46) 1 , wave number in the external medium, is defined as 1
1c

  , 

1 1 sinz   , 1 1 cosr    and in Eqs. (47 - 49) 3 , wave number in the internal cavity, is 

expressed as 3
3c

  , 
3 1z z
  , 2 2

3 3 3r z
    .  

The boundary conditions at the two interfaces between the shells and fluid are [2]: 
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1s  and 3s  are densities of outside and inside acoustic media, respectively. 2s  is the 

equivalent density of the porous material and can be obtained from the Simplified method 

as suggested in [2]. The harmonic plane incident wave Ip  can be expressed in cylindrical 

coordinates as [2]: 
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where 0p  is the amplitude of the incident wave, 0,1,2,3,...n   indicates the circumferential 

mode number, 1n   for 0n   and 2  for 1,2,3,...n  , and nJ  is the Bessel function of the 

first kind of order n .  
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Considering the circular cylindrical geometry, the pressures are expanded as: 
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where 1
nH  and 2

nH  are the Hankel functions of the first and second kind of order n ,  

2 3 1z z z    , and 2 2
2 2r z    . The wave number, 2 , in the porous core can be 

obtained from the simplified method as suggested in [2]. 

Substitution of the expressions in the displacements of the shell (Eq. (44)-Eq.(49)) and the 

acoustic pressures (Eq. (54)-Eq.(58)) equations into six shell equations (Eq. (34)-Eq.(36)) and 

four boundary conditions (Eq. (50)-Eq.(53)) yields ten equations, which can be decoupled for 

each mode if the orthogonality between the trigonometric functions is utilized. These ten 

equations can be sorted into a form of a matrix equation as follow: 
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where [ ]h  is a 10 10  matrix with components given in Appendix  and  λ  is: 
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The ten unknown coefficients 1
R
np , 2

T
np , 2

R
np , 3

T
np , 0

neu , 0
nev , 0

new , 0
niu , 0

niv  and 0
niw  are 

obtained in terms of 0p  with solving Eq. (59) for each mode n , which then can be 

substituted back into Eqs. (44) to (49) and (54) to (58) to find the displacements of the shell 

and the acoustic pressures in series forms. 

8. Calculation of transmission losses (TLs) 

The transmission coefficient, ( )  , is the ratio of the amplitudes of the incident and 

transmitted waves. ( )   is obviously a function of the incidence angle   defined by [2]: 
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where 1n   for 0n   and 2n   for 1,2,3,...n  .  Re  and the superscript   represents 

the real part and the complex conjugate of the argument. 

To consider the random incidences, ( )   can be averaged according to the Paris formula [9]: 
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where m  is the maximum incident angle. Integration of Eq. (62) is conducted numerically 

by Simpson’s rule. Finally, the average TLs is obtained as: 

 
1

10logavgTL 
τ  (63) 

In the following, the averaged TLs of the structure is calculated in terms of the 1/3 octave 

band for random incidences. 

9. Convergence algorithm 

Eqs. (44) to (49) and (54) to (58) are obtained in series form. Therefore, enough numbers of 

modes should be included in the analysis to make the solution converge. Therefore, an 

iterative procedure is constructed in each frequency, considering the maximum iteration 

number. Unless the convergence condition is met, it iterates again. When the TLs calculated 

at two successive calculations are within a pre-set error bound, the solution is considered to 

have converged. An algorithm for the calculation of TLs at each frequency is followed as: 

REPEAT 

1
10lognTL


  

Set 1n n   

UNTIL 6
1 10n nTL TL 

    

10. Numerical results 

Parametric numerical studies of transmission loss (TLs) are conducted for a double-walled 

composite laminated cylindrical shell lined with porous material specified as follows, 

considering 1/3 octave band frequency. Table 1 presents the geometrical and environmental 

properties of a sandwich cylindrical structure. Each layer of the laminated composite shells 
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are made of graphite/epoxy, see Table 2. The plies were arranged in a 0 ,45 ,90 , 45 ,0 s
  
      

pattern. 

The results are verified by those investigated by the authors’ previous work for an especial 

case in which the porous material properties go into fluid phase (In other world, the 

porosity is close to 1). The comparison of these results shown in Fig. 3, indicates a good 

agreement. 

The calculated transmission loss for the laminated composite shell is compared with those of 

other authors for a special case of isotropic materials. In other word, in this model the 

mechanical properties of the lamina in all directions are chosen the same as an isotropic 

material such as Aluminum, and then the fiber angles are approached into zero. Fig. 4 

compares the TL values of the special case of laminated composite walls obtained from 

present model and those of aluminum walls from Lee’s study [2]. The results show an 

excellent agreement. 

We are going to verify the model in behavior comparing the results of cylindrical shell in 

a case where the radius of the cylindrical shell becomes large or the curvature becomes 

negligible with the results of the flat plate done by Bolton [1] (See Fig. 5). It should be also 

noted that both structures sandwich a porous layer and have the same thickness. 

Although it is not expected to achieve the same results as the derivation of the shell 

equations is quite different comparing with derivation of plate equations, however, the 

comparison between the two curves indicate that they behave in a same trend in the 

broadband frequencies. 

 

 Ambient Outer Shell Porous Core Inner Shell Cavity 

Material Air Composite Porous Material Composite Air 

Density (kg/m3) 1.21 - - - 0.94 

Speed of Sound (m/s) 343 - - - 389 

Radius (mm) - 172.5 - 150 - 

Thickness (mm) - 2 20 3 - 

Bulk Density of Solid 

Phase* (kg/m3) 
- - 30 - - 

Bulk Young’s Modulus* 

(kPa) 
- - 800 - - 

Bulk Poisson’s Ratio (-) - - 0.4 - - 

Flow Resistivity (MKs) - - 25000 - - 

Tortuosity (-) - - 7.8 - - 

Porosity (-) - - 0.9 - - 

Loss Factor (-) - - 0.265 - - 

* in vacuo. 

Table 1. Geometrical and environmental properties [2] 
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 Graphite/epoxy Glass/epoxy 

Axial Modulus (GPa) 137.9 38.6 

Circumferential Modulus (GPa) 8.96 8.2 

Shear Modulus (GPa) 7.1 4.2 

Density (kg/m3) 1600 1900 

Major Poisson’s Ratio (-) 0.3 0.26 

Table 2. Orthotropic properties [3] 

Figure 6 indicates that whenever the radius of the shell descends, the TL of the shell is 

ascending in low frequency region. It is due to the fact that the flexural rigidity of the 

cylinder will be increased with reduction of shells radii. In addition, decreasing the radius of 

the shell leads to weight reduction and then in high frequency especially in Mass-controlled 

region the power transmission into the structure increases. 

Figure 7 shows the effect of the composite material on TL. Materials chosen for the 

comparison are graphite/epoxy and glass/epoxy (Table 2). The figure shows that material 

must be chosen properly to enhance TL at Stiffness-control zone. The results represent a 
desirable level of TL at Stiffness-control zone (Lower frequencies) for graphite/epoxy. It is 

readily seen that, in higher frequency, as a result of density of materials, the TL curves are 

ascending. Therefore, the TL of glass/epoxy is of the highest condition in the Mass-

controlled region. 

It is well anticipated that increase of porous layer thickness leads to increase of TL. As 

illustrated in Fig. 8, a considerable increase due to thickening the porous layer is obtained. 

As it is well obvious from this figure, the weight increase of about 12% ( 60ch   mm) and 

25% ( 100ch  mm), the averaged TL values are properly increased about 35% and 60%, 

respectively in broadband frequency. It is a very interesting result that can encourage 

engineers to use these structures in industries. 

Figure 9 shows a comparison between the transmission loss for a ten-layered composite 

shell and an aluminum shell with the same radius and thickness. Since, the composite shell 

is stiffer than the aluminum one, its TL is upper than that of aluminum shell in the Stiffness-

controlled region. However, as a result of lower density of composite shell, it does not 

appear to be effective as an aluminum shell in Mass-controlled region. 

The effect of stacking sequence is shown in Fig. 10. Two patterns 0 ,90 ,0 ,90 ,0 s
 
 
      and 

90 ,0 ,90 ,0 ,90 s
 
 

      are defined to designate stacking sequence of plies. The arrangements 

of layers are so effective on TLs curve, especially on Stiffness-controlled region. However, 

no clear discrepancy is depicted in Mass-controlled region. 
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Figure 3. Comparison of cylindrical double-walled shell with and without foam where porosity close to 1 

 

 
 

Figure 4. Comparison of cylindrical isotropic double-walled shell with special case of laminated composite 

double-walled shell ( 150iR  mm, 200eR  mm, 3ih  mm, 2eh  mm, and 47.5ch  mm) 
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Figure 5. Comparison of an isotropic cylindrical double-walled shell with a negligible curvature and a 

double-panel structure 

 

 
 

Figure 6. Comparison of a cylindrical double-walled shell lined with porous material with different 

inner shell’s radius 
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Figure 7. Comparison of a TL curves for ten-layer laminated composite shell with different material 

 

 
 

Figure 8. Comparison of a cylindrical double-walled shell lined with porous material with different 

core thickness 
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Figure 9. Comparison between Aluminum and ten-layer laminated composite shell 

 

Figure 10. TL curves for the ten-layered composite shell with respect to stacking sequence 

11. Conclusions 

Transmission losses (TLs) of double-walled composite laminated shells sandwiching a layer 

of porous material were calculated. It is also considered the acoustic-structural coupling 

effect as well as the effect of the multi-waves in the porous layer. In order to make the 
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problem solvable, one dominant wave was used to model the porous layer. In general the 

comparisons indicated the benefits of porous materials. Also, a considerable increase due to 

thickening the porous layer was obtained. For example, the weight increase of about 12% 

and 25% may respectively lead to an increase of 35% or 60% in amount of averaged TL 

values in broadband frequency. In addition, it was shown that increasing the axial modulus 

of plies made the TL be increased in low frequency range. Moreover, the comparison of 

double-walled shell with a gap and the one sandwiched with porous materials (where the 

porosity is close to 1) indicated a good agreement. Eventually the arrangement of layers in 

laminated composite can be so effective in Stiffness-controlled region. Therefore, optimizing 

the arrangement of layers can be useful in future study. 
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Nomenclature 

1A , 2A     Physical and geometrical factors 

pqA   , pqB  , pqD   , Â , B̂ , D̂   Stiffness coefficients 

1 6D D     Wave equations constants 

E     Bulk Young’s modulus 
( )
1
lE     Module of elasticity in the direction 1 of the l th ply 

1 fE , 1sE , 3sE , 3 fE , 5sE  The strain energy associated with the displacement in 

the solid and fluid phases 

nJ     Bessel function of the first kind of order n  

1
nH , 2

nH     Hankel functions of the first and second kind of order n  

I , I


, 1I


, 2I


   Inertia terms 

PrN     Prandtl number 

N , N , N , M , M , M  Forces and Moments 

( )ˆ lQ , ( )l
pqQ      Material constant 

,i eR R     Radii of inner and outer shell 

yV     Normal acoustic particle velocity 
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,I TW W  The incident and transmitted power flow per unit length 

of the shell 

( )tW x , ( )pW x    Transverse and in-plane displacements 

1 3,c c     Speed of sound in external and cavity media 

2c     Speed of sound in the fluid phase of porous materials 

se     Solid volumetric strain 

,i eh h     Shell wall thickness of inner and outer shell 

Ph     Thickness of Panel 

n     Circumferential mode number 

q , q , zq    External pressure components 

ˆ
ambp     Acoustic pressures applied on the panel 

0p     Pressure amplitude of the incident wave 

1
Rp , 2

Tp , 2
Rp , 3

Tp  Incident, Reflected and transmitted pressures in 

external, porous layer and cavity media 

1s , 2s , 3s  Density of external medium, equivalent density of the 

porous material and internal medium 
0u , 0v , 0w  Displacements of the shell in the axial, circumferential, 

and radial directions 

u     Displacement vector of the solid 

ly  Distance from the midsurface to the surface of the l th 

layer having the farthest y  coordinate 

z , , r     Cylindrical coordinate 

     Tortuosity 

n     Neumann factor 

v     Air viscosity 

     Shear modulus of the porous material 

0     Densities of the fluid parts of the porous material 

( )l  Mass density of the l th layer of the shell per unit 

midsurface area 

1     Bulk density of the solid phase 

a     Inertial coupling term 

11 , 12 , 22    Equivalent masses 

     Viscous characteristic length 

r     Flow resistivity 

     Porosity 

2     Laplacian operator in the cylindrical coordinate system 
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     Angle of incidence 

m     Maximum incident angle 

 , ,      Material properties 

     Angular frequency 

     Rotational strain in the solid phase 

1 , 3     Wave number in external and cavity media 

 ,  , t  Complex wave numbers of the two compression and 

one shear waves 

i     Potential of the incident wave, 2D dimension 

ˆ
xu , ˆ

yu , ˆ
xU , ˆ

yU  Displacement components in the solid and fluid phases, 

2D dimension 

ˆ s
y , ˆ

xy , ˆ f    Stresses in the solid and fluid phases, 2D dimension 

( )
12
lv , ( )

21
lv  Poisson’s ratios in the directions 1 and 2 of the l th ply, 

2D dimension 

̂     Bulk Poisson’s ratio 

̂     Loss factor 

     Ratio of specific heats 

 Re ,     Real part and the complex conjugate 

Appendix 

The non-zero components of the matrix [ ]h  appearing in equation (59) are followed as: 
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