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1. Introduction 

The two elastic constants of bulk and shear moduli are insufficient to describe the nonlinear 

acoustic nature of solid materials under higher confining pressure. The theory of third-order 

elastic constants (nonlinear acoustics) has long been developed to analyze the velocity vs 

stress relationships in theoretical and experimental research for hyperelastic solid materials 

[1-7]. 

The 3rd order constants theory in solid material was completed with the papers by Toupin 

and Bernstein, Jones and Kobett and Truesdell [8-10]. Truesdell used four 3rd-order elastic 

constants in his general theory for isotropic solid. Brugger [11] gave the thermodynamic 

definition of higher order elastic constants. In 1973, Green reviewed 3rd-order constants 

measurements of various crystals, and gave the relations between the 3rd-order constant 

notations in isotropic solids by different authors [12].  

From late 1980s to the present, 3rd-order nonlinear elasticity theory has been applied to rock 

experiments [13, 14]. For the special case of porous solid materials, Winkler et al. [15] 

measured third order elastic constants based on pure solid's acoustoelasticity theory in a 

variety of dry rocks and found that pure solid's third-order elasticity could successfully 

describe dry rock's velocity-stress relationships. A similar approach performed on water-

saturated rocks showed that traditional 3rd-order elasticity theory for the isotropic solid 

could not fully describe the stress dependence of velocities in water-saturated rocks [16]. For 

fluid-saturated porous material, as the confining pressure increases, the unrelaxed fluid's 

effect must be taken into account when probing into the quantitative relationships between 

two-phase rock's velocities and confining pressures. 

For the fluid/solid composite, Biot derived the two-phase wave equations on the basis of the 

linear elasticity, in which the coupling motion of solid and fluid was first analyzed. Based 
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on the same linear assumption, some new expansions on Biot's theory have included local 

fluid flow, dynamic permeability and multi-scale heterogeneity in last two decades [17-23]. 

Around linear poroelasticity, the research interests of recent years are focused on the 

frequency-dependent P- and S- waves' velocity and attenuation features which are 

influenced by patchy saturation, pore distribution and rock microstructure.  

According to Biot theory, an isotropic poroelastic medium has four independent static 

moduli (2nd-order elastic constants). Biot [24] developed semilinear mechanics of porous 

solids, in which total seven physical constants describes the semilinear properties of an 

isotropic media, four to characterize the linear behavior and three to characterize the 

nonlinear behavior. The theory is adapted to solid/fluid composite systems by Norris, Sinha 

and Kosteck in 1994 [25]. Biot [26] also gave eleven-constant elastic potential function for 

fluid-saturated porous media, in which seven 3rd-order elastic constants describe the 

nonlinear features of the two-phase system. Drumheller and Bedford chose a Eulerian 

reference frame to derive nonlinear equations for wave propagation through porous elastic 

media in 1980 [27], while Berryman and Thigpen chose a Lagrange reference frame in their 

theory [28].  

Donskoy, Khashanah and McKee [29] derived the nonlinear acoustic wave equations for 

porous media which established a correlation between the measurable effective nonlinear 

parameter and structural parameters of the porous medium. Their work is based on the 

semilinear approximation of Biot's poroelasticity theory. The assumption of semilinearity 

implies a linear relation between the volume change of the solid matrix and the effective 

stress, therefore a modified strain (Equ. 7 in [29], Equ. 54 in [24]) is used and the effective 

stress is included, so that the nonlinear acoustoelasticity equations can be simplified and 

only three independent 3rd-order elastic constants are needed to be considered in 

application. Dazel and Tournat [30] considered one-dimensional problems following this 

theoretical approach and derived the solutions for the second harmonic Biot waves. The 

wave velocity dispersion and dissipation were analyzed in a semi-infinite medium. Zaitsev, 

Kolpakov and Nazarov [31, 32] theoretically analyzed the experimental results of the 

propagation of low-frequency video-pulse signals in dry and water-saturated river sand and 

demonstrated the nonlinearity of such a loose granular media can be non-quadratic in 

amplitude.  

Grinfeld and Norris [33] derived wave speed formulas in closed-pore jacketed and open-

pore jacketed configurations to find a complete set of seven 3rd-order elastic moduli for 

poroelastic medium. Nevertheless, solid and fluid's finite strain is not included in Grinfeld 

and Norris's work, so that 2nd-order elastic constants will not appear in the velocity square 

vs compression ratio slope relations for both transverse and longitudinal waves. This means 

there will be no compatibility between their poro-acoustoelasticity theory and the pure solid 

material's acoustoelasticity theory, within which 2nd-order elastic constants do affect the 

velocity square vs compression ratio slopes (i.e. the slope in equation (1a) is 

   7 10 6 4l m , where   and   are 2nd-order elastic constants, and l  are m  the 3rd-

order elastic constants.).  
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In this paper, we derive the wave propagation equations by substituting the 11-term 

potential function and the Biot kinetic energy function into Lagrange equations. Finite strain 

is included, and the velocities and quality factors of P- and S-waves are analytically 

expressed as functions of components' strains, confining pressure, pore fluid pressure and 

rock's 2nd- and 3rd-order moduli in cases of hydrostatic and uniaxial loading conditions. 

The reduction of this theory to a pure solid's acoustoelasticity theory is discussed. 

Numerical examples for velocity and attenuation are given which are corresponding to the 

open-pore jacketed and closed-pore jacketed rock tests, respectively. In the last section, we 

perform ultrasonic P-velocity measurements in the "open-pore jacketed" and "close-pore 

jacketed" tests with hydrostatic loading. The comparisons between theory and rock 

experimental data are then given. 

2. Nonlinear wave equations for poroelasticity 

2.1. Review on nonlinear acoustoelasticity for pure solid material 

3rd-order elastic constants theory has long been developed to describe the wave 

propagation and mechanical deformation in pure solid material. The strain energy function 

for isotropic solid was given with three independent 3rd-order elastic constants (see Table1). 

For nonlinear waves propagating in an isotropic solid media, relations between velocity 

square and confining pressure was derived as [3, 5, 12, 34]. 
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Here,   and   are 2nd-order elastic constants. l , m  and n  are 3rd-order elastic constants. 

P  is confining pressure. 0  is density. The subscripts L  and T  denote longitudinal and 

transverse waves. The subscript P  denotes hydrostatic loading. The subscript a  denotes 

waves propagating parallel to uniaxial pressure. In waves propagating perpendicular to 

uniaxial pressure, subscript b  and c  respectively denote waves' vibrating parallel and 

perpendicular to uniaxial pressure. 
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Table 1. Brief relations between 3rd-order elastic constants by different authors [12]  

2.2. Review on linear, semilinear and nonlinear mechanics for poroelasticity 

In an isotropic medium, the strain energy is a function of four variables (see equ. 3.1 in [35]), 

the three invariants 1I , 2I , 3I of solid strain components and the fluid displacement 

divergence  .  

   1 2 3( , , , ),W W I I I   (2) 

Biot demonstrated that the expansion to the third degree of equation (2) leads to eleven 

elastic constants, and he only considered the linear relations to derive the quadratic form for 

W  in [35]. The semilinear mechanics for porous media was developed by Biot in [24].  

In nonlinear investigations for poroelasticity, perform Taylor expansion on equation (2) to 

the 3rd order so that we derive the power series of four independent variables 1I , 2I  3I and 

 (see equ. 5.9 in [26]). 
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2

.

W M I M I M M I M I M I M

M I I M I M I M I
 (3) 

Equation (3) is an elastic potential expression with four 2nd-order elastic constants and 

seven 3rd-order elastic constants.  

We list in table 2 the different notations for 2nd- and 3rd-order elastic constants which have 

been used in literatures of poroelasticity. 

There are 4 2nd-order terms in equation (3). 2
1 1M I  (the dilatation term) and 2 2M I  (the shear 

term) are mainly dependent on the elastic characteristics of the solid skeleton,  23M  is related 

to the pore fluid, and 4 1M I  is associated with the coupling effect between solid and fluid. If 

pore fluid has a extremely high bulk modulus (fluid's 2nd-order elastic constants) while solid 

grain has relatively lower bulk modulus for a specific porous material,  23M  may become the 

most significant term. But as to the natural rocks, solid grain's bulk modulus is much higher 

than pore fluid (generally solid modulus is one magnitude higher than fluid), therefore, 2
1 1M I  

and 2 2M I  are the most significant, 4 1M I  is the moderate, and  23M  is the least significant. 
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For a gas-saturated rock (in this case pore fluid has a very low elastic constant), 4 1M I  and 

 23M  tend to zero, and 2
1 1M I  and 2 2M I  dominate the effective elastic nature of the 

fluid/solid composite. For the rocks saturated with water or light oil, 4 1M I  is generally more 

significant than  23M , nevertheless, 4 1M I 's effects will get weaker with a high-porosity and 

softer solid skeleton. For the high-porosity poor-consolidated sand/sandstone, the term of 

 23M  may become more significant than 4 1M I . 
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Table 2. Different notations of 2nd and 3rd order elastic constants for poroelasticity 

 

 1st 2nd 3rd 4 th 5th 

Soft solid skeleton 

saturated with 

extremely high-

modulus fluid 

 37M   211 1M I  210 1M I  9 2M I  3
5 1M I , 6 3M I , 8 1 2M I I  

Rock saturated 

with water/oil 

3
5 1M I , 6 3M I ,

8 1 2M I I  
210 1M I  9 2M I   211 1M I   37M  

Rock saturated 

with gas 

3
5 1M I , 6 3M I ,

8 1 2M I I  
- - - 

 37M , 9 2M I ,

210 1M I ,  211 1M I  

(1st, the most significant level; 2nd, the 2nd significant level; 3rd, the 3rd significant level;  4th, the 4th significant level; 

5th, the lowest significant level, whose actual effect can be neglected.) 

Table 3. The significance of relative-magnitude of the 7 3rd-order terms in the nonlinear elastic 

potential expression 

As to the 7 3rd-order terms in equation (3), 3
5 1M I , 6 3M I  and 8 1 2M I I  are related to solid 

skeleton,  37M  is related to pore fluid, while 9 2M I , 210 1M I  and  211 1M I  are related to 

the fluid-solid coupling effect. The significance of the relative magnitude of these terms are 

listed in Table 3. As to the actual rocks in nature, the terms of 3
5 1M I , 6 3M I  and 8 1 2M I I  are 
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in the most significant level. In gas-saturated rocks,  37M , 9 2M I , 210 1M I  and  211 1M I  

can be neglected in comparison with 3
5 1M I , 6 3M I  and 8 1 2M I I , which means fluid's effect 

can be completely neglected. Therefore, the acoustoelasticity theory for a pure solid can be 

sufficient to describe the nonlinear wave phenomena in gas-saturated or dry rock samples. 

But as the fluid's elastic modulus increases, the terms of 9 2M I  and 210 1M I  will play an 

important role in its nonlinear elastic effects on the whole solid/fluid system. In this case, the 

pure solid's three 3rd-order elastic constants may be not enough to give a full description for 

nonlinear phenomena in a water/oil-saturated rock, which has been discussed in the 

experimental studies by Winkler et al [15, 16]. 

2.3. Finite strain in solid/fluid system 

If the fluid-saturated rock is loaded under high confining pressure, the infinitesimal strain 

expression is insufficient to describe solid’s and fluid’s microscale finite deformation. On 

this occasion, the Lagrangian strain tensor has much higher precision than infinitesimal 

strain for solid material. It can be written 

 
   

   
   

1
( ), , , 1,2,3
2

j i l l
ij

i j i j

u u u u
i j l

x x x x
      (4) 

where iu  denotes solid displacement in i  direction. The convention of summation over 

repeated indices is adopted. 

Different from Lagrangian description in solid material, the nonlinear problems of the 

acoustics of fluids are usually formulated in terms of an Eulerian description of wave 

motion [38, 40, 41]. Kostek, Sinha and Norris [38] gave the explicit relations for the two 

descriptions in inviscid fluid. In dealing with nonlinear problems involving both fluid and 

solid, the unified treatment of Lagrangian variables is used in this paper. If an assumption is 

reasonably made that fluid viscosity's effect on rock's shear deformation can be neglected so 

that fluid's shear deformation is completely ignored, the fluid's finite strain under high 

confining pressure can be approximately written   

  
  

  
  

1
, 1,2,3

2
i i i

ii
i i i

U U U
i

x x x
  (5) 

where iU  denotes fluid displacement in i  direction. The convention of summation over 

repeated indices is not adopted in equation (5). Here we only take into account the 

longitudinal finite deformation for those low viscous fluid like water and gas. For some non-

Newtonian fluid such as bitumen and heavy oil, finite shear deformation need be considered.  

In this paper, two types of rock experimental configurations, "open-pore jacketed" and "closed-

pore jacketed", are considered. The "closed-pore jacketed" system [33] corresponds to 

constancy of pore fluid mass, which means the fluid/solid composite are closed-pore jacketed 

with a impervious deformable jacket under confining pressure so that pore fluid cannot flow 

out solid matrix in experiments. The "closed-pore jacketed" system is the simplest and rather 
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difficult to realize in practice. The "open-pore jacketed" system [33, 42] corresponds to the 

constancy of fluid pressure, which means the fluid/solid composite are closed-pore jacketed 

with a thin impermeable jacket and the inside of the jacket is made to communicate with the 

atmosphere through a tube, so that in experiment pore fluid will flow out under confining 

pressure. The "open-pore jacketed" configuration is very common in actual rock tests. 

Pore fluid will not be finitely deformed like solid if the porous solid skeleton is "open-pore 

jacketed", especially in case of highly permeable rocks being saturated with low viscous 

fluid. In the open-pore jacketed porous media, fluid particles would rather flow out the 

matrix through connected pores and throats when being subject to pressure gradient, rather 

than get compressed into a finite deformation state. On the other hand, if the porous 

structure is "closed-pore jacketed" or the whole fluid system could be regarded as a closed 

system, finite deformation of the inclosed pore fluid will happen. 

Several wave speed formulas for specific experimental configurations are derived by 

Grinfeld and Norris [33]. However, finite strain (equations 4~5) has not been considered in 

their derivation, therefore their poro-acoustoelasticity velocity expressions can not be 

reduced to pure solid's acoustoelasticity expressions (equations 1a~1g) if we perform a 

gedanken experiment by replacing pore fluid with solid in a solid/fluid composite. 

2.4. Nonlinear wave equations in fluid-saturated solid structure 

In this paper, we use a theoretical approach similar to Biot's [35] and Norris's [33], but in our 

development finite strain is used instead of infinitesimal strain, so that this newly developed 

theory will be more appropriate to describe wave phenomena in the finite-deformed 

solid/fluid composed system. 

The dissipation function and the kinetic energy of a unit volume for the isotropic fluid-solid 

composed system [35] is given by 

   
     2 2 2 2

1 1 2 2 3 32 (( ) ( ) ( ) )D u U u U u U
k

        (6) 

           2 2 2 2 2 2
11 1 2 3 12 1 1 2 2 3 3 22 1 2 32 ( ) 2 ( ) ( )T u u u u U u U u U U U U             (7) 

Mass parameters 11 , 12  and 22  have been defined by [17,18].  ,   and k  are the 

constants of porosity, fluid viscosity and permeability. 

By applying Lagrange's equations and take iu  and iU  as generalized coordinates, 

generalized forces of solid and fluid phase are derived. 
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where if  and iF  satisfy 
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where ,i ju  designates 



i

j

u

x
. 

By substituting equations (9~10) into equations (8a~b), nonlinear wave equations in 2-phase 

medium are written as 

 
 

 

    
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, , 11 12

, , 12 22

( ) (a)

( ), (b)

ik j kj ik kj j i i i i

ik j kj ik kj j i i i i

a a u U b u U

b b u U b u U

J J

K K

  

  
 (11) 

where 
 2b
k

. 

By substituting equations (4~5) into equation (3), substituting equation (3) into equation (9), then 

solving ija  and ijb , and finally substituting into (11a~b), we derive the nonlinear acoustic wave 

propagation equations in 2-phase medium in which both solid and fluid's finite strain are 

considered. The full expansion scheme for equations (11a~b) is very complicated. In this paper, 

we only give simplified schemes for some particular experimental configurations. 

3. Wave speeds for specific experimental configurations  

3.1. The 3rd-order elastic constants for solid/fluid composite 

There are four 2nd-order and seven 3rd-order elastic constants in poro-acoustoelasticity 

theory. The determination of four 2nd-order elastic constants has been discussed by 
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[42]. In this subsection methods of measurement are described for the determination of 

the seven 3rd-order elastic constants. With the determination of all the 11 elastic 

constants, the poro-acoustoelasticity theory will be directly applicable to nonlinear 

solid/fluid systems. 

Studies of Winkler et al. [16] showed that traditional 3rd-order elastic constants theory of 

pure solid material gives much better description for observed velocity-pressure relations 

in dry rocks than in saturated ones. Therefore we assume the three 3rd-order elastic 

constants of bl , bm  and bn  are sufficient for describing nonlinear acoustic features in dry 

rocks. 

Three gedanken experiments have been discussed to determine the four 2nd-order elastic 

constants for poroelasticity. Similar approach was also adopted on the determination of the 

six 2nd-order elastic constants in double-porosity models [43]. For the case of poro- 

acoustoelasticity, the problem comes to much more complicated for determining the total 

seven 3rd-order elastic constants. 

Five gedanken experiments are designed. 

1. Because the fluid viscosity effect has been neglected and it will not directly contribute to 

the whole structure's higher-order distortion, the 3rd-order elastic coefficient of 3I  in 

equation (3) will satisfy 6 2 bM n . 

2. If the fluid-saturated rock sample surrounded by a flexible rubber is subject to a 

hydrostatic pressure hP  and the fluid is allowed to squirt out, all the outside pressure 

will be confined to the solid skeleton because fluid will squirt out when rock sample is 

squeezed. For the generalized stress tensors for solid and fluid phase ija  and ijb , 

because the rock sample only responds to frame stiffness and fluid pressure is nearly 

zero, 
 

  
   



2 21
, (a)

9
0, (b)

ii h b b b

ii

a P K e l e n e

b

  (12) 

where     11 22 33e . bK  is the bulk modulus of solid matrix. 

For isotropic rocks under hydrostatic loading,    11 22 33 . By substituting equations 

(12a~b) into equations (9), we get one relation between 5M , 7M , 8M , 9M , 10M , 11M  and 

bl , bm , bn . 

3. The fluid-saturated rock sample surrounded by a flexible rubber is subject to a uniaxial 

pressure uP  along axis 1, fluid being allowed to squirt out.  

The solid and fluid pressures are expressed as 
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       

     


2
11 22 33

22 33 22 33 11 33 11 22 22 33

2
22 33 11 22

11 33 22 33 11 33 11 22 11 33

4
( ) 2 ( ) ( 2 )

3
2 [ ( ) ] , (a)

4
0 ( ) 2 ( ) ( 2 )

3
2 [ ( ) ] , (b)

0 (c)

u b b b b b

b b

b b b b b

b b

ii

a P K e l m e

m e n

a a K e l m e

m e n

b

(13) 

where solid strain in two transverse directions are identical as  22 33 . 

By substituting equations (13a~c) into equations (9), we get one more relation. 

4. Let the open-pore jacketed porous sample be subjected to a uniform hydrostatic 

pressure fP .  

In the acoustoelasticity of solid grains and fluid, strains can be solved through 

 
 





 

 

 



2
3

2
3

, (a)

(b)

(1 ) , (c)

(d)

f s s

f f f

ii f

ii f

P K e K e

P K K

a P

b P

 (14) 

where sK  and fK  are the solid grain and fluid's bulk modulus. 3sK  and 3fK  indicate the 

solid grain and fluid's 3rd-order moduli [38]. 

  is the porosity. 

By substituting equations (14a~d) into equations (9), we get another two relations. 

5. The closed-pore jacketed porous rock is subjected to a uniaxial pressure uP  along axis 1, 

while at the same time the pore pressure is kept with pP . Let u pP P , we derive the last 

two relations as below. 

 

2
11 22 33 3 11 22 33

2
3

2
22 33

22 33 22 33 11 33 11 22 22 33

( ) ( ) , (a)

(b)

4
0 ( ) 2 ( ) ( 2 )

3
2 [ ( ) ] , (c)

4
( ) 2 (

3

p s s

p f f

b b b b b

b b

p b b b

P K K

P K K

K e l m e

m e n

P K e

     

 

   

         

 

          

 

        

               

     2
11 22

11 33 22 33 11 33 11 22 11 33

11

22 33

) ( 2 )

2 [ ( ) ] . (d)

(1 ) (e)

(f)

(g)

b b

b b

p

p

ii p

l m e

m e n

a P

a a P

b P

 

         






   

               

 

  



 (15) 
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The total strain in solid frame is then calculated with     11 11 11 ,     22 22 22 , 

    33 33 33 , where  ij  and  ij  denote solid strains induced by pore pressure and effective 

pressure respectively. 

By substituting equations (15a~g) into equations (9), we get the last two relations. 

The total seven relations in gedanken experiments (1~5) are well-posed to solve out the 

seven unknown 3rd-order elastic constants. 

3.2. Wave velocity expressions under hydrostatic confining pressure 

Based on poro-acoustoelasitcity theory, relations between acoustic wave velocity and 

loading pressure will be derived, which can be directly applicable to the actual 

measurements for fluid-saturated porous solids, especially in rock experiments.  

In this paper we only consider the case of rocks being subject to hydrostatic or uniaxial 

loading in experiments. No transverse stress is loaded on samples therefore both shear 

deformation of solid and fluid can be neglected.  

For simplicity let us consider the plane P-waves propagating along the axis ''1". Wave 

equations (11a~b) are reduced to 

 
 

 

     

     
11,1 11,1 1,1 11 1,11 11 1 12 1 1 1

11,1 11,1 1,1 11 1,11 12 1 22 1 1 1

( ), (a)

( ) (b)

a a u a u u U b u U

b b U b U u U b u U

  
  

 (16) 

For hydrostatic loading, the "large" part of the static strain in "small-on-large" constitutive 

relations induced by static confining pressure is expressed as 

 

 
   

 

   
       
   
   

0 0 0 0

0 0 , 0 0

0 0 0 0
ij ij  (17) 

where   is a component of the solid's deformation in the 3D space under hydrostatic 

loading, while   is a component of the fluid's deformation. 

The small dynamic strain induced by the plane P-waves' vibration along axis 1 is 

 

   

 

      
   

    
   
   

1 1[ (1 )] [ (1 )]0 0 0 0

0 0 0 , 0 0 0

0 0 0 0 0 0

i t kx i t kx

ij ij

Se S e

  (18) 

where S  and S  are wave amplitudes in solid and fluid phases.   and k  denote angle 

frequency and wave number. 

By substituting equations (17~18) into equations (16a~b), neglecting all terms whose power 

orders are higher than 1 and eliminating S  and S , equations (16a~b) will be simplified to  
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      

      

      


      

2 2 2 2
1 11 2 4 12

2 2 2 2
2 4 12 3 22

( )
0,

( )

k ib M k ib

M k ib k ib
 (19) 

where 

         1 1 1 2 5 8 4 10

3
(7 9 2 ) ( 3 ) ,

2
M M M M M M M  

       2 4 4 9 10 11 4

1 1 1
( 3 ) (3 ) ,

2 2 2
M M M M M M   

and  

      3 3 4 11 7 3

3
( 3 ) (9 7 ) .
2

M M M M M  

Frequency-dependent P velocity can be solved through  /V k . The fast and slow P-wave 

velocities respectively correspond to the two solutions of the quadratic equation. 

Similar to the reduction process from Biot equations to Gassmann equations [44] in zero 

frequency limit, if we neglect the relative motion between solid matrix and pore fluid, which 

means fluid particles have the same vibration amplitudes as solid in wave propagation (that 

is, S S ), equation (19) will be reduced to 

          2
1 2 3 42 ( ).V M  (20) 

where      11 12 222  denotes the average density [35]. 

Equation (20) is also a nonlinear extension of Gassmann theory. The difference between 

solid and fluid's "small" dynamic strain induced by wave vibration is neglected, while solid 

and fluid's "large" static strain induced by loading are still different with   . 

Another necessary condition must be satisfied to reduce equation (20) to equation (1a). By 

assuming pore fluid have the same static deformation as solid skeleton under hydrostatic 

loading, which means solid and fluid share the same constitutive relation, both in "small" 

dynamic and "large" static part, and then substituting    in equation (20), 

 
 




  

         

2
1 3 4

1 3 4 2 5 7 10 11 8 9[7( ) 9 ) 2( )]

V M M M

M M M M M M M M M M
 (21) 

Equation (21) is identical to equation (1a) if we take the average body deformation of 

 


3 2

P
 for  . The constant relations between different studies are listed in table 4 (As to 

the elastic potential W  in equation 3, a similar notation in equation 5.9 in [26] has been 

defined as a function of the relative variation of fluid content m ,    1( )m I . Since [26] 
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has used a different invariant for fluid phase, the constant relations between [26] and this 

paper are very complicated. If we assume   is also used in equation 5.9 in [26] by replacing 

m  with  , the constants can be listed in the column 4 of table 4.)  

 

This paper Biot [17, 18] 

Murnaghan [2]

Hughs & Kelly 

[5] 

Biot [26] 
Grinfeld & 

Norris [33] 

1M   2A N , P  - 12C 112  

3M  R - 62C 2  

4M  2Q - 82C 12  

 1 3 4M M M   2 2A N Q R   2 - - 

2

4

M
 N    2

2

C
 

2
2

 

5M  - - 32C 1112  

6M  - 2n  52C 32  

7M  - - 72C 2  

8M  - - 42C 122  

9M  - - 112C 22  

10M  - - 92C 112  

11M  - - 102C 12  

  5 7 10 11

2

M M M M
 - 

 2
3

l m
 - - 

8 9

2

M M
 - 2m  - - 

Table 4. The relations between elastic constants as used in different studies. (The relation between 

column 1 and column 3 holds when poro-acoustoelasticity theory is reduced to acoustoelasticity 

theory.) 

For plane S-waves propagating along 2 axis and vibrating along 1 axis, 

  
 

 

     

   
12,2 12,2 1,1 22 1,22 11 1 12 1 1 1

12 1 22 1 1 1

( ) (a)

0 ( ) (b)

a a u a u u U b u U

u U b u U

  
  

 (22) 

The small dynamic strain induced by S-waves is 

 

   

 

      
   

    
   
   

2 2[ (1 )] [ (1 )]0 0 0 0

0 0 0 , 0 0 0

0 0 0 0 0 0

i t kx i t kx

ij ij

Se S e

 (23) 



 
Wave Processes in Classical and New Solids 16 

By substituting equation (17) and equation (23) into equations (22a~b), 

 
     

     

    


   

2 2 2
11 12

2 2
12 22

0
k ib ib

ib ib
 (24) 

where 

         62
1 8 4 9

3 3 3
(3 ) ( )

4 4 4 2 4

MM
M M M M . 

Frequency-dependent S-velocity can be solved through equation (24). 

By assuming pore fluid has the same static deformation as solid skeleton, equation (24) 

comes to 

         2 62
1 4 8 9

3 3 3
(3 ) .

4 2 4 4 4

MM
V M M M M  (25) 

Equation (25) can not be directly reduced to equation (1b), because low viscous fluid's shear 

constitutive functions has been neglected in Biot theory. Return to pure solid's nonlinear 

acoustic theory needs to regard pore fluid as solid grains with the same shear constitutive 

behaviors. Therefore, neglecting solid/fluid relative deformation and adding the neglected 

term of fluid's shear deformation, S-velocity expression is reduced to  
 

         2 62
1 4 3 8 9

3 3
(3 3 3 ) ,

4 4 4 4

MM
V M M M M M  (26) 

which is identical to equation (1b). 

3.3. Velocity expressions under Uniaxial confining pressure 

For uniaxial loading along axis 1, the "large" static strain in "small-on-large" constitutive 

relations induced by confining pressure is expressed as 

   

 
   

 

   
       
      

0 0 0 0

0 0 , 0 0

0 0 0 0
ij ij  (27) 

The small dynamic strain induced by plane P-waves vibration along axis 1 is 

 

   

 

      
   

    
   
   

1 1[ (1 )] [ (1 )]0 0 0 0

0 0 0 , 0 0 0

0 0 0 0 0 0

i t kx i t kx

ij ij

Se S e

  (28) 

By substituting equations (27~28) into equations (16a~b),  
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      

      

      


      

2 2 2 2
1 11 2 4 12

2 2 2 2
2 4 12 3 22

( )
0,

( )

k ib M k ib

M k ib k ib
 (29) 

where  

           1 1 1 5 1 2 5 8 4 10

3
(5 3 ) (2 6 2 ) ( 3 )

2
M M M M M M M M M , 

          2 4 4 10 9 10 11 4

1 1 1
( ) ( 2 ) (3 )

2 2 2
M M M M M M M   

and  

          3 3 4 11 4 11 7 3

1
( ) ( 2 ) (9 7 )
2

M M M M M M M . 

The two frequency-dependent P velocities are solved out from equation (29). The equation 

will be reduced to equation (19) in hydrostatic loading configuration if     is satisfied.  

If the difference between solid and fluid deformation is neglected for uniaxial loading,  

            2
1 2 3 42 ( ).V M  (30) 

Equation (30) can not be directly reduced to equation (1c) like the reduction process from 

(19) to (1a) in hydrostatic case. In equation (30), if we replace the fluid strain   with the 

solid strain   along axis 1 and replace   with    along axis 2 and axis 3 (the two 

orthogonal directions perpendicular to axis 1), we can derive an analytical scheme which is 

completely compatible with equation (1c). 
 

 






  
      

         

2
1 3 4

1 3 4 5 7 10 11

1 3 4 2 5 7 10 11 8 9

[5( ) 3( )]

[2( ) 6( ) 2( )]

V M M M

M M M M M M M

M M M M M M M M M M

  (31) 

where 

 
  

 
     

   
 

( )
,

(3 2 ) 2 (3 2 )
u uP P

. 

With the same "large" static strain, for transverse waves propagating perpendicular to 

uniaxial loading and vibrating along loading, 

 

   

 

      
   

    
   
   

2 2[ (1 )] [ (1 )]0 0 0 0

0 0 0 , 0 0 0 ,

0 0 0 0 0 0

i t kx i t kx

ij ij

Se S e

  (32) 

Then 
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     

     

    


   

2 2 2
11 12

2 2
12 22

0,
k ib ib

ib ib
 (33) 

where 

            62
1 8 1 8 4 9

1 1 3 3
( ) (2 ) ( )

4 4 2 4 2 4

MM
M M M M M M . 

By replacing   with   and    and include fluid's shear constitutive relations, equation 

(33) will be reduced to an identical scheme of equation (1f). 

                 2 62
1 3 4 8 9

1
[( )( 2 ) ( )( 2 )]

4 4 4

MM
V M M M M M  (34) 

For longitudinal waves propagating perpendicular to uniaxial loading, assume rock sample 

is subject to a uniaxial pressure along axis 2 and the P-waves transmit along axis 1. The 

"large" strains are expressed as 

 

 
   

 

   
       
      

0 0 0 0

0 0 , 0 0

0 0 0 0
ij ij  (35) 

The small dynamic strain induced by plane P-waves propagating along axis 1 is 

 

   

 

      
   

    
   
   

1 1[ (1 )] [ (1 )]0 0 0 0

0 0 0 , 0 0 0

0 0 0 0 0 0

i t kx i t kx

ij ij

Se S e

 (36) 

Therefore, 

 
      

      

      


      

2 2 2 2
1 11 2 4 12

2 2 2 2
2 4 12 3 22

( )
0

( )

k ib M k ib

M k ib k ib
 (37) 

where 

              1 1 1 2 5 8 1 2 5 8 4 10

1 1 3
( 3 ) (6 6 ) ( 3 )

2 2 2
M M M M M M M M M M M , 

          2 4 9 10 4 9 10 11 4

1 1 1 1 1
( ) ( 2 ) (3 )

2 2 2 2 2
M M M M M M M M   

and  

         3 3 4 11 4 11 7 3

1
( ) ( 2 ) (9 7 )
2

M M M M M M M . 

The two frequency-dependent P velocities can be solved from equation (37).  
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If solid/fluid relative motion is neglected, replace fluid strain   with   and   , 

 







  

         

         

2
1 3 4

1 3 4 2 5 7 10 11 8 9

1 3 4 2 5 7 10 11 8 9

1
[( ) 3( ) ( )]

2
1

[6( ) 6( ) ( )] .
2

V M M M

M M M M M M M M M M

M M M M M M M M M M

  (38) 

Equation (38) is identical to equation (1d). 

For transverse waves propagating along uniaxial loading and vibrating perpendicular to 

loading, the static strain is expressed as equation (35) and the dynamic strain is 

  

   

 

      
   

    
   
   

2 2[ (1 )] [ (1 )]0 0 0 0

0 0 0 , 0 0 0

0 0 0 0 0 0

i t kx i t kx

ij ij

Se S e

 (39) 

Then 

 
     

     

    


   

2 2 2
11 12

2 2
12 22

0,
k ib ib

ib ib
 (40) 

where  

             62 2 2
1 8 1 8 4 9

1 1 3 3
( ) (2 ) ( )

4 2 4 2 2 4 2 4

MM M M
M M M M M M . 

A similar operation for the reduction to pure solid's acoustoelasticity leads to 
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1
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which is identical to equation (1e). 

For transverse waves propagating perpendicular to uniaxial loading and vibrating 

perpendicular to uniaxial loading, the dynamic strains are expressed as 
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Therefore 
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where  

             62 2 2
1 8 1 8 4 9

1 1 3 3
( ) (2 ) ( )

4 2 4 4 2 2 2 4

MM M M
M M M M M M . 

The reduction operation leads to 

                      2 62 2
1 3 4 8 9

1
[( )( 2 ) ( ) ( )( 2 )]

4 2 4 4

MM M
V M M M M M  (44) 

which is identical to equation (1g). 

Equations (19, 24, 29, 33, 37, 40, 43) are the central result of this paper, which are applicable 

in rock tests. 

4. Numerical tests for poro-acoustoelasticity  

The elastic and density coefficients of a virtual water-saturated porous rock sample are 

listed in table 5. The 2nd-order elastic constants and the density coefficients come from the 

actual sample of water-saturated Coldlake sandstone [45]. The seven 3rd-order elastic 

constants are assumed for numerical tests.  

4.1. Wave speeds for sample under hydrostatic loading 

If the rock sample is open-pore jacketed and subject to a hydrostatic pressure hP , and the 

fluid pressure is hold on one atmosphere (can be zero in approximation), we have the Biot's 

constitutive relations as    
2

3
hP Ae Ne Q  and  0 Qe R . In the virtual tests, the 

hydrostatic pressure changes from 0 to 30MPa. The solid and fluid's strains are directly 

solved. By substituting   /3e  and   /3  into equation (19) and equation (24), open-

pore jacketed wave speeds are calculated. 

For closed-pore jacketed rock sample in hydrostatic loading, the Biot's constitutive relations 

come to   
2

3
sP Ae Ne Q ,  fP Qe R ,  h s fP P P  and  /f fP K . Hydrostatic 

loading changes from 0 to 30MPa. By solving solid and fluid's strain and substituting into 

equation (19) and equation (24), "closed pore" wave speeds are calculated. 

The waves center frequency ranges from 100 to 1000 KHz. The numerical results for open- 

and closed-pore jacketed rock sample under hydrostatic loading are shown in figures 1~2. 

Figure 1 shows the relations between wave velocity and attenuation and confining pressure. 

Fast P wave velocity, Fast P wave inverse quality factor and S wave velocity are sensitive to 

the change in hydrostatic pressure. Fast P wave attenuation is significantly increased in 

loading process. Slow P wave's velocity in open-pore jacketed test reaches a maximum value 

around 13MPa. Moreover, S wave attenuation is entirely not affected by hydrostatic 
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pressure (it holds on  42.1569 10  at 1MHz), and slow P attenuation has very small change 

in relation to loading, therefore both have not been drawn in figure 1. 

 

1M  8.566 GPa 11 2111 Kg/ m3 

2M  -11.704 GPa 12 -348 Kg/ m3 

3M  0.7285 GPa 22 697 Kg/ m3 

4M  2.7 GPa  0.335 

5M  244.3 GPa k  1×10-12 m2 

6M  131.2 GPa bK 2.5 GPa 

7M  7.0 GPa   

8M  -449.8 GPa   

9M  -149.9 GPa   

10M  65.1 GPa   

11M  24.1 GPa   

Table 5. The coefficients of the virtual rock sample. 

Comparing with open-pore jacketed test, closed-pore jacketed test has lower fast P velocity 

(2380~2580m/s) and higher S and slow P velocity (1177~1284m/s and 52.5~61.7m/s 

respectively). Fast P inverse quality factor changes from 0.5  610  to 4.6  610 , which are 

much lower than open-pore jacketed tests (0.5  610 ~4.5  510 ). The sign of the predicted 

1/Q  is positive. The 1/Q  value is below 410 , which agrees with the description of 

dissipation of traditional Biot theory [17, 18] and is obviously lower than the level of the 

attenuation which can be caused by local fluid flow mechanism. Local fluid flow is not 

considered in this study, and according to Dvorkin et al. 1994 [46], the magnitude of 1/Q  

produced by local fluid flow may be 1~2 orders magnitude higher than the one produced by 

Biot friction. Pressure is mainly confined on solid skeleton in open-pore jacketed 

configuration, so solid's nonlinear acoustic wave feature dominates the whole rock's speeds. 

Pore water is more likely to be compressed in closed-pore jacketed test and its finite 

deformation undertakes part of pressure, therefore water's acoustoelasticity should be 

considered for closed-pore jacketed case. Actually, water's velocity- pressure slope is much 

lower than solid, therefore, closed-pore jacketed test will have lower fast P velocity than 

open-pore jacketed test since part of pressure is consumed by pore water instead of by solid 

matrix. The higher slow P velocity and lower inverse quality factors physically means 

solid/fluid coupling effect is strengthened, while Biot dissipation is weakened. 

Velocities and inverse quality factors vs pressure and attenuation are drawn in figure 2. For 

both cases, it is obvious that fast P wave and S wave are more sensitive to the changes in 

confining pressure than the changes in wave frequencies, while slow P waves are opposite. 

As to inverse quality factors, only fast P wave is sensitive to both the confining pressure and 
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the wave frequency. It reaches peak value at the highest center frequency and the largest 

pressure. S wave's inverse quality factor slightly increases when center frequency increases 

and shows no response to the loading variations.  

 

 

 
 

Figure 1. The results in hydrostatic loading with central frequency at 1M Hz. (a) Fast P wave velocity 

(dashed line for open-pore jacketed, solid line for closed-pore jacketed), (b) Fast P wave inverse quality 

factor, (c) S wave velocity, (d) Slow P wave velocity. 

Comparing open-pore jacketed results with closed-pore jacketed results shows that S wave 

inverse quality factors of the two cases are entirely equal and not affected by loading. Slow P 

inverse quality factors of the two cases have very small difference. S and slow P velocities of 

closed-pore jacketed test are always slightly higher than open-pore jacketed test. Fast P 

velocity of open-pore jacketed test is significantly higher than closed-pore jacketed test as 

confining pressure increases. Fast P inverse quality factor in open-pore jacketed test is lower 

than closed-pore jacketed test when confining pressure is below 5MPa, but gets much higher 

than closed-pore jacketed test when pressure reaches 30MPa. 
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Figure 2. The velocities and inverse quality factors vs pressure and centre frequency in hydrostatic 

loading (red faces for open-pore jacketed, blue faces for closed-pore jacketed). (a) Fast P wave velocity, 

(b) Fast P wave inverse quality factor, (c) S wave velocity, (d) S wave inverse quality factor, (e) Slow P 

wave velocity, (f) Slow P wave inverse quality factor. 

Mechanisms of "local fluid flow" have not been taken into account in this work. The pores in 

the rock are assumed to be equant when we derive the nonlinear acoustical wave equations 

for solid/fluid composite, which is also a basic assumption in Biot's theory [35]. In real rocks 

which contain both equant pores and soft pores, the contributions of wave-induced local 

fluid flow may be important for the explanation of the observed attenuation in rock tests. 

The produced attenuation in this study is mainly associated to the traditional Biot friction 
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and may be underestimated in comparison with an actual laboratory measurement. In the 

limitation of Biot's theory, the prediction of dissipation can be appropriate only in the case 

that local fluid flow can be neglected. 

4.2. Wave speeds for open-pore jacketed sample under uniaxial loading 

In this subsection a virtual test is analyzed with uniaxial loading configuration. The uniaxial 

pressure is uP . The fluid pressure is hold around zero. Biot's constitutive relations are 

written as   112uP Ae Ne Q ,   220 2Ae Ne Q , and  0 Qe R . Let uniaxial 

pressure change from 0 to 30MPa, 11e , 22e  and   are solved out. Substitute   11e , 

   22e  and    /3  into equations (29, 33, 37, 40, 43). Wave center frequency changes 

from 100 to 1000 KHz.  

Figure 3a shows that fast P velocity changes from 2380m/s to 2690m/s along loading 

direction and changes from 2383m/s to 2389m/s perpendicular to loading direction, while 

figure 3c shows slow P wave velocity increases slightly in transverse direction and decreases 

slightly in parallel direction in the loading process. On the same loading level, fast P inverse 

quality factor is higher in parallel direction than in transverse direction when loading pressure 

exceeds 5MPa, and both are much lower than in hydrostatic test. The 1/Q  vs pressure curve 

seems to have a trough around 6MPa along loading and around 8MPa perpendicular to 

loading. The sign of the predicted 1/Q  is positive and the value is below 410 . 

Numerical results for S waves are shown in figure 3d. All S velocities in three directions are 

sensitive to the changes of confining pressure. S wave transmitting along loading direction 

has the highest speed comparing with two other directions, changing from 1177m/s to 

1228m/s. S wave whose propagating and vibrating direction are both perpendicular to 

loading has relatively lower speed changing from 1177m/s to 1224m/s. S wave vibrating 

along uniaxial loading has the lowest speed changing from 1177m/s to 1184m/s. All three 

S velocities in uniaxial configuration are lower than the open-pore jacketed hydrostatic 

test, where S speed changes from 1177m/s to 1280m/s. For all the three directions in 

uniaxial test and for the unique direction in hydrostatic test, S waves share the same 

inverse quality factor independent to the pressure. It only changes with wave centre 

frequency. 

As has been shown in figure 1b and figure 3b, the predicted attenuation increases with 

confining pressure in average, which disagrees with the experimental results in [47]. Local 

fluid flow, which dominates the wave attenuation and dissipation phenomena in the rocks 

under low confining pressure, is depressed since the flat throats and soft pores tend to close 

under higher confining pressure, so that the attenuation in actual experiment generally 

decreases with effective stress. The mechanism of local fluid flow and its relation to the 

confining pressure has not been analyzed in this study. The numerical results are reasonable 

in condition that the rock pores are assumed to be equant and the local fluid flow 

mechanism can be neglected. 
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Figure 3. The open-pore jacketed results under uniaxial loading with central frequency at 1M Hz. (a) 

Fast P wave velocity (dashed line for along loading, solid line for perpendicular to loading), (b) Fast P 

wave inverse quality factor, (c) Slow P wave velocity, (d) S wave velocity (direction 1: uP  

propagating,  uP  vibrating; direction 2:  uP  propagating, uP  vibrating; direction 3:  uP  

propagating,  uP  vibrating). 

4.3. Wave speeds for closed-pore jacketed sample under uniaxial loading 

If water-saturated rock sample is closed-pore jacketed and subject to uniaxial pressure. In 

process of loading, because compressed pore water is not allowed to flow out from rubber 

jacket, the fluid phase will impose an extra stress increment on solid matrix in transverse 

directions. The six poroelastic constitutive relations are   112suP Ae Ne Q ,  fP Qe R , 

 u su fP P P ,   v 222sP Ae Ne Q ,  0 sv fP P  and  /f fP K , where suP  and vsP  

respectively denote solid stress components along the loading direction and perpendicular 

to loading. 

Numerical results for P waves are figured in figures 4a~4c. First particular feature in this 

configuration is that fast P speed in vertical direction decrease slightly ( from 2385 to 2345 

m/s ) when confining pressure increases, while all results in former three configurations 

show opposite trends. Fast P velocity changes from 2380 to 2660m/s along loading, slightly 
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lower than the open-pore jacketed uniaxial test. As is shown in figure 4b, another particular 

feature is that fast P inverse quality factors along uniaxial loading decreases with rise of 

pressure. Fast P inverse quality factor in vertical direction increases with loading and is 

much higher than in parallel direction ( 0.5~5.5  610  vs 0.5~3.5  610  ), while in open-pore 

jacketed test fast P inverse quality factor in vertical direction is lower than in parallel 

direction ( 5.2~2.4  710  vs 0.5~3.2  610  ).  

 

Figure 4. The closed-pore jacketed results under uniaxial loading with central frequency at 1M Hz.  

(a) Fast P wave velocity (dashed line for along loading, solid line for perpendicular to loading), (b) Fast 

P wave inverse quality factor, (c) Slow P wave velocity, (d) S wave velocity (direction 1: uP  

propagating,  uP  vibrating; direction 2:  uP  propagating, uP  vibrating; direction 3:  uP  

propagating,  uP  vibrating). 

Numerical results for S waves in closed-pore jacketed sample under uniaxial loading are 

shown in figure 4d. S wave transmitting along loading has the highest speed ranging from 

1177m/s to 1231m/s. S velocities in two vertical directions respectively range from 1177m/s 

to 1225m/s and from 1177m/s to 1186m/s. S-velocities in all three directions increase as 

loading rises. S velocities of closed-pore jacketed uniaxial test are very close to open-pore 
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jacketed uniaxial tests. In all test configurations of this paper, S inverse quality factors seem 

to share the same value which is only slightly dependent to wave centre frequency.  

5. Experimental data 

5.1. Physical setup 

Two hydrostatic loading tests (one for "open-pore jacketed" configuration, another for 

"closed-pore jacketed" configuration) are performed on a sandstone sample with moderate 

porosity (13.26 percent) and low permeability (1.21mD). The sample is collected from a gas 

reservoir in southwest China. It is from the depth of around 2000 meters from surface. The 

sandstone sample is mainly constructed by quartz and feldspar. Minor clays and rock 

fragments reside inside pores and grains. It is moderately sorted. The grain size ranges from 

below 0.1mm to around 1 mm. The pore size ranges from below 0.1 mm to around 0.4 mm. 

Most grains contact well, so as to form a rigid solid skeleton. The average grain density is 

2.659g/cm3. The grain bulk modulus is 39.0 GPa. 

The experimental setup consists of a digital oscilloscope and a pulse generator. In the test, 

the rock sample is jacketed with a rubber tubing to isolate it from the confining pressure. 

The receiving transducer is connected to the digitizing board in the PC through a signal 

amplifier. A pore fluid inlet in the endplate allows passage of pore fluid through the sample 

and can help to control the pore pressure inside rocks in experiments. We give a small 

modification on the original inlet instrument by adding a valve (it is closely connected to the 

inlet), so that the "closed-pore jacketed" configuration can be realized. The open-pore and 

closed-pore tests are performed respectively. In each test, the rock is full saturated with 

water, and both confining pressure and pore pressure is raised to 10 MPa before the P-wave 

speed measurements. In the "closed-pore jacketed" test, we keep the valve closed and raises 

the confining pressure from 10 to 62 MPa with an interval of around 4 MPa. The P-wave 

speed is measured and recorded in each pressure level. In the "open-pore jacketed" test, the 

valve is kept open in measuring process. The pore pressure is close to atmospheric pressure 

when confining pressure is not so high (it can be neglected comparing with the confining 

loading).  

5.2. Discussions on the theory and experimental data 

The relationship between the measured velocities of P waves and the confining pressure in 

the "open-pore jacketed" and "closed-pore jacketed" tests are shown in figure 5. In the both 

cases, measured P velocity increases as the confining pressure gets higher. Comparing with 

the closed-pore test, the velocity-pressure relationship in the open-pore test has a higher 

slope in a range of 10-35 MPa if it is fitted with a liner correlation, and the difference of 

measured velocities between open-pore and closed-pore tests increases as the confining 

pressure rises. However, when confining pressure increases in a higher range of 40-62 MPa, 

this difference decreases as the confining pressure rises. The observed velocity-pressure 

results of open-pore test will approach to the results of closed-pore test. 
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Based on the poro-acoustoelasticity theory, 11 elastic constants have to be determined if we 

want to predict the velocity-pressure relationships in actual rock. The four 2nd order elastic 

constants can be theoretically calculated with a Biot-Gassmann theory [48]. The dry bulk 

modulus can be estimated through Pride's frame moduli expression for consolidated 

sandstone [49] as    (1 ) /(1 )d sK K c , where dK , sK  and   are dry rock modulus, grain 

bulk modulus and porosity. c  are the consolidation parameter. We choose  8c  since it is a 

moderate porosity and good consolidated sandstone. According to Table 3, the 4 2nd order 

elastic constants can be calculated as 1 37.4M GPa , 2 -53.6M GPa , 3 0.273M GPa  and 

4 1.84M GPa . As to the 7 3rd-order elastic constants, more prior information about each 

component's higher-order elastic modulus should be fully realized if we want to give an 

applicable theoretical estimate. Moreover, some uniaxial loading tests and S velocity 

measurements should also be performed in the "open/closed-pore jacketed" configurations, 

so that all the 7 3rd-order elastic constants can be precisely determined and discussed. 

Nevertheless, these tests also require further improvements on our current experimental 

instruments. We will leave the issue for a future consideration. 

 

Figure 5. Comparison between experimental data and theoretical curves. 

In this paper, we use 4 3rd order elastic constants ( 5M , 6M , 8M  and 10M ) to fit the 

measured results in the open-pore and closed-pore jacketed tests, and neglect other 3 terms, 

since these four terms are considered as the most important for actual rocks as has been 

discussed in section 2.  
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Based on the numerical approach in Section 4, we perform numerical calculation and draw 

the velocity-pressure curves in figure 5. They are both in good agreement with open-pore 

and closed-pore measurements in a low effective pressure range. We choose 5 1800M GPa , 

6= 2500M GPa , 8=2300M GPa  and 10=100M GPa  in calculation. 5M , 6M  and 8M  are 

mostly associated with the solid skeleton's higher order elastic characteristics. The order of 

magnitude of these constants (KGPa) agrees well with the measurement of 3rd-order elastic 

constants on rocks performed by Winkler et. al. [15, 16]. As a complement to the pure solid's 

3rd-order elastic constant theory, the new 3rd elastic constant 10M  is related to the higher-

order coupling effect between solid and fluid. Its order of magnitude is around 100GPa. It 

effects on the wave speed expressions for fluid-saturated rocks, and holds a lower 

magnitude than 5M , 6M  and 8M , which has been discussed in Section 2. A higher value of 

10M  will produce unreasonable results for wave speeds.  

The observed differences between "open-pore jacketed" and "closed-pore jacketed" tests 

decrease as we still increase the confining pressure in a high pressure range (higher than 40 

MPa), which do not agree with our theoretical analysis. Actually, the "open-pore jacketed" 

measured speeds approach to the "closed-pore jacketed" results in high pressure end. In 

high confining pressure range, the theoretical results fit well with the "closed-pore" 

measurement, while give an estimate higher than the actually measured speeds in the 

"open-pore" tests. As confining pressure is getting higher for an open-pore system, the stress 

difference between solid skeleton and pore fluid is consequently increased. The effective 

pressure is also increased. Pore fluid continues to flow out and the soft pores such as grain 

cracks will tend to close. In a high effective pressure range, the pore system of rock in a 

"open-pore" test will tend to act like a theoretical "closed-pore" system, where soft pores are 

closed and fluid stops flowing out. The basic assumption of a theoretical "open-pore" 

configuration breaks down in this case.  

In a real sandstone, at higher pressure (above 50 MPa), the increase in the values of wave 

velocities essentially saturates [50, 51]. This saturation effect is caused exclusively by 

gradual closing of the soft crack-like fraction of the rock-frame porosity. This crack-like 

fraction strongly dominates the nonlinearity of the material in the pressure range of several 

tens MPa, whereas visible pores are less affected. The compressibility of crack-like pores 

strongly depends on the fact whether the filling fluid is confined inside or can be squeezed 

out. Thus below 50MPa the difference between "open-pore jacketed" and "closed-pore 

jacketed" tests is obvious until the most part of the cracks become closed. The application of 

this theory is limited to the pressure range lower than 50MPa. Especially for the "open-pore 

jacketed" case, the theoretical predictions will be unreliable when the effective pressure 

exceeds the limitation. 

6. Conclusions 

The nonlinear acoustic wave propagation equations are derived in this paper. For 

hydrostatic and uniaxial loading configurations of rock tests, the analytical deformation-
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dependent P- and S- speed expressions are presented. We discuss the reductions from 

current theoretical approach to the traditional works of acoustoelasticity in pure solid 

material. Neglecting solid/fluid differences both in a large static part of strain induced by 

confining pressure and in a small dynamic part of strain induced by wave's propagation and 

vibration, the velocity equations in this paper (equations 21, 26, 31, 34, 38, 41 & 44) are 

completely compatible with the expressions of acoustoelasticity theory in pure solid 

material (equations 1a~g).  

We design a virtual rock sample with seven assumed 3rd-order elastic constants. We 

perform four numerical tests on this virtual rock sample with different considerations: open-

pore jacketed sample under hydrostatic loading, open-pore jacketed sample under uniaxial 

loading, closed-pore jacketed sample under hydrostatic loading and closed-pore jacketed 

sample under uniaxial loading. Numerical results show that fast P wave's inverse quality 

factor is both sensitive to the confining pressure and wave centre frequency, which agrees 

with the laboratory observations of our former studies [47] in the aspect that P wave's 

inverse quality factors are more sensitive to pressure than S wave's. For the virtual rock 

sample, velocities of fast P waves and S waves seem to be more sensitive to pressure change 

than to changes in wave centre frequency, while slow P wave shows an opposite feature. In 

closed-pore jacketed uniaxial loading configuration, fast P wave's velocity in transverse 

direction is in decreasing trend with the rise of loading pressure, which is completely 

contrary to other three configurations. In all test configurations of this paper, S inverse 

quality factors share the same value which is independent to confining loading. S inverse 

quality factor can be influenced by wave centre frequency. 

We perform the "open-pore jacketed" and "closed-pore jacketed" P-velocity measurements 

on a sandstone sample under hydrostatic loading. The observed P-velocity differences 

between the "open-pore jacketed" and "closed-pore jacketed" tests are getting larger as the 

confining pressure is increased in the range of 10~35 MPa, which agrees well with 

theoretical prediction, while in a higher confining loading range (>40MPa), the tested "open-

pore jacketed" velocity approaches to the "closed-pore jacketed" velocity. When hydrostatic 

confining pressure is increased and pore pressure keeps constant in an "open-pore" 

experiment, fluid will continue to flow out and microscopic connections between pores tend to 

close. When effective pressure reaches a high level, the rock in an "open-pore" test will 

approach to the theoretical configuration of the "closed-pore" system, where the pore fluid will 

actually stop flowing out under loading. The basic assumptions of the theoretical "open-pore 

jacketed" configuration is violated. A rock under high effective pressure in an "open-pore 

jacketed" test is actually "closed". In a high confining loading, the crack-like fraction will 

become gradually closed while the visible pores remain almost affected. Mostly the equant 

pores remain survived for which the compressibility weakly depend on the presence of the 

fluid (does not matter "closed-" or "open-pore"). The theory presented in this paper can give 

reasonable predictions for wave speeds in a confining pressure range lower than 50 MPa. 

Moreover, in this work, the mechanism of "local fluid flow" have been neglected when we 

theoretically derive the nonlinear wave equations. The heterogeneity in pore structures and 
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fluid distributions will induce local fluid flow if elastic waves squeeze the porous rock, 

which surely will effect on the waves' propagation velocities and intrinsic attenuation [23, 

36, 50, 52]. However, to include the mechanism of local fluid flow in a poro-acoustoelasticity 

theory will produce too complicated expressions to be handled on the present stage, and 

there probably will be several additional 2nd order terms [52, 53] and much more 3rd order 

terms in the strain energy expression. The present paper is limited to the area of applicability 

of the Biot approach, whereas rocks in nature usually contain the stiff and the soft pores. It 

may be important and essential that the local fluid flow mechanism should be analyzed in a 

poro-acoustoelasticity context, since the effects of confining pressure on pore shapes are also 

believed to be relevant to the local fluid flow and will consequently change the observed 

waves' velocities and attenuation in laboratory, which can be described in detail by 

introducing additional 2nd and 3rd order terms. This extension will be a future study. 
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