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1. Introduction

The weight minimization of the shallow truss structures is a challenging but sometimes
frustrating engineering optimization problem. Theoretically, the optimal design searching
process can be formulated as an implicit nonlinear mixed integer optimization problem with
a huge number of variables. The flexibility of the shallow truss structures might cause differ‐
ent types of structural instability. According to the nonlinear behavior of the resulted light‐
weight truss structures, a special treatment is required in order to tackle the “hidden” global
stability problems during the optimization process. Therefore, we have to replace the tradi‐
tional “design variables → response variables” like approach with a more time-consuming
"design variables → response functions" like approach, where the response functions de‐
scribe the structural response history of the loading process up to the maximal load intensity
without constraint violation.

In this study, a higher order path-following method [1] is embedded into a hybrid heuristic op‐
timization method in order to tackle the structural stability constraints within the truss optimi‐
zation. The proposed path-following method is based on the perturbation technique of the
stability theory and a non-linear modification of the classical linear homotopy method.

The nonlinear function of the total potential energy for conservative systems can be ex‐
pressed in terms of nodal displacements and the load parameter. The equilibrium equations
are given from the principle of stationary value of total potential energy. The stability inves‐
tigation is based on the eigenvalue computation of the Hessian matrix. In each step of the
path-following process, we get information about the displacement, stresses, local, and glob‐
al stability of the structure.

© 2013 Csébfalvi; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



With the help of the higher-order predictor-corrector algorithm, we are able to follow the
load-response path and detect the hidden bifurcation points along the path in time. During
the optimization process, the optimal design is characterized by the maximal load intensity
factor along the equilibrium path. Consequently, all the structural constraints are controlled
by a fitness function in terms of the maximal feasible load intensity factor. Because the func‐
tion evaluation is very expensive (for example, we have to call a professional system like
ANSYS to carry out an "eigenvalue buckling analysis") we have to select the appropriate
population-based metaheuristic frame very carefully. In everyday language, a population-
based metaheuristic means a good tale usually inspired by the nature, a set of operators,
which describes the daily life of the population, and a set of rules which controls the life or
death of individuals. In the heuristic frame developing process we applied a "minimal art"
like approach to reach the "good quality solution within reasonable time" goal. According to
our approach, we decreased the number of operators and tunable-parameters, and simpli‐
fied the significant operators and rules coming from different tales as much as possible.

In this chapter we present the result, which is a simple but very efficient hybrid metaheuris‐
tic for truss weight minimization with continuous and discrete design variables, and global
and local stability constraints.

The presented "supernatural" ANGEL method [2-6] combines ant colony optimization (AN),
genetic algorithm (GE) and gradient-based local search (L) strategy. In the algorithm, AN
and GE search alternately and cooperatively in the design space. The powerful L algorithm,
which is based on the local linearization of the constraint set, is applied to yield a more feasi‐
ble or less unfeasible solution, when AN or GE obtains a solution.

The highly nonlinear and non-convex large-span and large-scale shallow truss examples
with continuous and discrete design variables and response curves show that ANGEL may
be more efficient and robust than the conventional gradient based deterministic or the tradi‐
tional population based heuristic (metaheuristic) methods in solving explicit (implicit) opti‐
mization problems. ANGEL produces highly competitive results [16-18] in significantly
shorter run-times than the previously described pure approaches.

The benefit of synergy can be demonstrated by standard statistical tests. To the best of our
knowledge, no such work has been done in the literature for truss weight minimization with
response curves. The reason is simple: the question of the global stability loss (the collapse
of the structure as a whole) was not investigated very carefully in the truss optimization lit‐
erature so far, according to a popular but totally misleading "assumption" of the truss opti‐
mization community that the local stability loss (local buckling) always precedes the global
stability loss (the collapse), therefore the time-consuming investigation of the global stability
is meaningless (see in Hanahara and Tada [20]).

2. Structural optimization

Generally, the traditional implicit “design variables → response variables” weight minimi‐
zation problem with continuous and discrete design variables can be written as follows:
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( ) minW Z ® (1)

( ) { } , ,  1, 2ij iG Z G G j , ,Mé ùÎ Îë û K (2)

{ } , ,  1, 2, ,ii iX X X i Né ùÎ Îë û K (3)

{ } { }1 2 , , , ,  1, 2, ,g CY C C C g GÎ ÎK K (4)

whereW (X ) is the weight of the structure, Gj, j∈ { 1, 2, …, M }are the implicit response var‐

iables, andZ = { X = { X1, X2 …, XN } ,  Y = { Y1, Y2 …, YG} }is the set of continuous and dis‐

crete design variable sets.

The investigated new "design variables → response functions" weight minimization ap‐

proach can be described as follows:

( ) minW Z ® (5)

( ) { },  , ,  1, 2 ,0 1ij iG Z G G j , ,Ml lé ùÎ Î £ £ë û K (6)

{ } , ,  1, 2, ,ii iX X X i Né ùÎ Îë û K (7)

{ } { }1 2 , , , ,  1, 2, ,g CY C C C g GÎ ÎK K (8)

whereλ =λ(Z ) the load intensity factor and constraint 0≤λ ≤1 means that loading process

reached the maximal load intensity level without constraint violation.

In the path-following algorithm (details of the nonlinear structural investigation see in [1]), a

design is represented by the set of{ W , λ,  Z ,  Φ}, where W  is the weight of the structure, λ

is the maximal load intensity factor without constraint violation, and Z ={ X , Y } is the set of

design variables. In our study, we used a problem-specific fitness function Φ =Φ (Z )

(0≤Φ ≤2) which is defined as following:
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whereW L (W U ) is the minimal (maximal) weight of the structure, according to the given
design space.

Our feasibility-oriented fitness function is based on the following set of criteria:

• Any feasible solution is preferred to any infeasible solution,

• Between two feasible solutions, the one having a smaller weight is preferred,

• Between two infeasible solutions, the one having a larger load intensity factor is prefer‐
red.

The minimal weight design problem can be formulated in terms of member cross-sections (a
member cross-section may be a continuous variable or discrete value taken from a given
catalogue) and nodal point shifts (to modify the shape), and may be constrained by the al‐
lowable nodal-point displacements, element stresses and the global stability requirement
which simple means a non-singular Hessian on the load-response path.

We have to mention, that in our study we investigated only truss structures therefore the
applied structural model was a large deflection truss model without simplifications. To
avoid any type of stability loss even a structural collapse, a path-following approach was
used to compute the structural response.

The applied measure of design infeasibility was defined as the maximal load intensity factor
subject to all of the structural constraints. Naturally, ANGEL which is presented in the next
section can be used in the traditional “design variables → response variables” approach and
may be easily adopted for other types of optimization problems including the traditional ex‐
plicit function minimization problems.

3. ANGEL

First, we have to note, that ANGEL as a name of a combined population-based metaheuris‐
tic for the resource-constrained project scheduling problem was introduced by Tseng and
Chen [15]. We use this name in a different context with a different content. Our ANGEL al‐
gorithm, according to the systematic simplification, is based only three operators: random
selection (RS), random perturbation (RP), and random combination (RC). In ANGEL the tra‐
ditional mutation operator was replaced by the local search procedure (L) as a "locally best"
form of mutation. That is, rather than introducing small random perturbations into the off‐
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spring solution, a gradient-based local search is applied to improve the solution until a local
optimum is reached. The first result of our systematic simplification work is trivial: hard to
imagine a population-based heuristic without an RS operator. The RS operator is in a special
position in the heuristic community therefore the population-based heuristic literature is full
with many general and problem-specific selection mechanisms (a good overview can be
found in the work of Sivaraj and Ravichandran [13]). When we imagine the population as a
matrix in which the rows are individuals and the columns are variables and the fitness func‐
tion values of the individuals form a corresponding column vector, then very easy to identi‐
fy the two basic selection possibilities: the column-wise (AN like) and the row-wise (GE like)
selection mechanisms (see Figure 1). In Figure 1 we used a grey-scale to show the fitness of
individuals (the lighter the grey color the better the individual) and we assumed that the in‐
dividuals are ordered according to their fitness values. To demonstrate the possibilities we
presented two similar cases (two parents (P2) → one child (C1)).

The AN mechanism selects at least one "more or less good parent" from each column step by
step and after that applies the RP or RC operator procedure for each selected variable or var‐
iable set independently to get a child, from which L try to make a "better child".

The GE mechanism selects at least one "more or less good parent" in exactly one step for
each case. In other words, GE selects at least one complete row. After that the algorithm re‐
peats the previous steps to generate the child by applying the RP or RC operator for each
variable or variable set of the selected parent or parents and after that L try to improve the
quality of the child to get a "locally best" child.

In AN approach, by definition, the RS means a set of randomly selected "more or less
good" element or elements according to the tale-dependent fitness function. This ap‐
proach always imitates a "route" independently from its reality. When we imagine a bee fly‐
ing from flower to flower or a salesperson travelling from city to city, the reality of the
abstraction is trivial. But when we have to solve an optimal truss design problem minimiz‐
ing its total weight on the set of element cross-sections as design variables, subject to the
displacement and stress constraints, the local and global stability requirements and load con‐
ditions and imagine the construction as a whole, then the "from cross-section to cross-sec‐
tion" route may be totally meaningless and misleading abstraction. We may become the
slave of the tale, which may yield a "brutal-force-search" like efficiency, because in our case
the function evaluation is very expensive and time-consuming according to the implicit de‐
pendency between the design variables (element cross-sections) and the response varia‐
bles (for example: global stability loss).

According to the optimal structural design problem, it is very easy to imagine the GE selec‐
tion strategy, in which we select randomly at least one "more or less good design" and after
that, according to the other operators of the tale, we try to make a better one (less unfeasible
or lighter feasible) by RP or RC.

Easy to imagine, that the combination of the two selection mechanisms may increase the
variability of the searching process as a synergism. The two selection mechanisms are very
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general: from single-parent to multi-parents they are able to manage every case using only
the RP and RC operators. In this study, "tradition is a tradition" we used the generally ac‐
cepted operator types. Namely we used the AN-P1-C1 and GE-P2-C1 operators alternately
and cooperatively using only the RP, RC, and L operators, which are invariant to the selec‐
tion direction.

? ?

Figure 1. AN-P2-C1 + L and GE-P2-C1 + L

In the ANGEL developing process, we tried to simplify the three operators (RS, RP, and RC)
and decrease the number of tunable-parameters, namely the size of the problem-specific
"golden-number" set, as much as possible, to minimize the time requirement of the so-called
"preliminary investigation". In our case, the preliminary investigation may be an "experi‐
mental design and analysis" like problem in the problem with terrible large computational
cost which yields only 'good" problem-specific golden-number-set after several "try-and-er‐
ror" iterations.

The flowchart of the proposed simplified heuristic ANGEL method is presented in Figure
2.The main procedure of the proposed hybrid metaheuristic follows the repetition of these
two steps:

1. AN with LS and

2. GE with LS.

According to the systematic simplification, the hybrid algorithm is based only three opera‐
tors:

1. random selection (AN+GE),

2. random perturbation (AN), and

3. random combination (GE).

Ant Colony Optimization - Techniques and Applications112
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W  Weight (X) : FFitness (X)
X() X : W (M)  W : F (M)  F

YES
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Figure 2. Flowchart of ANGEL

In the presented form, the population-based ANGEL has only three "tunable" parameters

{ PS ,  NG,  MI  }, where PS  is the size of the population, NGis the number of generations,

MI is the maximal number of gradient-based local search iterations(0≤MI ≤100), and an ad‐

ditional parameter pair { S̄ , S
_ } which defines a exponentially decreasing multiplier in the

function of generationgen,gen∈ { 1, 2, …, NG}:
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The parameter pair{ S̄ , S
_ }, which controls the smooth transition from diversity to intensity,

can be kept “frozen” in the algorithm:

{ } { } ,  1.0,  0.01S S = (11)

which means, that ANGEL is practically a “tuning-free” algorithm.

The monotonically decreasing standard deviation function for each continuous design varia‐
ble can be defined in the following way:

( ) ( ) { } { }S ,  1, 2, , ,  1, 2, ,gen
ii iS gen X X gen NG i N= * - Î ÎK K (12)

In our approach, the case of the discrete design variables can be managed in a similar way.
The only difference is that we replace the value set with the equivalent index set and carry
out all the operations on the index set.

The main procedure of the proposed meta-heuristic method follows the repetition of these
two steps:

1. AN with L and

2. GE with L.

In other words, meta-heuristic ANGEL firstly generates an initial population, after that, in
an iterative process AN and GE search alternately and cooperatively on the current design
set. The initial population is a totally random set. The random perturbation and random
combination procedures which are based on the normal distribution, call therandom selec‐
tion function which uses the discrete inverse method, to select a “more or less good” design
(GE) or a set of "more or less good" design variable values from the current population. The
higher the fitness values of a design (a design variable value) the higher the chance is that it
will be selected by the function (see Figure 3).

The random perturbation procedure uses the continuous inverse method to generate a new
solution from the old one (see Figure 4). The random combination procedure generates an
offspring solution from the selected mother and father solutions (see Figure 5). The off‐
spring solution is generated from the combined distribution, where the combined distribu‐
tion is the weighted sum of the parent’s distributions. The two procedures are controlled by
the standard deviation, which is decreasing exponentially from generation to generation.
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In our algorithm an offspring will not necessarily be the member of the current population,
and a parent will not necessarily die after mating. The reason is straightforward, because
our algorithm uses very simple rule without explicit pheromone evaporation handling: If
the current design is better than the worst solution of the current population than the worst
one will be replaced by the better one.

31 2 P-1 P

( )1 0,U


==

P

i
i

i
i

1

2

1
FF /


==

P

i
i

i
i

1

3

1
FF /


==

P

i
i

i
i

1

1

1
FF /



  


=

-

=

P

i
i

P

i
i

1

1

1
FF /

1

Figure 3. Random selection
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Figure 4. Random perturbation

In this work, without loss of generality, we only deal with the two fundamental cases when
the design variables are only element (element-group) cross-section areas. In the continuous
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case a cross-section area may be any value from a given interval and in the discrete case a
cross-section area has to be taken from a discrete catalogue. Additionally, also without loss
of generality, it is assumed that we are interested only in the local and global stability inves‐
tigation without displacement constraints. We assume that the allowed maximal positive
(stretching) stress defined by a constant, and the allowed minimal negative (compressive)
stress is constrained by a local buckling function, which is a function of the material proper‐
ties, the element length, and the element cross-sectional area. The global stability investiga‐
tion is based on the load-eigenvalue curves. From the global stability point of view a truss
design is feasible, when during the loading process each load-eigenvalue curve remains in
the positive segments up to the end of the process.

1
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Figure 5. Random combination

In the pure continuous case (when only the cross-section range is fixed) the iterative lo‐
cal search procedure (L) alternates two approaches according to the current feasibility indi‐
cator value.

If the current design is feasible, namely:λ =1, then it solves the following linear program‐
ming problem to get a lighter but feasible design allowing only a limited weight decrement
in each iteration (see Lamberti and Pappalettere [11]):

( )1,  ...., ,..., maxi NW X X XD D D D ® (13)

( ) ( ) { }
1

 , ,  1, 2
N

j
jj i j

i i

G X
G X X G G j , ,M

X=

¶
é ù *D Î Îë û¶ K (14)
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If the current design is infeasible, namely:λ1, the local search procedure tries to get a less
infeasible solution allowing only a limited weight increment (decrement) in each iteration
(see Lamberti and Pappalettere [11]):

( )i
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G  min
M

i
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G
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D  D ® (17)
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¶
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{ }, ,  1, 2, ,ii iX X X i Né ùD Î D D Îë û K (19)

,W W Wé ùD Î D Dë û (20)

In the pure discrete case (when the cross-sections are taken from a catalogue) we have two
possibilities to develop a local search procedure.

We can define a simple "thumb rule" used to improve the quality of the generated discrete
solutions. The starting base of the thumb rule is a discrete solution given by applying the
usual "rounding to the next catalogue value" rule. When the discrete solution is feasible (in‐
feasible) then, in a cyclically repairable process, we try to decrease the cross-sectional areas
step by step selecting always the "best" element (element group), where "best" means an ele‐
ment (element group) for which the element stress is minimal (maximal) in absolute value.

An improvement, namely a cross-sectional area decreasing (increasing) is accepted, when
the starting design feasibility level is not decreased by the current modification. The process
terminates, when no such an element exists. We have to emphasize that in the presented
path following approach the design feasibility is measured by the maximal load intensity
factor, and therefore, the designs satisfy the stress constraints up to the maximal load inten‐
sity factor computed by the applied path following method.

The other possibility would be a “locally exact” binary formulation.The proposed binary lin‐
ear (or quadratic) programming (BLP or BQP) approach exploits the fact, that using a "state-
of-the-art" solver the solution time of a local BLP (or BQP) problem is competitive with the
solution time of the "thumb rule" heuristic.
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Naturally, a local BLP (BQP) formulation can give better results, as a pure heuristic ap‐
proach. Using a "dense" catalogue the problem can be managed as linear programming
problem, when the catalogue is "sparse", we have to use a quadratic formulation to describe
the possible stress changes accurately, in the function of the "local" catalogue values. The im‐
mediate predecessor (successor) of the current catalogue value defines the “local catalogue”,
for each element (element group), if such a value exists. According to the "local environ‐
ment", an element (element group) can be described by at least three binary variables.

Naturally, using the standard trick (special ordered set (SOS) constraint management) of the
operations research (OR), the formulation which has at least three binary variables, can be
replaced by an equivalent formulation which has only at least two binary variables. Let
g , g∈ { 1, 2, …, G} the member-group index and c, c∈ { 1, 2, …, C}the catalogue index,
where G is the number of elements (member-groups) and Cis the size of the discrete cata‐
logue of possible cross-sectional areas:{ C1, C2 …, CC}.

Let { Bg  j
i  |  j∈ J i}be the set of the binary variables needed to describe the possible movement

and Ag
i  the cross-sectional area for element (member-group)g , g∈ { 1, 2, …, G} in iteration

i,  {i =1,2,…, MI }. The "local catalogue" and the constraints connected to the local binary varia‐
bles  which  describe  the  possible  movements  are  presented  in  Figure  6-7.  In  iteration
i,  { i =1,2,…, MI }the local environment is defined by the result of the previous iteration.

In the local model exact analytical derivatives were used. To generate the symbolic deriva‐
tives, optimized to speed, Wolfram Mathematica 8.0 was used. Naturally, a linearized mod‐
el can be replaced by a quadratic one, and the simplified assumption that the stress change
of member-group gcan be described by its cross-section change.

11
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gB

11
C =-i

gB

11
k =-i
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1C 2C

kC 1kC1-kC

CC1-CC







Ck <<1

Figure 6. Local binary variables

The local search algorithm, in an iterative process, minimizes the weight increment (maxi‐
mizes the weight decrement) needed to get a better (a lighter feasible or less unfeasible) sol‐
ution. The OR formulation follows the conception of the "thumb rule", the "at least as good"
quality requirement is managed by non-smoothed formulation, namely in the formulation
the maximal constraint violation is constrained.
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Naturally, the non-smooth max() function can be replaced by an equivalent smooth formula‐
tion, by omitting the function and introducing additional constraints. In other words, when
the starting base of an iteration is unfeasible (λ1), than the local search algorithm generates a
"mini-max" model, in which the maximal slack of the constraint set will be minimized ac‐
cording to the allowed maximal structural weight increase.
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Figure 7. Local binary constraints

4. Numerical example

4.1. Sizing optimization with buckling constraints - 120-bar truss dome

In this paper, in order to demonstrate the proposed solution method a well-known space
dome structure is presented as a simple sizing problem, where two basic sub problems, con‐
tinuous and discrete optimization problems are distinguished.

Saka and Ülker [12], as a continuous optimization problem, have introduced first time the
120-bar example. The minimal weight design subjected to structural constraints imposed on
the member stress and nodal displacements based on linear and non-linear analysis. Subse‐
quently, Soh and Yang [14] have been analyzed the same structure to obtain the optimal de‐
sign related to sizing and configuration variables Kaveh and Talatahari [7] presented a
heuristic method where the particle swarm optimizer, ant colony strategy and harmony
search are hybridized.Therefore, several techniques have been incorporated to handle the
constraints. Similar to Lee and Geem [10], Kelesoglu and Ülker [9], only sizing variables are
considered to minimize the structural weight. According to the complexity of the concerned
problems, another method has been proposed by Kaveh and Talatahari [8], namely a hybrid
big bang–big brunch (HBB–BC) algorithm.The comparisons of numerical results using the
HBB–BC method with the results obtained by other heuristic approaches are performed to
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demonstrate the robustness of the present algorithm. With respect to the big bang–big
brunch (BB–BC) approach, HBB–BC has better solutions and standard deviations. In addi‐
tion, HBB–BC has low computational time and high convergence speed compared to BB–BC.
However, when the number of design variables increases the hybrid BB–BC shows better
performance. The effects of nonlinear behavior to the optimal results have been investigated
by Hadi and Alvani [19] and Lemonge and Barbosa [21].

The geometry and nodal coordinates are presented in Figure 8 and in Table 1. According to
the structural symmetry, truss members are grouped into seven member-groups (see in Ta‐
ble 2). The truss is subjected to the given applied external loads in Table 3. The truss mem‐
bers as design variables are grouped into seven group variables (Table 4).
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Figure 8. The layout of the 120-bar shallow truss dome

Nodes X [m] Y [m] Z [m]

1 0. 0. 7.000

4 6.01108 3.4705 5.850

5 6.94100 0. 5.850

18 10.82532 6.2500 3.000
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Nodes X [m] Y [m] Z [m]

19 11.66266 3.1250 3.000

20 12.50000 0. 3.000

40 13.76114 7.9450 0.

41 15.89000 0. 0.

Table 1. The geometry of the 120-member truss dome

Node 1 2-13 14-37

Load [kN ] 60 30 10

Table 2. The load condition of the 120-bar truss dome

Modulus of elasticity E =210000/ MPa

Material density ρ= 7850 / kg/m3

Stress constraints for tension σe
U = 140/ MPa

Stress constraints for compression σe
L = −140/ MPa

Table 3. Properties of the applied material

Groups Truss members

G 1 1-2 1-3 1-4 1-5 1-6 1-7

1-8 1-9 1-10 1-11 1-12 1-13

G 2 2-3 3-4 4-5 5-6 6-7 7-8

8-9 9-10 10-11 11-12 12-13 13-2

G 3 2-14 3-16 4-18 5-20 6-22 7-24

8-26 9-28 10-30 11-32 12-34 13-36

G4 2-15 3-17 4-19 5-21 6-23 7-25

3-15 4-17 5-19 6-21 7-23 8-25

8-27 9-29 10-31 11-33 12-35 13-37

9-27 10-29 11-31 12-33 13-35 2-37

G5 14-15 16-17 18-19 20-21 22-23 24-25

15-16 17-18 19-20 21-22 23-24 25-26

26-27 28-29 30-31 32-33 34-35 36-37

27-28 29-30 31-32 33-34 35-36 37-14
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Groups Truss members

G 6 14-38 16-39 18-40 20-41 22-42 24-43

26-44 28-45 30-46 32-47 34-48 36-49

G7 15-38 17-39 19-40 21-41 23-42 25-43

15-39 17-40 19-41 21-42 23-43 25-44

27-44 29-45 31-46 33-47 35-48 37-49

27-45 29-46 31-47 33-48 35-49 37-38

Table 4. Groups of truss elements

Refer to the formerly presented papers (e.g. [16-18]), in this study, stainless steel tubular
cross-sections are considered as design variables.According to the thin-wall pipe structural
behavior, the following local stability constraints are proposed. The stress constraint for
against of Euler-buckling or peripheral shell-like buckling is given in terms of the thickness
ratio:

( )
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= × ×
-
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B
e KEs a= (22)

whereα =T / D is the ratio of the wall-thickness and diameter of the applied Ge group ele‐
ments.In the present study, since continuous and discrete design variables are considered as
well we applied tubular cross sections with given α =0.05 thickness ratio. Cross sectional
variables are changing from Gmin =5.0cm2 up to Gmax =50.0cm2. In this paper, only stress and
buckling constraints are considered.

The obtained results for continuous problem using linear and non-linear structural model
are compared are presented in Table 5 and in Table 6. Comparing with the results of contin‐
uous optimizations shows that GA based approach [19] gives a better minimum weight than
the optimality criteria approach [12]. It is observed that further reduction is possible in the
weight of the space truss considering the geometrically nonlinear analysis as compared to
linear one.

Worthy of note, that the optimal design obtained by the proposed hybrid ANGEL seems
much better than the results of previously presented compared methods. Remarkable in this
study - using the formula (9)- that the related fitness value is Φ= 1.928 i.e. very close to the
defined maximal fitness value. In the resulted optimal design only one buckling constraint is
active, namely in the member-group 6.
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In this paper for discrete optimization problem two types of catalogue values are distin‐
guished, a sparse (case 1) and a dense (case 2) with the following cross sections:

Case 1: {5.0; 10.0; 15.0; 20.0; 25.0;…; 50.0}

Case 2: {5.0; 7.5; 10.0; 12.5; 15.0; 17.5; 20.0; 22.5; 25.0;…; 50.0}

We have to note that the related fitness value is Φ= 1.889 (Case 1) and Φ = 1.922 (Case 2), i.e.
in case a sparse catalogue we obtained a bit worst fitness value than in case of dense cata‐
logue values, but the difference is natural and both adjacent to the continuous one Φ = 1.928.

Groups / cm2 Saka,Ulker* [12] Hadi, Alvani* [19] Proposed method

Linear Non-linear Non-linear Non-linear

G1 16.66 17.50 10.85 12.968

G2 44.89 45.56 38.70 8.282

G3 24.89 25.45 35.40 13.325

G4 9.66 8.44 5.23 7.964

G5 21.93 22.30 27.37 8.316

G6 16.59 15.96 15.30 7.776

G7 11.74 3.90 3.90 7.990

W / kg 8511 7587 7158.6 4650.659

Table 5. The best results of the continuous problem (*Note: section shape is not available)

Using a state-of-the-art callable BLP (BQP) solver, for example: CPLEX 12.0, the time re‐
quirement of the improved local search is compatible with the time requirement of the tradi‐
tional "thumb rule" like approach. However, the improved approach is more efficient,
because it is able to modify more than one cross-sectional area in one iteration.

In the presented computational test, ANGEL was run with the following parameters:

• the population size was 100,

• the number of generations was 10, and

• the maximal number of local search iterations was 10.

We note, that the maximal number of iterations does not necessarily mean that the number
of iterations always 10.

4.2. Sizing-shaping optimization with stability constraints -24-bar truss dome

This academic example has been analyzed by the author previously [17] to demonstrate the
difficulties of the stability investigation. The layout and the initial data are presented in Fig‐
ure 9 and Table 7-8. At the central node, the load is 0.5, while at nodes 2-7 it is 1.0 unit.
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Groups / cm2 Hadi, Alvani* [19] Proposed method

(Case 1)

Proposed method

(Case 2)

Linear Non-linear Non-linear Non-linear

G1 15.00 12.30 10.0 10.0

G2 46.70 46.70 10.0 10.0

G3 27.00 27.00 15.0 12.5

G4 7.05 5.33 10.0 7.5

G5 27.60 24.70 5.0 5.0

G6 11.10 17.80 10.0 10.0

G7 1.82 1.53 10.0 7.5

W / kg 7264.6 7229.0 4979.681 4242.075

Table 6. The best results of the discrete problem(*Note: section shape is not available)The local search terminates
when, according to the given "play-field", in the current step no improvement can be reached without affecting the
maximal allowable weight increase or the maximal allowable constraint violation defined by the previous step.

Nodes X [cm] Y [cm] Z [cm]

1 0 0 8.216

2 12.50 21.65063509 6.2.16

3 25.00 0 6.216

8 0 50.00 0

9 43.330127019 25.00 0

Table 7. Initial coordinates of 24-bar shallow space truss

The equilibrium path that involves in this case four critical points has been determined in‐
side of the optimization process. First is a single bifurcation (λ1 =8.68), while the following
two are double bifurcation points (λ2 =10.26;λ3 =15.67). The fourth is a simple limit point
(λ4 =18.40).We have to note that only the fourth singular point is a simple limit point. With
the help of this simple example easy to confirm the hazardous of the theories and methods
which are able to tackle only snap-through phenomenon.

In this paper, a weight optimization is considered subjected to global stability constraints.
The cross-sections as design variables are involved into three groups (Figure 9). The load in‐
tensity factor is changing from zero to one.

Using the proposed hybrid metaheuristic method, where the number of generations is 10
and the population size is 100, two optimization problems are considered.

Case 1:
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In first case, a sizing optimization problem is solved for minimal volume optimization sub‐
jected to structural stability. The structure is loaded up to the maximal load intensity factor
while the smallest eigenvalue becomes zero. The obtained best solution for the grouped de‐
sign variables are the following:A1 =1.000;A2 =1.321;A1 =1.119. The optimal volume in this
case isV opt =773.127.

Case 2:

In the second case, a sizing-shaping optimization problem is presented. The three sizing var‐
iables are extended with three shift variables namely the vertical position of all free joints
(Zi; i =1, 2, ..., 7), and the horizontal position of the joints 2-7 (Rj; j =2, ..., 7). In this case, the
same proposed hybrid metaheuristic method has been applied, with the number of genera‐
tions 10 and the population size 100. The obtained best solution is the following:A1 =1.000;
A2 =1.378;A1 =1.084;Z1 =7.685;Z2−7 =6.121;R2−7 =24.665. The optimal volume is V opt =765.699
and the lowest eigenvalue is zero for three digits in the best solution.

Design variables Ai∈ 1.00;2.00  (cm2); i∈ {1, 2, 3}

Load cases Nodes Z

1 1 −5.00 kN

2, 3, 4, 5, 6, 7 −10.00 kN

Material properties Modulus of elasticity E = 10000 kN / cm 2

Table 8. Initial data of 24-bar shallow space truss
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Figure 9. The layout of the 24-bar truss dome
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5. Conclusion

The weight minimization of the shallow truss structures is a challenging but sometimes
frustrating engineering optimization problem. Theoretically, the optimal design searching
process can be formulated as an implicit nonlinear mixed integer optimization problem with
a huge number of variables. The flexibility of the shallow truss structures might causes dif‐
ferent type of structural instability. According to the nonlinear behavior of the resulted
lightweight truss structures, a special treatment is required in order to tackle the “hidden”
global stability problems during the optimization process. Therefore, we have to replace the
traditional “design variables → response variables” like approach with a more time-con‐
suming "design variables → response functions" like approach, where the response func‐
tions describe the structural response history of the loading process up to the maximal load
intensity without constraint violation.

In this study, a higher order path-following method was embedded into a hybrid heuristic
optimization frame in order to tackle the global structural stability constraints within the
truss optimization. The proposed path-following method is based on the perturbation tech‐
nique of the stability theory and a non-linear modification of the classical linear homotopy
method.

In this chapter we presented a simple but very efficient hybrid metaheuristic for truss
weight minimization with continuous and discrete design variables, and local and global
stability constraints. The presented "supernatural" ANGEL method combines ant colony op‐
timization (AN), genetic algorithm (GE) and gradient-based local search (L) strategy. In the
algorithm, AN and GE search alternately and cooperatively in the design space. The power‐
ful L algorithm, which is based on the local linearization of the constraint set, is applied to
yield a more feasible or less unfeasible solution, when AN or GE obtains a solution.

The highly nonlinear and non-convex large-span and large-scale shallow truss examples
with continuous and discrete design variables and non-linear response curves show that
ANGEL may be more efficient and robust than the conventional gradient based determinis‐
tic or the traditional population based heuristic (metaheuristic) methods in solving explicit
(implicit) optimization problems. ANGEL produces highly competitive and from engineer‐
ing point of view safe and accurate results in significantly shorter run-times than the previ‐
ously described pure approaches. The benefit of synergy was demonstrated by standard
statistical tests. To the best of our knowledge, no such work has been done in the literature
for truss weight minimization with non-linear response curves so far.
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