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1. Introduction

The problem of turbulence arose more than hundred years ago to explain the nature of chaotic

motion of the nonlinear continuous medium and to find ways for its description; so far it

remains one of the most attractive and challenging problems of classical physics. Researchers

of this problem have met with exclusive difficulties and there was an understanding of that

the problem of turbulence always considered difficult, is actually extremely difficult. This

problem is named by Clay Mathematics Institute as one of seven millennium mathematical

problems [1] and it is also in the list of 18 most significant mathematical problems of XXI

century formulated by S.Smale [2].

The nature of turbulence - the disordered chaotic motion of a nonlinear continuous medium,

the causes and mechanisms of chaos generation remain the main issue in the turbulence

problem. Several models trying to explain the mechanisms of turbulence generation in

nonlinear solid media were suggested at different time. Among such models the most

known are Landau-Hopf and Ruelle-Takens models, explaining generation of turbulence

by the infinite cascade of Andronov-Hopf bifurcations and, accordingly, by destruction of

three-dimensional torus with generation of strange attractor. However, these models have

not been justified by experiments with hydrodynamic turbulence.

The universal unified mechanism of transition to dynamical chaos in all nonlinear dissipative

systems of differential equations including autonomous and nonautonomous systems of

ordinary and partial differential equations and differential equations with delay argument
was theoretically and experimentally proven in number of recent papers by the authors

[3–12]. The mechanism is developing by FSM (Feigenbaum-Sharkovskii-Magnitskii) scenario

through subharmonic and homoclinic bifurcation cascades of stable cycles or stable two

dimensional or many-dimensional tori.

In this chapter we are presenting a consistent numerical solution method for 3D evolutionary

Navier-Stokes equations with an arbitrary initial-boundary value problem posed. Then we
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consider two well studied problems for incompressible Navier-Stokes equations, namely flow

over a backward facing step and Rayleigh-Benard convection in cubic cavity. Numerical

solutions of these problems for transitional regimes indicated existence of complicated

scenarios formed by theory FSM. Thus, it seems reasonable, that there is no unified
laminar-turbulent transition scenario, it can be a cascade of stable limit cycles or stable two

dimensional or many dimensional tori, but all these scenarios lay in the frameworks of the

FSM-theory.

2. Construction of high order numerical method for Navier-Stokes

equations

2.1. Some theorems and assertions

Here we are talking only about three dimensional evolutionary incompressible Navier-Stokes

equations:

∇ · V = 0,
∂V
∂t + (V · ∇)V + ρ−1

0 ∇P = ν∇2V,
(1)

and suppose that laminar-turbulent transition is well described by these equations. Here ρ0

is a constant fluid density, ν is the kinematic fluid viscosity, V is the velocity vector-function

and P is the scalar pressure function. Main questions of numerical solution trustworthiness of

Navier-Stokes equations and its attraction to real system (1) attractor are:

1. Does the change of infinite dimensional system for finite-dimensional alters the attractor

and solution?

2. Do numerical approximation errors have crucial affect on the attractor trajectory?

3. Does a numerical solution convergence to a real solution and how close are they?

Some results of attractor approximation and numerical attractors for nonlinear PDEs were

obtained in papers [13, 14], but none of them covers such a complicated topic as existence of

and numerical trajectories attraction for Navier-Stokes attractors. However in papers [15–19]

it is shown that for a well-posed initial-boundary problem there exists an attractor and its

dimension and volume is limited from above. This allows us to pose some assumptions on

numerical methods that must be used to get a numerical system attractor and that it is close

to the attractor of Navier-Stokes equations. To do so we will be following closely to work of

R.Temam [16, 20].

Existence of a global attractor for 3D Navier-Stokes equations is proven [15, 16]. Let that

attractor A exist for a well-posed initial-boundary problem in domain Ω ∈ R with local

Lipschitz-contonous boundary ∂Ωi and velocity vector-function V ∈ R
3. Let k0 be the

macroscopic wave number that corresponds with the characteristic length scale L and kk is

the Kolmogorov wave number defined as:

kk =
( ǫ

ν3

)1/4
(2)

ν - kinematic fluid viscosity and ǫ - rate of turbulent energy dissipation. whole spectra of

wave numbers can be described as:
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ki = (k0, k1, k2, ..., kk) , i ∈ N (3)

Hence the minimum space dimension that is required to hold all possible flow scales in

bounded domain V ∈ R
3 is defined as:

Y =

(

kk

k0

)3

(4)

The value of Y gives us number of degrees of freedom for the given turbulent flow. We can

use the value for ǫ from [16] where it is shown that ǫ is limited by the supremum:

ǫ = ν · lim
t→∞

sup

{

sup
V(x,0)⊂A

1

t

∫ t

0
sup

∣

∣

∣∇2V(x, t)
∣

∣

∣

2

x∈Ω
dx

}

, (5)

and we can find the following:

Theorem 01. [16] the Hausdorff-Besicovitch dimension of any attractor A in the Navier-Stokes

equations for a well-posed boundary value problem is limited by:

dim A ≤ C ·
kk

k0
, (6)

where C is an arbitrary constant. One can derive a more explicit estimate. Since:

ǫ ≤ ǫ = ν
∣

∣

∣
∇2V(x, t)

∣

∣

∣

2
(7)

and

kk ≤ kk =

(

ǫ

ν3

)1/4

=

√

(

|∇2V(x, t)|

ν

)

(8)

so taking (4) into account:

dim A ≤ L3 ·

(
∣

∣∇2V(x, t)
∣

∣

ν

)3/2

, (9)

where L is a macroscopic problem scale. Since all functions in (9) have finite limits then

the dimension of an attractor is always limited from above and its dimension is linked with

number of degrees of freedom (4). So we have the following:

Assertion 01. If a well-posed initial-boundary value problem for Navier-Stokes equations in bounded

domain Ω ∈ R
3 with local Lipschitz-continuous boundary ∂Ω ∈ R

2 has a suitable numerical

approximation with degrees of freedom Y∗ ≥ Y that convergence to the given problem on every time

step of approximation then the approximated numerical attractor A∗ converges to the real attractor A.

This assertion can be easily verified using estimates for finite-difference and finite-element

approximations of Roger Temam [20]. This assertion answers the first question. Now we
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consider the convergence of the numerical method with certain properties for an arbitrary

given well posed initial-boundary problem to the real solution of the problem. We are using

the following theorem by Roger Temam [20], page 281:

Theorem 02. Let space dimension is 3 and we have some numerical approximation for Navier-Stokes

equations with some conditions on which its stable and discrete elements are h for space and k for time.

Then there exists the sequence for h and k → 0, that:

Vh → V

Ph → P

}

; (10)

strong in L2(Q), week in L∞(Q, 0, Ω); Q = Ω × [0, t].

Here: V,P - velocity vector-function and pressure scalar-function that correspond to a

solution for an initial-boundary value problem, Vh, Ph - velocity vector-function and pressure

scalar-function on sequence h. C is an arbitrary constant. Here we consider one of possible

solutions in attractor A, since uniqueness of a solution for a problem is not proven in 3D case.

Prove of this theorem is given in [20], p.282, we are using only some conditions for the theorem

validity:

Condition 1. If a function x 	→ V(x); x ⊂ R
3 has the property ∇ · V = 0 , then a discrete function

h 	→ Vh must maintain the property ∇h · Vh = 0.

Condition 2. For any sequence Vh the condition:

sup

[

∑
h

|Vh+1 − Vh|
k+1 − ∑

h

|Vh+1 − Vh|
k

]

≤ 0, (11)

has to hold.

Appropriate approximations and numerical procedures where used in [16, 20] . A

screw-symmetric numerical operator ∇h was used for (V · ∇)V , linear high order operators

where used for linear diffusion parts, etc. Time integration was conducted by implicit

Crank-Nicolson method for linear part of Navier-Stokes system and explicit second order for

nonlinear part. Pressure correction was used so that Condition 1 is true on each time step.

However the theorem is true only for h and k → 0 [19], i.e. when the numerical system phase

space dimension goes to ∞ . It is obvious that h and k are finite for a real numerical method

that is applied on computers. Since the attractor dimension is limited from above (9) and

number of degrees of freedom is very large but finite (4), one can stipulate that h and k can be

finite if condition (4) and hence (9) are satisfied. It is hard to give a precise estimate but one

can approximately evaluate those values by using Kolmogorov turbulent theory for invariant

scales.

The least motion scale of turbulence can be defined as lk = k−1
k , where kk is given by (2). Since

ǫ is bounded (7), the dissipation rate for a developed turbulent flow is given approximately

as:

ǫ ∝
V3

L
, (12)
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One immediately derives:

lk =

(

ν3L

V3

)1/4

=

(

ν3L4

V3L3

)1/4

= L · R−3/4, (13)

Hence Y for a developed turbulent regime can be given as:

Y =

(

L

L · R3/4

)3

= R9/4, (14)

that corresponds with the maximum number of degrees of freedom for Direct Numerical

Simulation. For smaller values of Reynolds (R) number where the flow is in transitional

regime the value for (14) is not perfectly true. For the purpose of finding Y in this case we

are using a spatially constructed numerical procedure which is given below. For now we

assume that appropriate values of h and k for the given R are defined and conditions 1 and 2

are true for some selected numerical solution procedure. Taking into account that the attractor

is a phase space trajectories attraction manifold we have the following

Assertion 02. For a well-posed initial boundary value problem the numerical solution method with

correct values of h and k and true Conditions 1 and 2 approximates an attractor of 3D evolutionary

Navier-Stokes equations up to the precision order of the numerical method.

2.2. Numerical method description and consistent mesh adaptation

So we can construct the numerical method with the above mentioned properties and it can

be used to analyze laminar-turbulent transition as a nonlinear dynamic system. However

we should point out that bifurcation parameters do depend on the numerical method. So

the values of these parameters can vary from one method to another for a given bifurcation.

We are considering advection initial boundary problems with no external force acting for

dimensionless Navier-Stokes equations. The general problem can be described as: Let Ω be

a bounded domain with local Lipschiz-continuous boundaries ∂Ωi. One must find velocity

vector-function V : Ω × [0, t] → R
3 and scalar pressure function P : Ω × [0, t] → R such as:

Sh · ∂V
∂t + (V · ∇) V + Eu · ∇P = 1

R∇
2V in Q = Ω × (0, t);

∇ · V = 0 in Q;

V = f (�x), on ∂Ω0 × (0, t), V = 0, on ∂Ω1 × (0, t), ∂V
∂�n = 0, on ∂Ω2 × (0, t);

V(�x, 0) = V0(x, y, z), in Ω with ∇ · V0(x, y, z) = 0.

(15)

Similarity criteria are constructed using characteristic macroscopic scales: Sh = f L/V -

Strouhal number; Eu = 2P/(ρV2) - Euler number; R = VL/ν - Reynolds number; L

- macroscopic characteristic scale, f - frequency, V - characteristic velocity, P0 - reference

pressure, ρ = const - fluid density, ν - fluid kinematic viscosity. Various boundary conditions

are given as: ∂Ω0 - inflow condition, ∂Ω1- solid wall condition, ∂Ω2 - outflow condition

and the problem is initialized with initial conditions. Most important similarity criterion is

Reynolds number for laminar-turbulent transition. The rest criteria can be used to scale some

real problems using π -theorem [21] and are not used since we are interested only in nonlinear
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dynamics of equations with no regard to a real specific problem. In order to determine

necessary number of discrete elements one should take into account two factors; the first

is to use the upper bound (14) as a start and derive ǫ from the averaged equations and the

second is to use modified wave number analysis to calculate how many elements are needed
to represent certain wave number and thus necessary number of degrease of freedom. Using

this method, see [22] one can numerically determine anisotropic element density in Ω and

optimize this number. This approach also satisfies all conditions of theorems and assertions

described above. Since the rate of energy dissipation is a function of Reynolds number and

particular initial-boundary conditions we are going to compute required Y using Reynolds

averaging. Let us rewrite momentum equation in (15) in coordinates as:

∂Vi
∂t + ∑j

(

Vj
∂Vi
∂xj

)

+ 1
ρ

∂P
∂xi

= ν ∂2Vi

∂x2
i

; i, j = {1, 2, 3} (16)

and introduce averaging:

V = V + V′, (17)

thus:

Vi + Vj = Vi + Vj; ∂αV = ∂αV; ViVj = ViVj; α = {t; x}. (18)

Here V - averaged and V‘ instantaneous functions of velocity vector-function. By applying

(17) to (16) one gets:

∂Vi

∂t
+ ∑

j

(

Vj
∂Vi

∂xj
+ Vj

′ ∂Vi
′

∂xj

)

+
1

ρ

∂P

∂xi
= ∑

j

∂τij

∂xj
, (19)

where second rank tensor τij = ν
(

∂Vi
∂xj

+
∂Vj

∂xi

)

corresponds to the Newtonian fluid.

Multiplying (16) on Vi and applying (17) one gets:

∂Vi

∂t
Vi + ∑

j

(

Vj
∂Vi

∂xj
Vi

)

+
1

ρ

∂P

∂xi
Vi = ∑

j

∂τij

∂xj
Vi. (20)

Multiplying (19) on Vi:

∂Vi

∂t
Vi + ∑

j

(

ViVj
∂Vi

∂xj

)

+
1

ρ

∂P

∂xi
Vi = ∑

j

[(

∂τij

∂xj
+

∂Tij

∂xj

)

Vi

]

, (21)

one gets the stress equation, where Tij = −Vi
′Vj

′ are the components of virtual (Reynolds)

stress tensor. Subtraction of (21) from (20) reads:

∂Vi
′

∂t
Vi

′ + ∑
j

(

Vj
∂Vi

∂xj
Vi − Vj

∂Vi

∂xj
Vi

)

+
1

ρ

∂P′

∂xi
Vi

′ = ∑
j

(

∂τij
′

∂xj
Vi

′ −
∂Tij

∂xj
Vi

)

, (22)
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where summation is performed in accordance with (18). The value τij
′Vi

′ is the second

infinitesimal order to the other parts of (22) and then the latter can be simplified by using

averaging rules (18) as:

1

2

⎛

⎝

(V ′
i )

2

∂t
+∑

j

∂(V ′
i )

2

∂xj
Vj

⎞

⎠+
1

ρ

∂P′

∂x
V ′

i +
1

2 ∑
j

∂V ′2
i V ′

j

∂xj
+

+∑
j

(

∂V ′
i

∂xj
τ′

ij + V ′
j V ′

i

∂V ′
i

∂xj

)

= 0.

(23)

One can get the equation for perturbation energy balance applying a summation of (23) by

index i:

∂k

∂t
+ ∑

j

∂k

∂xj
Vj = −∑

j

(

∂

∂xj

(

ρ−1P′V ′
j + ∑

i

[

V ′2
i V ′

j

]

))

+ ∑
i,j

(

Tij
∂V ′

i

∂xj

)

− ǫ, (24)

where perturbation kinetic energy is written as:

k =
1

2 ∑
i

(V ′
i )

2, (25)

and perturbation rate of dissipation is described by:

ǫ = ∑
i,j

(

∂V ′
i

∂xj
τ′

ij

)

=
ν

2 ∑
i,j

(

∂V ′
i

∂xj
+

∂V ′
j

∂xi

)2

. (26)

The latter expression (26) is the exact value of (7) for a given Reynolds number. We are using

the following correlation to define the Kolmogorov wave number (2):

kk =

⎛

⎝

R2

2 ∑
i,j

(

∂V ′
i

∂xj
+

∂V ′
j

∂xi

)2
⎞

⎠

1/4

, (27)

where the sum expression is numerically calculated by a test simulation with the maximum

possible number of discrete elements, defined by (14). After that we are constructing the

isolines of NY, calculated by (4), where the dissipation wave number is applied through (27)

and N is defined by modified wave number analysis, described bellow. Then the mesh that

we are using is adopted to satisfy all calculated values of Y. Only after all these procedures we

can say that dynamic nonlinear analysis results we obtained are true and can be considered

trustworthy.

In order to solve an initial-value problem for Navier-stokes numerically we are introducing

the following semi discrete scheme based on the fractional step method using high order TVD
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Runge-Kutta forth order method with each step of RK as:

1.V′ − Vn = −Δt(Vn · ∇)Vn;

2.V′′ − V′ = ΔtΘ∇2V
′(′′)

while ∇ · Vβ+1 �= 0;

{

3.∇2P = −∇ · Vβ/Δt

4.Vβ+1 = V′′ − Δt∇P

5.Vn+1 = Vβ+1

(28)

Here Vn and Vn+1 are the previous timestep and next timestep values of the velocity vector

function; P is the pressure, Δt - timestep for the given Runge-Kutta stage and Θ is the diffusion

parameter and for a forced advection problems equals R−1. All other superscripts on V are

intermediate values of velocity vector function inside the stage. More details on this numerical

procedure can be found in [9, 23, 24]. Each step here is just shortly described. On step 1 in

(28) advection equations are solved with the condition (11) satisfied. We are using fifth order

WENO-type scheme. Several problems were solved for pure advection equation and Burgers

equation (in 1D and 2D) before the final variant of WENO scheme was selected. Since the

timestep is limited by the accuracy requirements the numerical scheme was explicit. On the

second step of (28) diffusion equations are solved by using large stencil approximation with

the 6-th order of accuracy. It is possible to apply implicit method here (in (28) in brackets) for

natural advection problem described bellow, since values of Θ are of unity magnitude. But

for forced advection where Θ = R−1 (for R > 100) it is possible to apply explicit time method.

Academician Belotserkovsky O.M. [25] suggested a physical interpretation of this fractional

step method. Step 1 and 2 are calculating not solenoidal vector field that breaks the mass

conservation equation. But if we apply the operator (∇×) on step 1 and 2 for both (28) and

Navier-Stokes equations (15), we get the curl transport equations, since ∇×∇P = 0. Curl

properties are correctly simulated though ∇ · V = 0 is not satisfied even for steps 1 and 2.

The latter corrected by applying the pressure correction on the third step, where the Poisson

equation is solved for pressure scalar function until the solenoidal criteria is met up to the

machine accuracy. After that the velocity field is corrected and he velocity vector function

is solenoidal on step 4 up to machine accuracy, so condition 1 for correct approximation is

satisfied.

Spatial discretization is a combined finite volume for V and finite element for P discretization.

Since we are focusing on fundamental problems (with simple geometry) the discrete elements

are rectangular cuboids, thus it allows us adjusting its dimensions in accordance with the

calculated values of Y. Finite elements are the same cuboids but variables are stored on

vertexes rather than centers of mass as for V. So the described system of equations is rewritten

for arbitrary convex element i with volume Wi and Ω =
⋃N

i=1 Wi; Wi ∩ Wj = for ∀i �= j as:

∫∫∫

Wi
∇ · VdW = 1

Wi

∮

Si
V f ·�ndS = 0,

∂
∂t

∫∫∫

Wi
VdW +

∮

Si
[V f V f ·�n]dS +

∮

Si
/P f /�ndS − Θ

∮

Si
[∇V] f ds = 0,

(29)

here S - is one of element side square, subscript f refers to the face value and �n is the unit

vector on the side, total number of sides is B. Using discrete elements and applying summation
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instead of integration
∮

Si

f (U) ·�ndS ≈
B

∑
j=1

f (Uj) ·�nΔSj

one immediately reads:

∑
B
j=1

[

V
f
j · �nj

]

ΔSj = 0,

Wi
d
dt Vi + ∑

B
j=1

[

V
f
j V

f
i �nj

]

ΔSj + /∇hP/ − Θ ∑
B
j=1 [∇hV]

f
j ·�nΔSj = 0.

(30)

Here / / operator is treated by finite element method. Then discrete system (30) is applied

in (28) by described numerical methods. Please note that (V · ∇)V = ∇ · (VV) + V∇ · V =
∇ · (VV) in (29) and (30) since ∇ · V = 0 on every timestep.

In order to complete the analysis of numerical scheme and answer all questions positively one

must perform modified wave number analysis for used discrete schemes. We are considering

first order PDE like on step 1, in (28). Let the differential operator ∂x be approximated by

central differences as ∂x = δx +O(Δx2) using N discrete segments each with the length Δx

and let the function be u(x) = ck · exp(ikx). One immediately gets analytical solution as

∂xu(x) = ikck exp(ikx) = iku(x). For the given central differences approximation the real part

u(x) = cos(kx) becomes:

δx(cos(kx)) =
1

2Δx
cos(k(x + Δx))−

1

2Δx
cos(k(x − Δx)) =

= −

(

sin(kx)

Δx

)

sin(kx)

(31)

Here we can see that the difference of analytical and numerical solutions is in wave number

k that changes to k′ = sin(kx)/Δx and if kΔx << 1 then k′ = k − k3Δx2 + ... . For small k

the result of approximate solution (31) is close to the analytical. But when wave number k

increases i.e. discretization scale λ decreases (λ = 2π/k and if Δx = λ/N then kΔx = 2π/N),

the error grows. So we call k′ a modified wave number by the numerical scheme. Thus

by applying this analysis one can get the minimal undisturbed scale representation of the

given numerical discrete scheme. This allows us getting minimal number of finite volumes

necessary for the given k say calculated kk. In general for the given complex function one can

write:

k′Δx = −i
N−1

∑
j=0

cj exp(
i2π jk

N
) = −i

m=s

∑
m=−s

am exp(imkΔx), (32)

where s is half length of the stencil in discrete space and am - are the interpolation coefficients

of the considered numerical scheme. One can immediately see from (32) that for symmetric

schemes only real part presents in the modified wave number since am = −a−m and a0 = 0.

That explains why symmetric approximation cannot be used for approximation of advection

operator in (30). Numerical wave number analysis for WENO scheme was first made in [26]

], but here we use analytical analysis. By applying WENO weights, since WENO scheme is

fifth order everywhere (even for discontinuous functions, see [24, 27] one can get interpolation
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coefficients:

aWENO
m = (−1/30; 1/4; 11/5; −1/2;−1/20; 0) ; s = 3;O(Δx5). (33)

By inserting (33) into (32) one can get modified wave number (real and imaginary parts) and

derive minimal necessary numbers of elements to represent a given wave number, see fig.1.

So one can see that for the 2-nd order central differences scheme at least 8 elements are needed

Figure 1. Modified wave number for different schemes to kΔx ∈ [0, π](left) and minimal number of
elements N for the correct given wave number representation (right). CD - central differences.

to describe a given wave number correctly, and 2 elements for the 6-th order scheme as well

as for the WENO scheme. So now we know that the values that are found in accordance with

(27) must be multiplied by two. Applying the same method for other parts of discretization

one can point out that the given estimate for two elements is enough and here is omitted for

the sake of brevity.

Time integration also requires some care since the condition (11) is in spatio-temporal

condition and if CFD literature is known as TVD (TVB for equals sign) condition for nonlinear

PDEs [28, 29]. Since WENO approximation is TVB, we are going to give a TVD condition (11)

for time integration:
∂Vi

∂t
= L(Vi), (34)

where L is the given complex nonlinear TVB differential operator consisting of all steps (28).

Simple TVD method for (34) is the Euler’s method Vn+1 = Vn + ΔtL(Vn+s). If (34) is the

explicit method (i.e. s = 0) then the stability criterion is a Courant number Δt ≤ C. One can

give the following

Lemma 01. If a direct Euler’s method (34) is applied for a TVB or TVD spatial approximation operator

for Δt ≤ C and by applying m-stage Runge-Kutta scheme

Vn+1 = ∑
m
i=1

(

αiV
n+1−i + ΔtβiL(V

n+1−i)
)

;

∑
m
i=1 αi = 1, ∀αi, βi ≥ 0, on L(V),

(35)

then the solution is stable in any norm
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∥

∥Vn+1
∥

∥ ≤ max
{

‖Vn‖ ;
∥

∥Vn−1
∥

∥ ; ..;
∥

∥Vn−m+1
∥

∥

}

with time step limited by:

Δt ≤ min
i

αi

βi
Δt(Euler); (36)

if ∀βi = 0, then αi
βi

→ ∞.

The same idea is given in [30]. Proving the lemma is done by considering the combinations

of Euler’s steps. This lemma gives us constants αi and βi that were used to construct the

forth order TVD Runge-Kutta method that fulfills the condition (11) and has a maximum

stable timestep possible. One should point out that the standard RK4 method with constants

(1/6; 1/3; 1/3; 1/6) is not TVD and can’t be used for time integration. So it is shown that

the presented numerical method is guaranteed to satisfy all given theorems, conditions and

assertions and, hence, can be used to describe nonlinear dynamics of laminar-turbulent

transition.

The whole work described here took three and half years and 80% of the time was used on

calculation. New CUDA technology [31] was applied lately and now all described numerical

methods are calculated using NVIDIA GPUs that greatly accelerate the research.

3. Laminar-turbulent transition for the flow over a backward facing step

One of the best studied problems is the problem of the flow over a backward facing step. It

was simulated by many different authors and has lots of benchmark results and even few

results about nonlinear dynamics in the problem.

3.1. Initial-boundary value problem, mesh adaptation and benchmark verification

The geometry and boundary conditions are taken from [32] with small adaptation, since

laminar-turbulent transition is investigated as a dynamic system so we compare not only

benchmark results but bifurcation sequences as well.

Domain Ω with local Lipschiz-continuous boundaries ∂Ωi is represented by a rectangular

channel divided by two unequal parts in Cartesian coordinates. The length of the domain

spans in X axis direction. The first part of the channel has length L1 = 2.0, the second part

of the channel length is L2 = 10.0, so the whole length of the domain is L = L1 + L2 = 12.0.

Height spans in Y axis and the second part of the domain is higher than the first one by the

size of the step h = 0.6 with the first part height of H = 0.9. So the second part of the domain

height is H + h = 1.5. Width of the domain W = 3.5 spans in Z axis direction and is the same

for both part. The geometry is almost identical to [32] with L1 = 10.0. The formed step causes

the flow to create recirculation zones inside Ω and transit to turbulence with the growth of

Reynolds number.

There are many different boundary conditions available in papers for this particular problem

[33–35, 38, 39]. All boundaries in step Y axis direction ∂Ω1 ∈ miny(Ω) are given by solid

walls with no slip condition. The upper boundary ∂Ω2 ∈ maxy(Ω) is given as either wall or

symmetry. Boundaries ∂Ω3 ∈ maxz(Ω) and ∂Ω4 ∈ minz(Ω) vary from one work to another.

The boundary ∂Ω3 is given as a solid wall but ∂Ω4 as symmetry plane in [33]. Boundaries in
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Z direction in some other papers, i.e. [35, 40], are given by symmetry planes thus modeling a

semi-2D problem and decreasing number of mesh elements due to the lack of side boundary

layers. We choose boundary conditions like in [32] where boundaries in Z direction are

no slip walls. Boundary ∂Ω5 ∈ minx(Ω) is the inflow boundary where Poiseuille laminar
solution for R=200 in the channel with the same width and height. Boundary ∂Ω6 ∈ maxx(Ω)
is the outflow boundary. We introduce smooth outflow boundary conditions [41] with the

outflow buffer so that unphysical outflow conditions are neglected. Pressure is set on the

outflow boundary as a reference value. Initial conditions in whole domain Ω for velocity

vector-function and scalar pressure function obtained by laminar stationary solution of this

problem with R = 200 so that ∇ · V = 0 at t=0. Reynolds number is defined as:

R = V0L/ν, L = 2WH/(W + H). (37)

Here V0 is the inflow velocity normalized by the flow rate, like in [32]. Due to the fact that DNS

is very computational demanding we are limiting the maximum R by analyzing literature

results. It is shown in [32] that a "chaotic attractor" that corresponds to noise frequencies

band appear at R > 1500 so we set maximum R = 1500. For the purpose of minimizing

computational efforts we are considering three meshes adopted for R = 700,R = 1000 and

R = 1500. The rest Reynolds number meshes are lying inside the segment. Using an upper

bound estimate (14) and taking modified wave number analysis in account one gets total mesh

numbers as: 5 040 813(R=700), 11 246 827(R=1000) and 24 004 984 (R=1500). We set L = 1 3
7

from the given geometry and since we know R, we can evaluate minimal Kolmogorov linear

scale of one element lk:

lk = {0.024495281; 0.018745885; 0.013830488} , (38)

and, hence, in Cartesian coordinates we have M = {491; 641; 869}, N = {62; 81; 109}, K =
{144; 188; 254}, elements for the upper bound estimate. Time step is selected 0.005 for all

calculations [? ]. We performed these three control calculations on fine grids and calculated

isosurfaces of minimal scales lk by (27). Example of these isosurfaces for R = 1000 is shown

in fig.2.

It is clearly visible that we must use fines mesh with element size of 0.01577 of boundary layers

and recirculation zone, but the rest of the flow has s much lighter demand for small scales. So

final meshes where chosen to be:

G1 = {245X54X83} , R = 700; Δxα = {0.0677; 0.01957; 0.03964} ≈ 1033;

G2 = {339X72X119} , R = 1000; Δxα = {0.04696; 0.01577; 0.028548} ≈ 1433;

G3 = {560X100X177} , R = 1500; Δxα = {0.04696; 0.01577; 0.028548} ≈ 2153;

(39)

where cubic values are shown for required memory estimate. After that all other calculations

for the given problem are performed on these (39) three grids that satisfy necessary conditions

of theorems. In order to perform benchmark tests boundaries ∂Ω3,4 where changed

accordingly. Values of are the same lk for inside flow region and near periodic boundaries

so our grid resolution (39) is overdensed for test calculations with periodic boundaries. So

new mesh was generated in the same manner through calculation of lk but it contained less

number of lk elements, so benchmark calculations took less time to solve.
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Figure 2. Calculated values of lk for R = 1000. Central section and literal 3D sections are shown.

While solving various modifications of the problem we changed height of the step in

accordance with the geometry presented for particular benchmark tests and here all detail

data of these geometries is omitted due to brevity. Integral and statistical data of V and P

functions is considered as well as friction wall coefficients.

First we overseen qualitative comparison of results for R=1500 with side walls with DNS [35],

[42], [37] and physical model [43] results. Velocity isolines sections are presented in fig.3.

One can clearly see the 3D structure of the flow plus the recirculation vertexes that appear

near all walls. This agrees well with the presented papers. To compare qualitatively periodic

boundary results we used papers [44] and [35]. The flow is much more simple for periodic

boundaries in Z direction.

For the quantitative analysis we considered some papers: [44] for R = {100; 389; 1000}, [34]

for R = 150 − 800, [35] for R = 1500, [45] in C f comparison for R = 5500 (using LES model)

and [38, 46] for virtual stress tensor comparison for R = 1800 (using LES model). All data

agreed well for benchmarks with maximum difference of 7%. Data was extracted from papers

with high precision using shareware GetData Graph Digitizer 2.24.

Detail results are omitted for the sake of brevity, but some results are presented here.

Reattachment vortex length ration to the height of the step is presented in fig.4 and compared

with results from various sources, i.e. [34]. One can clearly see that the results are well agreed

with reference data.

More quantitative results are presented in fig. 5, where a mean wall friction coefficient is

presented. The dynamic eddy viscosity model was used to solve the flow for R = 5500, and

was compared with other LES and DNS results. One can see that the result agree well with

presented data, especially with DNS data (rectangles) from [45].
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Figure 3. Instantaneous velocity vector-function modulus isolines in sections for R=1500.

Figure 4. Mean reattachment length to the step height, compared with reference data, line - current
method

Comparison for Reynolds stress correlations at R = 1800 with data from [38] presented in

fig.6. One can see a very good agreement between DNS and experimental data.

More benchmark details are omitted for the sake of brevity, see [23, 47].

3.2. Nonlinear dynamics of laminar-turbulent transition

The idea of analysis was used many times in our research [7, 8, 23, 48] and corresponds with

[32]. We saved data for velocity function in format Vx , Vy, Vz. Saving data for all domain

was impossible since there’s not enough disk space (it requires about 6,43 terabytes for one

fixed Reynolds number), so we choose several points and saved data from them. Points

in Cartesian coordinates normalized by length in each direction are: p1 = {0.1, 0.5, 0.5};

p2 = {0.2, 0.5, 0.5}; p3 = {0.5, 0.5, 0.5}; p4 = {0.7, 0.5, 0.5}; p5 = {0.8, 0.1, 0.1}. We are

using Reynolds number as the bifurcation parameter for the problem and forming sets of three

dimensional phase subspaces of the whole infinite dimensional phase space. The subspaces
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Figure 5. Mean wall friction coefficient C f for R = 5500, line - current method, pints - reference data

Figure 6. Reynolds stress correlations comparison for R = 1800 with experimental data at length
x/h = {4; 6; 15} in the center (W/2).

are formed by velocity vector components. Under infinite dimensional phase space here

we consider finite dimensional phase space produced by the numerical system (30) whose

space dimension is greater than the attractor dimension of the system (15) for the given

initial-boundary value problem with a finite preset Reynolds number. It is important to notice

that there exists a hysteresis of a solution if one approaches a fixed R from different sides,

say solution G exists for R0 if we travel to it by R1 → R0, R1 < R0 but does not exist for

R0 if R1 > R0, i.e. see [49]. So we are only considering the following cascade of bifurcation

parameters R1 < R2 < ... < Rn = 1500.

The solution is laminar for R from 100 up to 736 but the time of stationary solution formulation

increases as R grows. For the stationary laminar solution we can monitor a fixed point in

infinite dimensional phase space and in all five three dimensional subspaces of velocity vector

function. Starting from a system exhibits one frequency mode regime. A limited cycle C1 is

formed from every stationary point in phase space and has projections in all subspaces. One

can see a projection of the cycle for the point P1 in fig. 7.

At the point of R = 850, the cycle looses stability and forms a stable two dimensional invariant

torus T2 = C1 ⊗ C2 as the result of Andronov-Hopf bifurcation. This torus is located in all

infinite dimensional phase space and can be found in all subspaces for points Pi. Presumably,

this is due to the fact of incompressibility what expresses in elliptic operator for pressure

265FSM Scenarios of Laminar-Turbulent Transition in Incompressible Fluids



16 Will-be-set-by-IN-TECH

Figure 7. Point P1, stable limit cycle, R=740

and hence the acoustic speed is infinite. An example of this torus is shown in fig.8. It is

clearly seen that the system is very sensible for the values of bifurcation parameters. It is

shown in fig.8, that a change of R by 1.0 changes the attractor from C1 to T2. Comparing

these results with the mentioned work [32] we can say that the formation of the first cycle

appears almost at the same Reynolds number, here we have R = 737 and in [32] the value is

R=735. The formation of two-frequent mode in [32] appears at R=855, but there’s no stable

phase space trajectory available, since numerical errors started dominating. And further

investigation in [32] is performed using frequency analysis that indicated creation of the

other independent frequency. The recent report in TsAGI [50] of Sibgatullin I.N. indicated

that other initial-boundary problems exhibit the resembling scenario by which an invariant

torus is formatted in phase space. But all reports and papers indicate that a chaotic behavior

follows the formation of two dimensional invariant tori. We suppose that this is due to the

fact that numerical methods, used in the papers and reports, don’t meet necessary conditions

for theorems and assertions outlined here and so we continued the numerical analysis.

Figure 8. R = 849 Phase subspace cycle projection and section, point P4(left); R = 850 Phase subspace
torus projection and section, point P4(right)
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Further increase of R leads to more complex topology of cycles that are forming the torus. The

process of this complication is shown in fig.9 at point P3 and in fig.10 at point P5.

Figure 9. Torus complication in subspace projection at point P3. R = {851; 883}

Figure 10. Torus complication in subspace projection at point P5, R = {851; 882; 883; 885}

This process continues up to R = 883. It was found that at this point the two dimensional

torus looses stability in the whole infinite dimensional space and forms a three dimensional

invariant torus through the Andronov-Hopf bifurcation. This torus is formed by the

topological multiplication of three irrational frequency cycles T3 = C1 ⊗ C2 ⊗ C3. Its

projections in different subspaces are shown in fig.9, 10 for R ≥ 883.

Since the space dimension in one point of the phase subspace is the same as the formed

torus dimension one should increase the phase subspace dimension. It can be clearly seen on
sections fig.11 where a new "coiling" can be monitored around the old cycle in plane section.

To do so we are taking data from another point thus forming a four dimensional subspace

and then we are performing two sections by two dimensional planes. The first section in P5

(plus data from P2 marked with asterisk) is shown in fig.12 on the left. The torus structure

can be seen by performing another section by the plane W = 0.005. One can see the three

dimensional torus structure in fig.12 in sections for R=883.
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Figure 11. Plane sections of phase subspaces in P4 and P5 for R = (882.5 → 883) from left to right

Figure 12. Section of the phase subspace in Point P3 (top) and P5 (bottom) plus P2 data (marked asterisk),
R = 883, on the left. Section of the four dimensional phase subspace by the additional plane, on the right

Three dimensional invariant torus losses its stability and through the doubling period

bifurcation forms a double period three dimensional torus for R = 883.8 It requires huge

amount of data to get results shown in fig.13. Depicted results required about 375Gb of data

per one point and could only be completed by numerical methods on GPUs or on massive

parallel clusters. All different sections are presented in fig.13 for four dimensional phase

subspaces at P3 + P2 and P5 + P2.

It can be clearly seen that the torus topology is more complicated, i.e. see fig.13 at point P5,

and fig.12 - second section, although the bifurcation parameter only changed by 0.091%. These
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Figure 13. Section of the four dimensional phase subspaces by additional planes at point P3 + P2(∗)
(top) and P5 + P2(∗) (bottom)

results show that a double period three dimensional torus is formed in all infinite dimensional

phase space for R = 883.8. Further investigation is impossible due to the exponential growth

of bifurcations. The second section view is already next to incomprehensible for R = 890

and consists of a filled black squire. In conclusion we found the following scenario of

laminar-turbulent transition:

C1 → T2 → T3 → T3⊗2 →, (40)

It can be seen in (40) that the scenario exhibits initial stage of Landau-Hopf scenario (Hopf

bifurcation cascades) and initial stage of FSM scenario, since the Feigenbaum scenario is

progressing after the three dimensional torus. It corresponds with the initial stage of FSM

scenario. One should point out that a three dimensional torus is stable at least for the time of

numerical simulation for 1, 5 · 107 timesteps at R = 883.

4. Laminar-turbulent transition for Rayleigh-Benard convection

One of the best studied and widely analyzed problems of fluid mechanics is the

Rayleigh-Benard natural convection problem. The problem has been considered by many

and has lots of results in the field of nonlinear bifurcation analysis, analytical, numerical and

experimental.

4.1. The Oberbeck-Boussinesq approximation of Rayleigh-Benard convection,

dimensionless form and benchmarks

One of the possible mathematical models for this problem is the Oberbeck-Boussinesq

approximation. Here we are closely following [51] and assume, that fluid physical properties

( ν,β ) are only linear functions of temperature perturbations. The fluid density can be given
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as a function of temperature perturbation as:

ρ = ρ0 (1 − β(T − T0)) , (41)

where ρ - fluid density, T - fluid temperature, β - fluid thermal expansion coefficient, ρ0,T0

- mean values of fluid density and temperature. It is assumed under Oberbeck-Boussinesq

approximation that density only changes due to temperature difference and, thus, causing

buoyancy, yet fluid is considered incompressible. Temperature emission due to friction is also

neglected. Introducing (41) to Navier-Stokes equations (1), assuming temperature passive

advection-diffusion and taking gravity vector in Cartesian coordinates as �g = {0; 0;−1} in

account, one gets:

∇ · V = 0,
∂V
∂t + (V · ∇)V + ρ−1

0 ∇P = ν∇2V +�gβ(T − T0),
∂T
∂t + V∇T = χ∇2T,

(42)

here χ is a fluid thermal conductivity coefficient. There are many scales can be chosen

that make (42) dimensionless for the Rayleigh-Benard convection problem. One of the

most common ways [51] is to use time scale τ as τ = h2/ν, where h is the length

between two planes with given temperature difference. Another way is to associate τ with

the momentum transport by viscous terms and then τ = h2/ν. Introducing additional

dimensionless similarity criteria one can formulate a Rayleigh-Benard convection problem:

find vector-function V : Ω × [0, t] → R
3, scalar pressure function P : Ω × [0, t] → R and

and scalar temperature function T : Ω × [0, t] → R that satisfy the following initial-boundary

value problem:

∂V
∂t + (V · ∇) V +∇P = ∇2V + RaPr−1(T − T0) · (0; 0;−1)T in Q;

∇ · V = 0 in Q = Ω × (0, t);
∂T
∂t + V∇T = Pr−1∇2T in Q;

V = 0, ∂T/∂�n = 0, on ∂Ω0 × (0, t); V = 0, T = Tα on ∂Ω1;

V(�x, 0) = V0(�x),∇ · V0 = 0; T(�x, 0) = T0(�x) in Ω.

(43)

Here: Ω is a bounded domain with local Lipschiz-continuous boundary ∂Ωi; t is time; T is a

fluid temperature; T0 is a reference fluid temperature; Pr = ν/χ is the dimensionless Prandtl

number; Ra = gβh3ΔT/(νχ) is the Rayleigh number; h is height in Ω between ∂Ω1 ; ΔT is a

temperature difference between ∂Ω1.

There are two main types of boundary conditions. First consider boundary conditions

whose plane is parallel to the temperature gradient, i.e. Ω0. One usually chooses either

periodic boundary conditions for temperature and velocity or wall boundary conditions

with Neumann type for temperature. On other planes, namely Ω1, temperature gradient by

Dirichlet boundary conditions is set with wall no slip boundary for velocity.

Numerical solution method differs from (28) only in temperature equation and in diffusion

part of Navier-Stokes equations. We applied implicit five diagonal matrix solution method

[52] for all diffusion parts of (43) thus accuracy drops from 6-th order to 4-th order in space.

It can be shown by the modified wave number analysis that number of elements remains the

same just with a little lost of accuracy. In order to solve matrix equation [A] [X] = [B] that

arises from implicit method for diffusion parts of equation a five diagonal fast factorization
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solution routine is adopted for CPU calculations [53] and Geometric Multigrid method for

GPU [54].

In order to satisfy conditions of the theorems we must adopt mesh by introducing Reynolds

number through Prandtl and Payleigh numbers. We are using paper results [55, 56] that

indicate the following relation is true:

R � Ra0.44Pr−0.76, (44)

for the range of 0.9 < Pr < 2 and 1 · 105 < Ra < 1 · 109. It is also known [57, 58] that transition

form "soft" turbulence (where some frequencies can be determined in frequency analysis) to

"hard" turbulence (where frequency-amplitude response becomes a coloured noise) occurs at

Racr ≈ 4 · 107 for Pr > 0.9. Assuming that it is impossible to make any quantitative analysis

after similarity criteria greater than critical values we take relation (44) and find Reynolds

number as:

Rmax � Ra0.44
cr min(Prcr)

−0.76 = 2856. (45)

Using (45) and applying it to (27) one can get the following mesh adopted variants for cubic

and cylindrical domains after calibration simulations:

G1 = {250X250X250} for Pr = 0.9; Δxmax = 6.1Δxwall;

G2 = {216X216X216} for Pr > 1.0; Δxmax = 5.2Δxwall;

G3 = {185X185X185} for Pr > 1.25; Δxmax = 5.0Δxwall;

G4 = {250X250X100} for Pr > 4.0; Δxmax = 4.5Δxwall; r/h = 4;

G5 = {400X400X47} for Pr > 5.0; Δxmax = 3.5Δxwall; r/h = 14;

(46)

where r is the cylinder radius and h is the cylinder height. Immersed boundary is used for

cylindrical approximation, for more information see [59]. For other geometry domains grid is

specified in the same manner and omitted here for the sake of brevity.

Benchmarking the problem requires many different domain configurations and different

dimensionless variations of the equations (43). We skip that for the sake of brevity and

can recommend book by professor Getling A.V. [51] for more information on dimensionless

forms, physical background and analytical analysis. It is known from the linear minimodal

approximation of the problem [51] that the flow with wall boundary conditions on Ω0 is more

stable than that with periodic conditions or two dimensional problems. For the infinite Pr

number the critical value of Rayleigh criterion for the first instability is Racr = 1707.762 for

the wave number k = 3.117 in case of wall boundary conditions and Racr = 27π4/4 ≈ 657.511

with k = 2.221 for periodic boundary conditions. For benchmark verification several papers

where considered [60].

Solution in cylindric domain for Ra = 2000 − 31000 and r/h = 4 with zero initial conditions

is shown in fig.14, top and with initial perturbation Vz = cos (2πz/(2r)) /100 – in fig.14

bottom, where one can see the appearance of absolutely different solution for perturbed initial

conditions with the prototype function cos(kx), see [51].

Some results in rectangular domain where also considered and compared with [61] with very

good agreement. More results where compared with [51, 60] for r/h = 14 for range of
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Figure 14. Velocity vector function section Ra = 2000 − 31000, r/h = 4. Zero initial conditions on the
top and perturbed initial conditions on the bottom.

Ra = {2565, 4500, 6500, 16850}. We could clearly see the process of different pattern formation

(round, circular, "vetruvian man", hexagon, irregular). For the analysis of nonlinear dynamics

we considered a cubic domain absolutely identical to the physical experiment, presented in

the book by P.G. Frik [62]. Experiment was made in a copper cubic domain with the height of

40mm. Horizontal boundaries where thermally stabilized and vertical boundaries formed a

constant gradient. The experiment was aimed to investigate frequencies and attractors using

thermal differential pares. Numerical simulation for Ra = 2 · 105 and Pr = 7 is shown in
fig.15.

Figure 15. Velocity vectors in 3D and plane section (1;0;0), for Ra = 2 · 105 and Pr = 7. Every six vector
is shown.
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4.2. Nonlinear dynamics of laminar-turbulent transition.

The analysis is absolutely identical to the one used for the problem of the flow over

backward facing step. For this point we select five points with relative Cartesian coordinates
p1 = {0.5; 0.5; 0.5}; p2 = {0.4; 0.5; 0.5}; p3 = {0.5; 0.8; 0.5}; p4 = {0.8; 0.5; 0.667}; p5 =
{0.16; 0.167; 0.1}. The subspaces of infinite dimensional phase space are constructed by

velocity vector functions in various points and their combination. Similarity criteria of Ra

and Pr numbers are used as bifurcation parameters. We took fixed values for Prandtl number

and increased Ra number for every Pr number, thus we considered five various series of

calculations.

4.2.1. First calculation series.

Prandtl number is set as 1.866666666. While we change Ra from 1 to 14100 we could see the

formation of various stationary solutions with various recirculation zones formation in the

domain with the complete correspondence to [62]. Laminar solution can be seen for Ra <

2.5 · 105 in the whole domain, that corresponded to the fixed stationary point in the infinite

dimensional phase space and in all subspaces. However this fixed point jumped from one

position to another in the phase space as a function of Ra number. This stationary point looses

stability for Ra = 2.5 · 105 and a limited cycle is formed in the phase space and in each phase

subspace. This cycle projection for point p1 is shown in fig16.

Figure 16. Phase 3D subspace and its sections for Pr = 1.86666. From left to right: limited cycle, point
p1, Ra = 2.5 · 105; two dimensional invariant torus, point p1; Poincare section of the torus,
Ra = 2.67820 · 105.

This cycle looses stability at Ra = 2.67820 · 105 and forms two dimensional invariant torus

through the Andronov-Hopf bifurcation. This torus projection in the three dimensional phase

subspace and its plane section are depicted in fig. 16. This torus is lying in the whole infinite

dimensional phase space and has projections in all of its subspaces.

The two-dimensional tori of double and quadruple periods are formed with the further

increasing of Rayleigh number (fig. 17 and fig.18 ). Point p5 in fig.18 depicts the torus

projection near wall boundaries for Ra = 2.9133225210 · 105.

Further increasing of Ra number led to chaotic instability. This can be related to the limited

accuracy of the numerical method and solution trajectories slipped from one to another in

such sensible dynamic system. The cascade of bifurcations agreed well with experimental
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Figure 17. Phase 3D subspace and its sections for Pr = 1.86666. From left to right: double period
two-dimensional invariant torus, point p1, Ra = 2.767858170 · 105 ; Poincare section of the double period
torus; quadruple period two-dimensional invariant torus, point p1, Ra = 2.9133225210 · 105.

Figure 18. Phase 3D subspace and its sections for Pr = 1.86666. From left to right: 1/2 (zoomed)
Poincare section of the quadruple period two-dimensional torus, point p1, Ra = 2.9133225210 · 105 ;
quadruple period two-dimensional invariant torus, point p5, Ra = 2.9133225210 · 105 ; Poincare section of
the quadruple period torus, point p1.

results from [62] with only difference in exact values for Ra number. In [62] it could be

clearly seen the formation of limit cycle and torus (two irrational frequencies), but further

investigations led to chaos so it was impossible to tell from the experimental data of further

bifurcations for the formed torus.

4.2.2. Second calculation series.

Pr number is fixed as 1.61290. The fluid motion is stationary up to Ra = 1.361 · 106 when a

limit cycle is formed from the stationary point in the whole infinite dimension phase space.

Further increasing of Ra up to 1.365 · 106 led to the doubling period bifurcation with formation

of double period limit cycle and, immediately, formation of the two-dimensional invariant

torus through the Andronov-Hopf bifurcation.

This torus can be clearly seen for Ra = 1.366 · 106 on the 3D subspace projection to the (Vx , Vy)
plane in fig.19. Another doubling period bifurcation occurs at Ra = 1.36905 · 106 forming a
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Figure 19. Phase projection and its sections for Pr = 1.6129. From left to right: the two dimensional
invariant torus projection on (Vx , Vy) plane for point p1, Ra = 1.366 · 106 ; Poincare section of the torus at
point p1; Poincare section of the double period torus at point p1, Ra = 1.36905 · 106 .

double period two-dimensional invariant torus that can be seen in fig.19. Further analysis was

limited due to the numerical noise.

4.2.3. Third calculation series.

Prundtl number is set 1.354839. The limit cycle in system phase space is formed from the

stationary point at Ra = 1.286 · 106 and its projection on (Vx , Vy) plane is shown in fig.20.

Figure 20. Phase subspace projection to (Vx , Vy) plane for Pr = 1.354839 at point p1. From left to right:
stable cycle, Ra = 1.286 · 106 ; double period stable cycle, Ra = 1.296 · 106; quintuple period stable cycle,
Ra = 1.306 · 106 .

Next doubling period bifurcation occurs at Ra = 1.296 · 106 with the formation of double

period limit cycle, see fig.20. This cycle is lying in all infinite dimensional phase space and in

all subspaces. With the increasing of Ra number the cycle suffers cascades of bifurcations in

accordance with the FSM scenario. The quintuple period cycle is formed for Ra = 1.306 · 106

who’s projection on (Vx, Vy) plane is shown in fig.20.

A triple period cycle can be seen at Ra = 1.308 · 106 in all subspaces and its projection on

(Vx , Vy) plane is shown in fig.21. It means that the system suffered the whole subharmonic

cascade of bifurcations and now there are all other unstable cycles exist in the system in

accordance with the theory FSM. In conclusion one can say that there exist multiple scenarios

of laminar-turbulent transition in Rayleigh-Benard convection as functions of Pr/Ra ratio:

1. Landau-Hopf bifurcation scenario that forms sets of many-dimensional tori Tn .

2. Landau-Hopf bifurcation scenario with doubling period bifurcation on n-dimensional

invariant torus (Landau-Hopf scenario + FSM scenario).
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Figure 21. Triple period stable cycle at point, Pr = 1.354839, Ra = 1.308 · 106 ; Stream lines in Ω for the
same Pr and Ra.

3. FSM scenario with subharmonic cascade of bifurcations of stable limit cycles.

5. Conclusion

The following chapter covers five year work that has been conducted in the Chaotic Dynamics

Laboratory in the Institute for Systems Analysis of Russian Academy of Sci., lead by professor

N.A. Magnitskii. Our attempt in using standard open source or commercial software for

this kind of analysis failed so we had to consider a specially constructed accurate and

trustworthy numerical solution code for Navier-Stokes equations, partly described here. The

results of numerical solution for initial-boundary value problems considered confirmed that

laminar-turbulent transition undergoing the bifurcation process and has different scenarios.

It is interesting to point out that similar scenarios with classical Feigenbaum scenario and

Sharkovskiy windows of periodicity where recently found in [66] for initial-boundary value

problems in continuous mechanical systems such as flexible plates and shallow shells.

However, the universal FSM scenario [7] is found in all problems considered, despite the

difference between problems. Recently we found that Boltzmann equations in hydrodynamic

limit with BGK collision integral [63–65] also exhibit FSM scenario for laminar-turbulent

transition process. It is likely that all hydrodynamic type chaotic solutions for PDEs are

undergoing the FSM scenario in various modifications. The work continues and now we

are considering compressible fluid dynamics (transonic and supersonic turbulence) and

magnetohydrodynamics as well as other initial-boundary value problems for (1).
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