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1. Introduction

Switched power converters are finding wide applications in the area of electrical energy

conditioning. Many electronic devices have power converters to achieve high conversion

efficiency and therefore low heat waste. Some of them are: drivers for industrial motion

control, battery chargers, uninterruptible power supplies (UPS), electric vehicles, laptops,

gadgets and mobile phones. Therefore control of power converters in order to optimize

conversion efficiency is a current and challenging research topic. Pulsewidth modulation

(PWM) is the most used method to control power converters [11]-[12].

Digital-PWM controllers are a novel alternative to control power converters. These

controllers have many advantages as programmability, high flexibility, reliability and easy

implementation of advanced control algorithms. They can be designed with delays in the

measured variables in order to guarantee the necessary computing time of the signal control.

However, performance of PWM controllers is affected by delays.

In this chapter, we investigate the incidence of delays in a digital-PWM controller based on

two novel techniques: Zero Average Dynamics (ZAD) and Fixed-Point Inducting Control (FPIC).

Both control strategies have been developed, applied and widely analyzed in the last decade

[5].

Floquet theory and smooth bifurcation theory can be used to define stability regions and to find

optimum parameter sets (see for example [6]-[9]). In our case, three parameters should be

tuned in the digital-PWM controller. Each parameter is denoted as: ks in ZAD strategy, N in

FPIC technique and τ is the number of delay periods in the measured variables [1].

The 3D-parameter space (ks,N,τ) of the delayed PWM controller is analyzed and stability

regions are bounded by Flip, Fold and Neimark-Sacker transitions. The presence of the three

smooth bifurcations in the same nonlinear circuit is not common and this fact has not been

reported widely in Digital-PWM switched converters.

©2012 Angulo et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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Stability, bifurcations and transient response of switched converters with Delayed PWM

controllers can be studied more efficiently using an analysis of disturbances based on Floquet

theory. We show that this procedure can be generalized to compute Floquet exponents for any

number of delays (τ) in the control law (dk, so-called duty cycle). We compare this approach

with other methods which determine stability in switched converters. One of them is the

computation of characteristic multipliers based on the jacobian matrix. Another one is the

computation of Lyapunov exponents using a numeric routine. Each method gives equivalent

information. However Floquet approach is the most appropriated when delays appear since

this method does not require the evaluation of the jacobian matrix (its dimension increases

when the number of delays is higher). The other two methods have this disadvantage [13].

The chapter is organized as follows. In Section 2 we present the general procedure to

compute Floquet exponents in PWM switched converters. The particular case of a buck

converter controlled with digital-PWM controller based on ZAD, FPIC and DELAY schemes,

is presented in Section 3. The stability of fixed points in delayed PWM switched converters

is discussed in Section 4, while fold, flip and Neimark-Sacker bifurcations are presented in

Section 5. Finally, the conclusions and future work are presented in Section 6.

2. Floquet-based procedure in PWM switched converters

We assume that a PWM switched converter can be modelled as a piecewise-linear dynamical

system, as it is written in equation (1). x is the state (nx1)-vector, A is the state (nxn)-matrix,

B is the input (nx1)-vector, C is the output (1xn)-vector, y is the scalar output and uPWM is

the control signal.
{

ẋ = Ax + BuPWM

y = Cx
(1)

The PWM signal is a function of dk and the duty cycle is a function of the delayed state

variables (dk = f (x(k − τ))). We consider the centered scheme given by equation (2).

uPWM (t) =

⎧

⎨

⎩

ul if k ≤ t ≤ k + dk

/

2

uc if k + dk

/

2 < t < k + 1 − dk

/

2

ur if k + 1 − dk

/

2 ≤ t ≤ k + 1

(2)

First, we define the PWM Switched System including the discontinuity by using a unit

step function (θ), as in equation (3) where t ∈ {0, (τ + 1) T}, ts1 =
(

τ + d0

/

2
)

T, ts2 =
(

τ + 1 − d0

/

2
)

T, Δucl = uc − ul and Δurc = ur − uc.

ẋ = Ax + ulB + Δuclθ (t − ts1)B + Δurcθ (t − ts2)B (3)

According to Floquet theory we define, for the perturbed solution,

x = x∗ + eμTp(t),

where

μ ∈ C is the so-called Floquet exponent and p(t + T) = p(t) is an associated T-periodic

function.

28 Nonlinearity, Bifurcation and Chaos – Theory and Applications
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Replacing the perturbed solution in equation (3) and neglecting the periodic solution, the

variational equation of the system is obtained by equation (4) where t∗s1 =
(

τ + d∗
2

)

T, t∗s2 =
(

τ + 1 − d∗
2

)

T and H is a (nxn)-matrix which depends on the time differential related to the

perturbation of the PWM signal. Matrix H depends on the control strategy.

ṗ = (A − μI)p +
(

Δurce−μ(t−t∗s2)δ (t − t∗s2)− Δucle
−μ(t−t∗s1)δ (t − t∗s1)

)

Hp(0) (4)

The solution of the variational equation is stated in (5) where z = e−μT .

p (1) =

(

zeAT + zτ+1

(

ΔurceAT d∗
2 − Δulce

AT
(

1− d∗
2

)
)

H

)

p(0) (5)

(a) (b)

Figure 1. (a). Scheme of a PWM-controlled Buck converter with ZAD-strategy. (b). Piecewise-linear
error dynamic (spwl) in a sampling period.

3. Floquet exponents in a synchronous buck converter

The relevant roles of Floquet exponents on analysis, design and control of PWM switched

converters are analyzed in a synchronous buck converter. Its main feature is that the output

value Vo is lower than the source E (step down converter). Figure 1 (a) shows a scheme of

buck converter controlled with ZAD strategy.

The mathematical model for the synchronous buck converter can be written in compact form

as:
(

ẋ1

ẋ2

)

=

( −1
RC

1
C−1

L
−rL

L

)(

x1

x2

)

+

(

0
E
L

)

uPWM (6)

where x1 = vC, x2 = iL and uPWM belongs to the discrete set {−1, 1}.

For the ZAD condition, a piecewise-linear function is defined as equation (7). Figure 1 (b)
shows a scheme of spwl in a period sampling.

spwl(t) =

⎧

⎪

⎨

⎪

⎩

s1 + (t − kT)ṡ1 if kT ≤ t ≤ kT + dk
2

s2 + (t − kT + dk
2 )ṡ2 if kT + dk

2 < t < kT + (T − dk
2 )

s3 + (t − kT + T + dk
2 )ṡ1 if kT + (T − dk

2 ) ≤ t ≤ (k + 1)T

(7)

29Floquet Exponents and Bifurcations in Switched Converters
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where

ṡ1 = (ẋ1 + ks ẍ1)
∣

∣

∣

x=x(kT),u=1
ṡ2 = (ẋ1 + ks ẍ1)

∣

∣

∣

x=x(kT),u=0

s1 = (x1 − re f + ks ẋ1)
∣

∣

∣

x=x(kT),u=1
s2 = d

2 ṡ1 + s1 s3 = s1 + (T − d)ṡ2

(8)

and ks is a positive constant. Therefore, the zero average condition is

(k+1)T
∫

kT

spwl(t)dt = 0 (9)

Now, finding dk means solving equation (9) and redefining the duty cycle as dzad

dzad =
2s1 + Tṡ2

ṡ2 − ṡ1
(10)

The FPIC control law is given by equation (11), where N is the control parameter and dss is

the duty cycle when the stationary state is reached.

dk =
dzad + Ndss

N + 1
(11)

This result can be expressed as a linear combination of the state variables, where c1, c2 and c3

are constants.

dk = c1x1(k − τ) + c2x2(k − τ) + c3 (12)

Figure 2. Scheme of centered PWM function depending on delays (τ).

Now, we should define the variational equation of the buck converter using the general

procedure described in Section 2. Basically, we apply to the periodic solution (x∗) an

appropriate perturbation using exponential functions (eμt). The stability of the digital-PWM

power converter can be inferred studying the behavior of the perturbation. If the real part

of the exponent μ is positive, the perturbation will tend to infinity and the solution will be

unstable. If the real part of the exponent μ is negative, the perturbation will tend to zero and

the solution will be stable.

30 Nonlinearity, Bifurcation and Chaos – Theory and Applications
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Therefore, we can find the variational equation based on the dynamical equations of the

system. We use a more compact expression applying the following change of variables:

x1 = vC/E, x2 = 1
E

√

L
C iL and t = τ/

√
LC, thus γ = 1

R

√

L
C , β = rL

√

C
L and the sampling

period is T = Tc/
√

LC [10].

( .
x1

.
x2

)

=

(−γ 1

−1 −β

)(

x1

x2

)

+

(

0

1

)

uPWM (13)

We use the parameter values of an experimental prototype reported in [3]. We fix R = 20Ω,

C = 40μF, L=2mH, rL = 0Ω, vre f = 32V, E=40V and the sampling period Tc = 50μs..

Therefore, the dimensionless parameters are γ = 0.35, β = 0 and T = 0.1767.

For simplicity, in the remainder of Section 3, we note dk as d with d ∈ [0, T], and we present the

procedure for one period sampling t ∈ [τT, (τ + 1)T] (general notation was used in Section

2). The signal control uPWM is defined as equation (14), where ts1 =
(

τT + d
2

)

and ts2 =
(

(τ + 1)T − d
2

)

.

uPWM =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 τT < t � ts1

−1 ts1 < t � ts2

1 ts2 < t � (τ + 1)T

(14)

Figure 2 illustrates the mechanism to model the centered pulse (uPWM) using unit step

(a) τ = 0, N = 0 (b) τ = 1, N = 0

Figure 3. The evolution of the real part of the Floquet exponents when ks is varied in the ZAD controller.
(a). without delay and without FPIC, (b). with one delay and without FPIC

functions θ(t). The duty cycle depend on state variables in the instant t = (k − τ)T. Equation

(15) shows as two unit step functions can be used to model the centered pulse.

( .
x1

.
x2

)

=

(−γ 1

−1 −β

)(

x1

x2

)

+

(

0

1

)

− 2θ (t − ts1)

(

0

1

)

+ 2θ (t − ts2)

(

0

1

)

(15)

Equation (15) implies that duty cycle can be defined in function of state variables in an

initial instant (t = 0) because the delay information was included in the unit step functions.

31Floquet Exponents and Bifurcations in Switched Converters
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Therefore, we can define (d/2) such as equation (16) where c1, c2 and c3 are given by equations

(17), (18) and (19), respectively.

d

2
= c1x1(0) + c2x2(0) + c3 (16)

c1 =
2 − γ(2ks + T(1 − γks))− ksT

−4ks(N + 1)
(17)

c2 =
2ks + T(1 − ks(γ + β))

−4ks(N + 1)
(18)

c3 =
2re f + ksT

4ks
+

Ndss

2(N + 1)
(19)

Let the perturbed periodic orbit be

x1(t) = x∗1(t) + eμt p1(t), x2(t) = x∗2(t) + eμt p2(t),

where the superstar labels are the periodic solutions and eμt p1(t), eμt p2(t) are the

perturbations. Then, we replace the perturbed periodic orbit in equation (15).

(a) ZAD scheme (without FPIC) (b) ZAD-FPIC scheme

Figure 4. The evolution of the real part of the Floquet exponents for several delays in the Digital-PWM
converter based on ZAD or ZAD-FPIC techniques. (a). ks is varied between [0; 5] with N = 0, (b). N is
varied between [0; 30] with ks = 4.5.

ẋ∗1 + μeμt p1 + eμt ṗ1 = −γ(x∗1 + eμt p1) + (x∗2 + eμt p2)

ẋ∗2 + μeμt p2 + eμt ṗ2 = −(x∗1 + eμt p1) − β(x∗2 + eμt p2) + 1 − 2θ
(

t −
(

τT + d
2

))

+

2θ
(

t −
(

(τ + 1)T − d
2

))

Unit step functions are replaced as follows. The periodic solution of duty cycle is noted:

d∗
2 = c1x∗1(0) + c2x∗2(0) + c3

then in the first unit step function,

θ
(

t − t∗s1

)

= θ
(

t −
(

τT + d∗
2

))

= θ
(

t −
(

τT + c1x∗1(0) + c2x∗2(0) + c3

))

32 Nonlinearity, Bifurcation and Chaos – Theory and Applications
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therefore, the step function in function of the perturbed periodic solution is

θ
(

t −
(

τT + d
2

))

= θ
(

t −
(

τT + c1(x∗1(0) + p1(0)) + c2(x∗2(0) + p2(0)) + c3

))

computing a first order Taylor expansion approximation of the unity step function, we obtain

θ
(

t −
(

τT + d
2

))

= θ
(

t −
(

τT + d∗
2

))

− δ
(

t −
(

τT + d∗
2

))

(c1 p1(0) + c2 p2(0))

where δ(t) is the Dirac delta function with δ(t) = dθ(t)
dt . The same considerations are applied

in the second unity step function θ (t − ts2). The dynamic of the perturbed periodic solution

is

ẋ∗1 + μeμt p1 + eμt ṗ1 = −γx∗1 − γeμt p1 + x∗2 + eμt p2

ẋ∗2 + μeμt p2 + eμt ṗ2 = −x∗1 − eμt p1 − βx∗2 − βeμt p2 + 1 − 2θ
(

t −
(

τT + d∗
2

))

+

2δ
(

t −
(

τT + d∗
2

))

(c1 p1(0) + c2 p2(0)) + 2θ
(

t −
(

(τ + 1)T − d∗
2

))

+2δ
(

t −
(

(τ + 1)T − d∗
2

))

(c1 p1(0) + c2 p2(0))

Figure 5. Scheme of equivalent transformations between Floquet exponents (μi), Lyapunov exponents
(λi) and characteristics multipliers (mi).

Neglecting the periodic solution x∗, we obtain the dynamic of the perturbation.

μeμt p1 + eμt ṗ1 = −γeμt p1 + eμt p2

μeμt p2 + eμt ṗ2 = −eμt p1 − βeμt p2 + 2δ
(

t −
(

τT + d∗
2

))

(c1 p1(0) + c2 p2(0)) +

2δ
(

t −
(

(τ + 1)T − d∗
2

))

(c1 p1(0) + c2 p2(0))

multiplying both sides of the equation by e−μt, we obtain:

ṗ1 = −μp1 − γp1 + p2

33Floquet Exponents and Bifurcations in Switched Converters
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ṗ2 = −p1 − μp2 − βp2 + 2e−μtδ
(

t −
(

τT + d∗
2

))

(c1 p1(0) + c2 p2(0)) +

2e−μtδ
(

t −
(

(τ + 1)T − d∗
2

))

(c1 p1(0) + c2 p2(0))

Simplifying the expressions and writing in matrix notation we obtain the variational equation

of the buck converter. Note that the terms e−μt only have sense in t = ϑ when these are

multiplied by Dirac delta functions δ(t − ϑ).

ṗ =

(−γ − μ 1

−1 −β − μ

)

p + e−μt∗s1 δ (t − t∗s1)Hp (0) + e−μt∗s2 δ (t − t∗s2)Hp (0) (20)

Therefore, equation (20) is the variational equation where t∗s1 = τT + d∗
2 , t∗s2 = (τ + 1) T − d∗

2
and,

H =

(

0 0

2c1 2c2

)

, ṗ =

(

ṗ1

ṗ2

)

, p =

(

p1

p2

)

, ae(0) =

(

p1(0)
p2(0)

)

(a) τ = 0, ks = 0.125 (b) τ = 1, ks = 0.125

Figure 6. The evolution of the real part of the Floquet and Lyapunov exponents when N is varied. (a).
without delay, (b). with one delay.

Note that equation (20) can be written in a compact form as:

ṗ = Mp + e−μt

[

δ

(

t − (τT +
d

2
)

)

+ δ

(

t − (τ + 1) T +
d

2

)]

Hp(0) (21)

with M and H defined according to the equation (20), and again, for simplicity we note d =
d∗. For solving this piecewise-smooth ordinary differential equation, we write z = e−μT ,

M = M1 + M2 with eMt = eM1teM2t.

M1 =

(

− γ
2 − β

2 − μ 0

0 − γ
2 − β

2 − μ

)

(22)

M2 =

(

− γ
2 +

β
2 1

−1 γ
2 − β

2

)

(23)

34 Nonlinearity, Bifurcation and Chaos – Theory and Applications
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The particular selection of M1 and M2 allows a easier solution of state-transition matrix eMt.

The first exponential matrix eM1t is computed using the identity matrix, while the second

exponential matrix eM2t is computed using sine and cosine functions.

eM1t = e−( γ
2 +

β
2 +μ)tI

eM2t =

(

− α1
α2

sen(α2t) + cos(α2t) 1
α2

sen(α2t)

− 1
α2

sen(α2t) α1
α2

sen(α2t) + cos(α2t)

)

where α1 =
(

γ
2 − β

2

)

and α2 =
√

1 − α2
1.

(a) (b)

Figure 7. Locus of Floquet exponents and characteristic multipliers when N is varied between [0; 30] for
τ = 1. (a). Floquet locus, (b). Characteristic multipliers locus.

The piecewise-smooth ordinary differential equation can be solved in each interval with

special attention in the discontinuities due to Dirac delta functions.

1). Initially, we compute the solution between t = 0 and t = d
2

p
(

d
2

)

−
= eM1

d
2 eM2

d
2 p (0)

then we compute p
(

d
2

)

+
integrating about the discontinuity as follows.

p
(

d
2

)

+
= p

(

d
2

)

−
+ e−μ(τT+ d

2 )Hp

p
(

d
2

)

+
=

(

eM1
d
2 eM2

d
2 + e−μ(τT+ d

2 )H
)

p (0)

2). Now, we compute the solution in the interval between t = ( d
2 ) and t = (T − d

2 ).

35Floquet Exponents and Bifurcations in Switched Converters
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p
(

T − d
2

)

−
= eM1(T−d)eM2(T−d)p

(

d
2

)

+

p
(

T − d
2

)

−
= eM1(T−d)eM2(T−d)

(

eM1
d
2 eM2

d
2 + e−μ(τT+ d

2 )H
)

p (0)

in the discontinuity,

p
(

T − d
2

)

+
= p

(

T − d
2

)

−
+ e−μ((τ+1)T− d

2 )Hp (0)

p
(

T − d
2

)

+
=

(

eM1(T−d)eM2(T−d)eM1
d
2 eM2

d
2 + eM1(T−d)eM2(T−d)e−μ((τ+1)T− d

2 )H
)

p (0)

(a) (b)

(c) (d)

Figure 8. 3D parameter space of Digital-PWM switched converter and bifurcation zones. (a). (ks, N, τ)
space where the lines ks = 0 and N = −1 separate each plane in four sub-spaces. (b). flip bifurcation
zone. (c). fold bifurcation zones. (d). Neimark-Sacker bifurcation zones.

3). Finally, we compute the solution in the last interval between t = (T − d
2 ) and T.

p (T) = eM1
d
2 eM2

d
2 p

(

T − d
2

)

+

p
(

T − d
2

)

+
=

(

eM1(T−d)eM2(T−d)eM1
d
2 eM2

d
2 +

36 Nonlinearity, Bifurcation and Chaos – Theory and Applications
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eM1(T−d)eM2(T−d)e−μ((τ+1)T− d
2 )H

)

p (0)

(a) (b) (c)

Figure 9. Evolution of characteristic multipliers in several bifurcation zones. (a). flip bifurcation zone
(τ = 0, ks > 0 N > −1). (b). fold bifurcation zones (τ > 0, ks > 0 N < −1). (c). Neimark-Sacker
bifurcation zones (τ > 1, ks > 0 N > −1).

Equation (24) is the solution of the variational system where z = e−μT .

p (T) = Q1pe (0) (24)

The matrix Q1 is given by equation (25), where α3 = γ
2 +

β
2 .

Q1 =
(

ze−α3TeM2T + z(τ+1)e−α3(T− d
2 )eM2(T− d

2 )H + z(τ+1)e−α3( d
2 )eM2( d

2 )H
)

(25)

The existence of T-periodic solution, i.e. p (T) = p (0), depends on equation (26) is satisfied.

(Q1 − I)p (0) = 0 (26)

The stability of the periodic solution depends on whether the real part of each Floquet

exponent is negative or not. If det (Q1 − I) = 0 implies μ negative.

We fix the parameter values in γ = 0.35; β = 0; T = 0.1767; ks = 4.5; N = 0 and re f = 0.8.

Equation (27) shows equation (26) in function of the number of delays (τ). The equation is a

polynomial in z of degree 2(τ + 1).

0.1e − 20z2(τ+1) − 1.867z(τ+2) + 1.911z(τ+1) + 0.93z2 − 1.899z + 1 = 0 (27)

Assuming real-time behavior, i.e. τ = 0, the determinant is the second order polynomial of

equation (28). The evolution of the real part of the Floquet exponents as parameter ks varies

is displayed in figure 3(a). The T-periodic solution is stable for ks > 3.24.

(
1e − 10

k2
s

− 0.00215387

ks
− 0.9466771)z2 + (

0.3443753

ks
− 0.0535075)z + 1 = 0 (28)

37Floquet Exponents and Bifurcations in Switched Converters



12 Nonlinearity, Bifurcation and Chaos - Theory and Applications

(a) (b) (c)

Figure 10. Examples of bifurcation diagrams in each zone. (a). flip bifurcation diagram (τ = 0, ks > 0
N > −1). (b). fold bifurcation diagram (τ > 0, ks > 0 N < −1). (c). Neimark-Sacker bifurcation
diagram (τ > 1, ks > 0 N > −1).

Assuming one-delay period, i.e. τ = 1, the determinant is the forth order polynomial of

equation (29). The evolution of the real part of the Floquet exponents as parameter ks varies

is displayed in figure 3(b). In this case, one Floquet exponent has positive real part for any ks.

Therefore, ZAD strategy should be combined with FPIC (N �= 0) to reach stable solutions.

1e − 9

k2
s

z4 − (1.8867 +
0.002154

ks
)z3 + (

0.344375

ks
+ 2.79635)z2 − 1.90983z + 1 = 0 (29)

For τ > 1, ZAD strategy is not sufficient to stabilize 1T-periodic orbit and ZAD-FPIC scheme

Control Parameters Stability Limit

(τ = 0), (ks = 4.5) Ncr ≈ 0

(τ = 1), (ks = 4.5) Ncr ≈ 0.99

(τ = 2), (ks = 4.5) Ncr ≈ 2.32

(τ = 3), (ks = 4.5) Ncr ≈ 3.79

(τ = 4), (ks = 4.5) Ncr ≈ 5.53

(τ = 5), (ks = 4.5) Ncr ≈ 7.55

(τ = 6), (ks = 4.5) Ncr ≈ 9.89

Table 1. Critical value of stability (Ncr) of buck converter controlled with ZAD-FPIC with several delay
numbers. Figure 4 (b) shows the evolution of real part of Floquet exponents.

is necessary. Figure 4(a) shows the evolution of Floquet exponents when ks is varied for

several delay numbers and N = 0. The number of Floquet exponents with positive real part

increases as the delay number grows.

Figure 4 (b) shows the results of ZAD-FPIC scheme when ks = 4.5 and N is varied between

[0; 30]. The critical value of stability (Ncr) increases as the delay number grows. Table 1

summarizes the behavior of critical value for different delays.

The behavior of the critical value is similar when N is fixed and ks is varied for several delay

numbers. The value kscr increases as the delay number grows. Table 2 shows this condition.
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Control Parameters Stability Limit

(τ = 0, N = 0) ks ≈ 3.24

(τ = 1, N = 2) ks ≈ 0.46

(τ = 2, N = 3) ks ≈ 1.19

(τ = 3, N = 4) ks ≈ 2.99

(τ = 4, N = 6) ks ≈ 2.72

(τ = 5,N = 8) ks ≈ 3.25

(τ = 6,N = 10) ks ≈ 4.21

Table 2. Critical value of stability (kscr) of buck converter controlled with ZAD-FPIC with several delay
numbers.(τ = 0 to τ = 6)

4. Stability of fixed points in delayed PWM switched converters

In previous section, we show that the procedure based on variational equation can be used

to compute Floquet exponents for any number of delays (τ). In this section, we compare

this approach with other methods which determine stability in switched converters. One of

them is the computation of characteristic multipliers based on the jacobian matrix. Another

one is the computation of Lyapunov exponents using a numeric routine. Each method

gives equivalent information. However Floquet approach is the most appropriated when

delays appear since this method does not require the evaluation of the jacobian matrix (its

dimension increases when the number of delays is higher). The other two methods have this

disadvantage [13].

4.1. Stability of 1-periodic orbit using Jacobian matrix

The evaluation of the jacobian matrix is necessary to compute characteristic multipliers and

Lyapunov exponents in PWM switched converters. The dimension of the jacobian matrix

depends on the delay number considered in the control law. The order of Jacobian matrix is

2(τ + 1).

Poincaré map of the PWM switched converter can be used to determine the stability of

1-periodic orbit. Equation (30) presents the Poincaré map of synchronous buck converter with

centered PWM control.

x((k+ 1)T) = eATx(kT)+ (eA(T−dk/2)+ I)A−1(eAdk/2 − I)B− eAdk/2A−1(eA(T−dk)− I)B (30)

Real-time control law implies that the duty cycle dk depends on state variables in the instant

kT, i.e., dk = c1x1(kT) + c2x2(kT) + c3. Therefore, Poincaré map (30) can be written as follows.

x1((k + 1)T)
x2((k + 1)T)

=
=

f1(x1(kT), x2(kT))
f2(x1(kT), x2(kT))

(31)

Jacobian matrix of the system with τ = 0 can be computed with equation (32).

An0 =

⎡

⎣

∂ f1

∂x1(kT)
∂ f1

∂x2(kT)
∂ f2

∂x1(kT)
∂ f2

∂x2(kT)

⎤

⎦ (32)
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The matrix An0 should be evaluated in the fixed point (An0 =
(

∂f
∂xi

)

F.P.
). In this case, we

define F.P. as (re f , γre f ). Its eigenvalues (or characteristic multipliers) determine stability

properties of the fixed point. The 1-periodic orbit is asymptotically stable if all characteristic

multipliers have magnitude less than one (|mi| < 1); it is unstable if at least one eigenvalue

has magnitude greater than one (|mi| > 1).

One-delay control law implies that the duty cycle dk depends on state variables in the instant

(k − 1)T, i.e., dk = c1x1((k − 1)T) + c2x2((k − 1)T) + c3. Two additional state variables can

be defined x3(kT) = x1((k − 1)T) and x4(kT) = x2((k − 1)T). Therefore, dk = c1x3(kT) +
c2x4(kT) + c3.

In this case, Poincaré map (30) can be written as equation (33).

x1((k + 1)T)
x2((k + 1)T)
x3((k + 1)T)
x4((k + 1)T)

=
=
=
=

f1(x1(kT), x2(kT), x3(kT), x4(kT))
f2(x1(kT), x2(kT), x3(kT), x4(kT))

x1(kT)
x2(kT)

(33)

Jacobian matrix of the system with τ = 1 can be computed with equation (34).

An1 =

⎡

⎢

⎢

⎢

⎢

⎣

∂ f1

∂x1(kT)
∂ f1

∂x2(kT)
∂ f1

∂x3(kT)
∂ f1

∂x4(kT)
∂ f2

∂x1(kT)
∂ f2

∂x2(kT)
∂ f2

∂x3(kT)
∂ f2

∂x4(kT)

1 0 0 0

0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

(34)

The matrix An1 should be evaluated in the fixed point (An1 =
(

∂f
∂xi

)

F.P.
). In this case, we

define F.P. as (re f , γre f , re f , γre f ).

Four characteristic multipliers are computed. The 1-periodic orbit is asymptotically stable if

the four characteristic multipliers have magnitude less than one.

Characteristic multipliers for delayed PWM control law with τ > 1 can be computed

following the same procedure. However, The order of Jacobian matrix increases as the delay

number grows.

Now, we compute Lyapunov exponents using a numeric routine. This algorithm is based on

the definition of Lyapunov exponents. Equation (35) synthesizes this procedure. Poincaré

map is used to compute the values of state variables. Jacobian matrix should be known to

compute the eigenvalues qi in each iteration k.

λi = Lim
M→∞

{

1

M

M

∑
k=0

log
∣

∣

∣
qi

(

Anj (x(k))
)∣

∣

∣

}

(35)

4.2. Equivalence between stability methods

Floquet exponents, Lyapunov exponents and characteristic multipliers are interconnected to

each other. Mathematical expressions to relate each approach are synthesized in figure 5. For
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example, we can compute the Floquet exponents (μi) for any delay and later we can apply the

relations mi = eμi T and λi = μiT to find characteristic multipliers and Lyapunov exponents,

respectively.

Figure 6 shows the evolution of Floquet and Lyapunov exponents when the duty cycle is

computed without delay and with one delay. The critic values are the equals using any

method. Therefore, both methods give the same information.

Figure 7 shows the evolution of Floquet exponents and characteristic multipliers in the

complex plane of each representation. In both cases, the parameter N is varied in the range

[0; 30] with ks = 4.5 and τ = 1. Imaginary axis is the stability limit of the Floquet exponents

locus, while unity circle is the stability limit of the characteristic multipliers locus.

5. Bifurcations in Buck converter with delayed ZAD-FPIC

In this section, we analyze types of bifurcations in the buck converter controlled with Delayed

ZAD-FPIC scheme using the procedure based on Floquet exponents described in previous

sections. We transform Floquet exponents in characteristic multipliers using the equivalences

shown in figure 5.

If at least one characteristic multiplier is outside of the unit circle then the system has

an unstable fixed point and nonlinear phenomena as quasi-periodicity and chaos could be

present. In the boundary, the smooth bifurcations (flip, fold and Neimark-Sacker) are present.

The presence of the three smooth bifurcations in the same converter is not common and this

fact has not been reported widely in Digital-PWM switched converters [14].

Control parameters ks and N can be varied in R with the exception of ks = 0 and N + 1 = 0

(because the control law is not defined there). Parameter τ can be varied in Z. The

3D-parameter space (ks, N, τ) is discontinuous due to the discrete delays (τ = 0, 1, 2, 3, ) and

the undefined planes (ks = 0 and N + 1 = 0). Figure 8 (a) shows a representation of the

control parameter space.

The two-dimensional plane (ks, N) can be divided into four regions: region I: ks > 0 and

N > −1; region II: ks < 0 and N > −1; region III: ks < 0 and N < −1 ; and region IV:

ks > 0 and N < −1. Fold zones, flip zones and Neimark-Sacker zones can be identified in

the control space. The fold bifurcation is an alarm for duty cycle saturation in d = 0% or

d = 100%; the flip bifurcation signals a doubling period and the Neimark-Sacker bifurcation

is related to 2D-torus birth.

Computer simulations are given for the purpose of illustration and verification. Next, we

present the three bifurcations types in the 3D-parameter space.

5.1. Flip bifurcations in (ks, N, τ) space

This bifurcation is associated with the appearance of a negative real characteristic multiplier

in the unit cycle boundary (mi = −1). Figure 9 (a) shows the evolution of characteristic

multipliers when N is varied in a positive range for several ks values.
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5.1.1. Control subspaces

The flip bifurcations have been detected in the following (ks − N) plane: Subspace I when

τ = 0. The flip zone in the plane τ = 0 is presented in figure 8 (b).

5.1.2. Characteristics near to flip bifurcation

Before the flip bifurcation the converter has a stable fixed point or T-periodic orbit. After

the flip bifurcation the T-periodic orbit is unstable and the converter has a stable 2T-periodic

orbit. Successive flip bifurcations and border-collision bifurcations are presented until the

chaos formation. More details can be found in [2], [4], [15]. An illustrative example is shown

in figure 10 (a).

5.2. Fold bifurcations in (ks, N, τ) space

This bifurcation is associated with the appearance of a positive real characteristic multiplier in

the unit cycle boundary (mi = 1). Figure 9 (b) shows the evolution of characteristic multipliers

when N is varied in a negative range for several ks and τ values.

5.2.1. Control subspaces

The fold bifurcations have been detected in the following (ks − N) planes: Subspaces II and

IV for (see figure 8 (c)).

5.2.2. Characteristics near to fold bifurcation

Before the fold bifurcation the converter has two fixed points: one stable and other unstable.

The stable fixed point is near to reference value. After the fold bifurcation the converter has

not fixed points and the output is saturated. An illustrative case is presented in figure 10 (b).

5.3. Neimark-Sacker bifurcations in (ks, N, τ) space

This bifurcation is associated with the appearance of two conjugate complex characteristic

multipliers in the unit cycle boundary. Figure 9 (c) shows the evolution of characteristic

multipliers when N and ks are varied in positive ranges for τ > 1.

5.3.1. Control subspaces

The Neimark-Sacker bifurcations have been detected in the following (ks − N) planes:

Subspace III for τ = 0 and Subspace I and III for τ > 0. The control subspaces with

Neimark-Sacker bifurcations are presented in figure 8 (d).

5.3.2. Characteristics near to Neimark-Sacker bifurcation

Before the Neimark-Sacker bifurcation the converter has a stable fixed point or T-periodic

orbit. After the Neimark-Sacker bifurcation the converter has quasi-periodic behavior

and 2D-torus birth. The bifurcation diagram and the characteristic multipliers in the

Neimark-Sacker transition are shown in figure 10 (c).

42 Nonlinearity, Bifurcation and Chaos – Theory and Applications



Floquet Exponents and Bifurcations in Switched Converters 17

6. Conclusions and future work

In this chapter, we have presented a generalized procedure to compute Floquet exponents

for any number of delays (τ) in the control law of PWM switched converters. We

have investigated the incidence of delays in a digital-PWM controller based on two novel

techniques: Zero Average Dynamics (ZAD) and Fixed-Point Inducting Control (FPIC). Principles

of Floquet theory and smooth bifurcation theory were used to define stability regions. The

incidence of control parameters in transient response of PWM switched converters will be

analyzed in a future work using a similar Floquet-based procedure.
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