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1. Introduction 

Heterogeneous agent models are present in various fields of economic analysis, such as 

market maker models, exchange rate models, monetary policy models, overlapping 

generations models and models of socio-economic behaviour. Yet the field with the most 

systematic and perhaps most promising nonlinear dynamic approach seems to be asset price 

modelling. Contributions by Brock and Hommes (1998), LeBaron (2000), Hommes et al. 

(2002), Chiarella and He (2002), Chiarella et al. (2003), Gaunersdorfer et al. (2003), Brock et al. 

(2005), Hommes et al. (2005), and Hommes (2006) thoroughly demonstrate how a simple 

standard pricing model is able to lead to complex dynamics that makes it extremely hard to 

predict the evolution of prices in asset markets. The main framework of analysis of such 

asset pricing models constitutes a financial market application for the evolutionary selection 

of expectation rules, introduced by Brock and Hommes (1997a) and is called the adaptive 

belief system. 

As a model in which different agents have the ability to switch beliefs, the adaptive belief 

system in a standard discounted value asset pricing set-up is derived from mean-variance 

maximization and extended to the case of heterogeneous beliefs (Hommes, 2006, p. 47). It 

can be formulated in terms of deviations from a benchmark fundamental and therefore used 

in experimental and empirical testing of deviations from the rational expectations 

benchmark. Agents are boundedly rational, act independently of each other and select a 

forecasting or investment strategy based upon its recent relative performance. The key 

feature of such systems, which often incorporate active learning and adaptation, is 

endogenous heterogeneity (cf. LeBaron, 2002), which means that markets can move through 

periods that support a diverse population of beliefs, and others in which these beliefs and 

strategies might collapse down to a very small set. 
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The mixture of different trader types leads to diverse dynamics exhibiting some stylized, 

qualitative features observed in practice on financial markets (cf. Campbell et al., 1997; 

Johnson et al., 2003), e.g. persistence in asset prices, unpredictability of returns at daily 

horizon, mean reversion at long horizons, excess volatility, clustered volatility, and 

leptokurtosis of asset returns. An important finding so far was that irregular and chaotic 

behaviour is caused by rational choice of prediction strategies in the bounded-rationality 

framework, and that this also exhibits quantitative features of asset price fluctuations, 

observed in financial markets. Namely, due to differences in beliefs these models generate a 

high and persistent trading volume, which is in sharp contrast to no trade theorems in 

rational expectations models. Fractions of different trading strategies fluctuate over time and 

simple technical trading rules can survive evolutionary competition. On average, technical 

analysts may even earn profits comparable to the profits earned by fundamentalists or value 

traders. 

While recent literature on asset price modelling focuses mainly on impacts of heterogeneity 

of beliefs in the standard adaptive belief system as set up by Brock and Hommes (1997a) on 

market dynamics and stability on one hand, and the possibility of the survival of such 

‘irrational’ and speculative traders in the market on the other, several crucial issues 

regarding the foundations of asset price modelling and its underlying theoretical findings 

remain open and indeterminate. One of those issues is related to heterogeneity in investors’ 

time horizon; both their planning and their evaluation perspective. Namely, it has been 

scarcely addressed so far how memory in the fitness measure, i.e. the share of past 

information that boundedly rational economic agents take into account as decision makers, 

affects stability of evolutionary adaptive systems and survival of technical trading. 

LeBaron (2002) was using simulated agent-based financial markets of individuals following 

relatively simple behavioural rules that are updated over time. Actually, time was an 

essential and critical feature of the model. It has been argued that someone believing that the 

world is stationary should use all available information in forming his or her beliefs, while if 

one views the world as constantly in a state of change, then it will be better to use time series 

reaching a shorter length into the past. The dilemma is thus seen as an evolutionary 

challenge where long-memory agents, using lots of past data, are pitted against short-

memory agents to see who takes over the market. Agents with a short-term perspective 

appear to both influence the market in terms of increasing volatility and create an 

evolutionary space where they are able to prosper. Changing the population to more long-

memory types has led to a reliable convergence in strategies. Memory or perhaps the lack of 

it therefore appeared to be an important aspect of the market that is likely to keep it from 

converging and prevent the elimination of ‘irrational’, speculative strategies from the 

market. 

Honkapohja and Mitra (2003) provided basic analytical results for dynamics of adaptive 

learning when the learning rule had finite memory and the presence of random shocks 

precluded exact convergence to the rational expectations equilibrium. The authors focused 

on the case of learning a stochastic steady state. Even though their work is not done in the 

heterogeneous agent setting, the results they obtained are interesting for our analysis. Their 
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fundamental outcome was that the expectational stability principle, which plays a central 

role in situations of complete learning, as discussed e.g. in Evans and Honkapohja (2001), 

retains its importance in the analysis of incomplete learning, though it takes a new form. In 

the models that were analyzed, expectational stability guaranteed stationary dynamics in 

the learning economy and unbiased forecasts. 

Chiarella et al. (2006) proposed a dynamic financial market model in which demand for 

traded assets had both a fundamentalist and a chartist component in the boundedly rational 

framework. The chartist demand was governed by the difference between current price and 

a (long-run) moving average. By examining the price dynamics of the moving average rule 

they found out that an increase of the window length of the moving average rule can 

destabilize an otherwise stable system, leading to more complicated, even chaotic 

behaviour. The analysis of the corresponding stochastic model was able to explain various 

market price phenomena, including temporary bubbles, sudden market crashes, price 

resistance and price switching between different levels. 

The objective of this chapter is to lay the foundations for a competent and critical theoretical 

analysis setting the memory assumption in a simple, analytically tractable asset pricing 

model with heterogeneous beliefs. We shall thus analyze the effects of additional memory in 

the fitness measure on evolutionary adaptive systems and the nature of consequences for 

survival of technical trading. In order to examine our research hypothesis adequately, both 

analytical and numerical analysis will have to be employed and complemented. Therefore, 

we shall first expand the asset pricing model to include more memory, and then solve it 

both analytically and numerically. Two cases are going to be analyzed, hopefully 

sufficiently general to cover some main aspects of financial markets; (1) a two-type case of 

fundamentalists versus contrarians and (2) a three-type case of fundamentalists versus 

opposite biased beliefs. Complementing the stability analysis with local bifurcation theory 

(cf. Awrejcewicz, 1991; Palis and Takens, 1993; Kuznetsov, 1995; Awrejcewicz and 

Lamarque, 2003), we will also be able to analyze numerically the effects of adding different 

amounts of additional memory to fitness measure on stability of the standard asset pricing 

model and survival of technical trading. Thus the analysis of both local and global stability 

can be performed for different combinations of trader types in the market. 

2. The heterogeneous agents model 

The adaptive belief system employs a mechanism dealing with interaction between fractions 

of market traders of different types, and the distance between the fundamental and the 

actual price. Financial markets are thus viewed as an evolutionary system, where price 

fluctuations are driven by an evolutionary dynamics between different expectation schemes. 

Pioneering work in this field has been done by Brock and Hommes (1997a), who attempted 

to conciliate the two main perspectives concerning economic fluctuations, i.e. the new 

classical and the Keynesian view (cf. Hommes, 2006, pp. 1-5), and the underlying rules 

relating to the formation of expectations. In order to get some insight into possible ways of 

theoretical analysis to follow, we shall describe a simple, analytically tractable version of the 
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asset pricing model as constructed by Brock and Hommes (1998). The model can be viewed 

as composed of two simultaneous parts; present value asset pricing and the evolutionary 

selection of strategies, resulting in equilibrium pricing equation and fractions of belief types 

equation. We shall also make an indication of where memory in the fitness measure (and in 

expectation rules) enters the model and how it might affect the analysis. 

2.1. Present value asset pricing 

The model incorporates one risky asset and one risk free asset. The latter is perfectly 

elastically supplied at given gross return R, where R = 1 + r. Investors of different types h 

have different beliefs about the conditional expectation and the conditional variance of 

modelling variables based on a publicly available information set consisting of past prices 

and dividends. The present value asset pricing part of the adaptive demand system is used 

to model each investor type as a myopic mean variance maximizer of expected wealth 

demand, Eh,tWt, for the risky asset: 

 , 1 , 1 1 ,( )h t t h t t t t t h tE W RE W p y Rp z      , (1) 

where pt is the price (ex dividend) at time t per share of risky asset, yt is an IID dividend 

process at time t of the risky asset, zh,t is number of shares purchased at date t by agent of 

type h, and 1 1 1t t t tR p y Rp      is the excess return. 

In order to perform myopic mean variance maximization of expected wealth demand for 

risky asset of type h, we seek for zh,t that solves: 

 
, , 1 , 1

1
max

2h tz h t t h t tE W aV W 
 

 
 

 (2) 

and thus: 

 
, 1 1

, , 1 12
, 1 1

1h t t t t
h t h t t t t

h t t t t

E p y Rp
z E p y Rp

aV p y Rp a
 

 
 

            
, (3) 

where the belief about expected value of wealth at time t + 1, conditional on all publicly 

available information at time t, for a trader of type h is , 1h t tE W  , the belief about conditional 

variance is , 1h t tV W  , and there is a risk factor 
2

1
k

a
  present. Beliefs about the conditional 

variance of excess return are assumed to be constant and the same for all types of investors, 

i.e. 2
,h tV  . All traders are assumed to be equally risk averse with a given risk aversion 

parameter a, which is constant over time1. 

                                                                 
1 Gaunersdorfer (2000) investigated the case of time varying variance and supported the assumption of a constant and 

homogeneous variance term. 
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Solving this optimization problem produces quantities of shares purchased by agents of 

different types, which enables us to seek for the equilibrium between the constant supply of 

the risky asset per trader zs and the sum of demands: 

 , , 1 1
1

H
s

h t h t t t t
h

n kE p y Rp z 


     , (4) 

where the fraction of traders of type h out of altogether H types at time t is denoted by nh,t, 

where ,1
1

H

h th
n


 . The price of the risky asset is determined by market clearing, which can 

be seen by rewriting expression (4) in the form: 

 2
, , 1 1

1

H
s

t h t h t t t
h

Rp n E p y a z 


     , (5) 

where 2 sa z  is the risk premium. The latter is an extra amount of money that traders get for 

holding the risky asset. Traders will only purchase the risky asset if its expected value is 

equal or higher than the expected value of the risk-free asset. Since the outcome of the risky 

asset is uncertain, a risk premium is associated with it. 

In the simplest case of IID dividends with mean y  and with traders having correct beliefs 

about dividends, i.e. , 1h t tE y y    , the market price of the risky asset pt at time t is 

determined by: 

 2
, , 1

1

H
s

t h t h t t t
h

Rp n E p y a z 


      , (6) 

where a noise term t is included, which represents random fluctuations in the supply of 

risky shares. Considering a special case with a constant zero supply of outside shares, i.e. zs 

= 0, we obtain: 

, , 1
1

H

t h t h t t t
h

Rp n E p y 


     . 

If we instead consider for a moment the case of homogeneous beliefs with no noise and all 

traders being rational, the pricing equation simplifies to: 

 2
1

s
t t tRp E p y a z     . (7) 

In equilibrium the expectations of the price will be the same and equal to the fundamental 

price. The constant fundamental value of the price of the risky asset p* in the case of 

homogeneous beliefs is derived from the expression: 

 2* * sRp p y a z   . (8) 

By imposing a transversality condition on expression (7) with infinitely many solutions we 

exclude bubble solutions (cf. Cuthbertson, 1996) and expression (8) now has only one 
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solution. We are thus able to derive the fundamental price as the discounted sum of 

expected future dividends: 

 21
*

1
sp y a z

R
   

. (9) 

By simplification of the fundamental price equation for the case of the IID dividend process 

with constant conditional expectation we thus obtain the standard benchmark notion of the 

‘fundamental’, i.e. *t

y
p

r
 , to be used in the model hereinafter. 

Taking into account the appropriate form of heterogeneous beliefs of future prices, i.e. 

including some deterministic function fh,t, which can differ across trader types: 

* *
, 1 1 , 1 1 1( ,..., )h t t t t h t t t h t t LE p E p E x p f x x     

            , 

we restrict beliefs about the next deviation of the actual from the fundamental price, xt, to 

deterministic functions of past deviations from the fundamental: 

 , 1 1* ( ,..., )h t t h t t LE p p f x x       , (10) 

where L is the number of lags of past information, taken into account. Since the 

deterministic function in the expectation rule depends on preceding price deviations, it can 

also be seen as including memory. However, due to rapidly increasing analytical 

complexity, viz. including more preceding price deviations rapidly increases the dimension 

of the system, this issue has so far mainly been neglected. In this chapter we are focusing on 

the memory in the fitness measure and will thus include only one lag in the memory in the 

expectation rule, i.e. 1( )h tf x  . 

Taking into account that *t

y
p

r
 , the equilibrium pricing equation (5) can thus finally be 

rewritten in terms of deviations from the fundamental price, xt = pt – p*: 

 , , 1 , ,
1 1

H H

t h t h t t h t h t
h h

Rx n E x n f
 

     . (11) 

The particular form of deterministic function in the forecasting or expectation rule is thus 

what determines different types of heterogeneous agents in an adaptive belief system. In 

general, we distinguish between two typical investor types; fundamentalists and ‘noise 

traders’ or technical analysts. Fundamentalists believe that the price of an asset is defined 

solely by its efficient market hypothesis fundamental value (Fama, 1991), i.e. the present 

value of the stream of future dividends. Since they have no knowledge about other beliefs 

and fractions, fh,t  0. Actual financial data show that fundamentalists have a stabilizing 

effect on prices (De Grauwe and Grimaldi, 2006). 
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Technical analysts or chartists, on the other hand, believe that asset prices are not 

completely determined by fundamentals, but may be predicted by inferences on past prices. 

Depending on the purpose of analysis, it is possible to distinguish between (pure) trend 

chasers with expectation rule , 1 ; 0h t h t hf g x g  , (pure) contrarians with expectation rule 

, 1 ; 0h t h t hf g x g  , and (pure) biased beliefs with expectation rule ,h t hf b , where gh is the 

trend and bh is the bias (difference between p* and trader’s belief of p*) of the trader of type h. 

2.2. Evolutionary selection of strategies 

In order to be able to understand the dynamics of fractions of different trader types, we 

consider the appropriate formulations of realized excess return Rt from expression (1), and 

demand of different types of market traders, , 1h tz  , defined by expression (3). Taking again 

into account the nature of the dividend process t ty y    with constant conditional 

expectation, 1ty E y     , and assumed distribution 2IIDN(0, )t  , we are thus able to 

formulate profits for a particular type of traders in each period as the product of realized 

excess return and number of shares purchased by traders of that type: 

 , , 1 1 , 1 1( )h t t h t h t t t h t t t t hR z C p y Rp kE p y Rp C              , (12) 

where Ch represents the costs traders have to pay to use strategy h. Albeit introducing 

additional analytical complexity, we usually take into account the costs for predictor of 

particular trader type, since more information-intense predictors are evidently more costly. 

It is of course convenient to rewrite profits of different types of traders in terms of 

deviations from the benchmark fundamental: 

 , 1 , 1 1( )h t t t t h t t t hx Rx kE x Rx C          . (13) 

The fitness function or performance measure of each trader type can now be defined in 

terms of its realized profits. In fact, it can be expressed as the weighted sum of realized 

profits, i.e. as the sum of current realized profits and a share of past fitness, which is in turn 

defined as past realized profits: 

 , , 1 ,(1 )h t h t h tU wU w    , (14) 

where current realized profits are defined in the following final form: 

 , 1 , 1 1( )( )h t t t h t t hk x Rx f Rx C       . (15) 

The fitness function can for Uh,0 = 0 also be rewritten in the following expanded form with 

exponentially declining weights: 

1 2
, ,1 ,2 , 1 ,(1 ) (1 ) ... (1 ) (1 )t t

h t h h h t h tU w w w w w w w    
         . 

In case of the equilibrium pricing equation, herein formulated as the sum over trader types 

of products of a fraction of particular trader type and its deterministic function, the fitnesses 
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enter the adaptive belief system before the equilibrium price is observed. This is suitable for 

analyzing the asset pricing model as an explicit nonlinear difference equation. Even though 

nonlinear asset pricing dynamics can be modelled either as a deterministic or a stochastic 

process, only the latter enables investigation of the effects of noise upon the asset pricing 

dynamics. 

The share of past fitness in the performance measure is expressed by the parameter w; 0  w 

 1, called memory strength. When the value of this parameter is zero (w = 0), the fitness is 

given by most recent net realized profit. Due to analytical tractability this is at present, y for 

the most part, the case in the existing literature on asset pricing models with heterogeneous 

agents, though not in this chapter. The main contribution of this chapter is that it analyzes 

the case of nonzero memory in the fitness measure. When the memory strength parameter 

takes a positive value, some share of current realized profits in any given period is taken 

into account when calculating the performance measure in the next time period. If the value 

of memory strength parameter amounts to one then of course the entire accumulated wealth 

is taken into account. 

The expression (14) for the fitness function is somewhat different that the one used in Brock 

and Hommes (1998), where the coefficient of the current realized profits was fixed to 1. 

Namely, if we rewrite the memory strength parameter as 
1

1w
T

  , where T is considered 

to be a specific number of time periods, we obtain the following expression for the fitness 

function: 

 , , 1 ,

1 1
1h t h t h tU U

T T


 
   
 

, (16) 

which is equivalent to taking the last T observations into account with equal weight (as 

benchmark). When T approaches infinity, the memory parameter approaches 1 and the 

entire accumulated wealth is taken into account. We thus believe the expression (14) to be a 

more suitable formulation of the fitness measure than the one used in Brock and Hommes 

(1998), and in several other contributions. 

Finally, we can express fractions of belief types, nh,t, which are updated in each period, as a 

discrete choice probability by a multinomial logit model: 

 
, 1

,

, 11

exp

exp

h t

h t H

i ti

U
n

U









  
  

, (17) 

by using parameter , determining the intensity of choice. The latter measures how fast 

economic agents switch between different prediction strategies; if the value of intensity of 

choice is zero, then all trader types have equal weight and the mass of traders distributes 

itself evenly across the set of available strategies, while on the other hand the entire mass of 

traders tends to use the best predictor, i.e. the strategy with the highest fitness, when the 

intensity of choice approaches infinity (the neoclassical limit). 
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Trader fractions are therefore determined by fitness and intensity of choice. Rationality in 

the asset pricing model is evidently bounded, since fractions are ranked according to fitness, 

but not all agents choose the best predictor. To ensure that fractions of belief types depend 

only upon observable deviations from the fundamental at any given time period, fitness 

function in the fractions of belief types equation may only depend on past fitness and past 

return. This indeed ensures that past realized profits are observable quantities that can be 

used in predictor selection. 

One might wonder whether the traders’ myopic mean-variance maximization is a 

reasonable assumption, especially when we allow for traders with a longer memory span. 

This assumption is widely used in modelling in economics and finance, though it would 

certainly be interesting to let traders plan longer ahead, even with an infinite planning 

horizon, as in the Lucas (1978) asset pricing model. However, in this kind of model one 

usually assumes perfect rationality to keep the analysis tractable. So far very little work has 

been done on infinite horizon models with bounded rationality and heterogeneous beliefs. 

Furthermore, one can also discuss whether individuals are really able to plan over a long 

horizon, or whether they might use simple heuristics over a short horizon and occasionally 

adapt them. After all, memory in the fitness measure is not equivalent to the planning 

horizon, but rather an “evaluation horizon” used to decide whether or not to switch 

strategies. There is empirical and experimental evidence that humans give more weight to 

the recent past than the far distant past, and this is formalized in our model. 

3. Fundamentalists versus Contrarians 

The first case we are going to examine is a two-type heterogeneous agents model with 

fundamentalists and contrarians as market participants. Fundamentalists exhibit deterministic 

function of the form: 

 
1, 0tf   (18) 

and have some positive information gathering costs C, i.e. C > 0. Contrarians exhibit a 

deterministic function: 

 
2, 1; 0t tf gx g   (19) 

and zero information gathering costs. It is thus a case of fundamentalists versus pure 

contrarians. We have the following fractions of belief types equation: 

 , 1
,

1, 1 2, 1

exp
; 1,2

exp exp

h t

h t

t t

U
n h

U U



 


 

   
      

. (20) 

For convenience we shall also introduce a difference in fractions mt: 

  1, 1 2, 1
1, 2, 1, 1 2, 1

1, 1 2, 1

exp exp
tanh

2exp exp

t t

t t t t t

t t

U U
m n n U U

U U

  
 

 
 

 

                     
. (21) 
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Finally, we have the fitness measure equation of each type: 

  1, 1, 1 1 1(1 )t t t t tU wU w kRx x Rx C          , (22) 

   2, 2, 1 1 2 1(1 )t t t t t tU wU w k x Rx gx Rx          . (23) 

In order to analyze memory in our heterogeneous asset pricing model, we shall first 

determine the position and stability of the steady state and the period two-cycle in relation 

to the memory strength parameter. We will also examine the possible qualitative changes in 

dynamics. Then we will perform some numerical simulations to combine global stability 

analysis with local stability analysis. 

3.1. Position of the steady state 

In our two-type heterogeneous agents model of fundamentalists versus contrarians the 

equilibrium pricing equation has the following form: 

 
2, 1 1

1

2
t

t t t t

m
Rx n gx gx 


  , (24) 

where 1, 2,t t tn n m   and 1, 2, 1t tn n  . The difference in fractions of belief types equation, 

on the other hand, has the following form: 

        1, 2 2, 2 3 1 2tanh 1
2t t t t t tm w U U w kgx x Rx C


    
 

      
 

. (25) 

A steady state price deviation x is a fixed point of the system, if it satisfies x = f(x) for 

mapping f(x). In our two-type heterogeneous agents model of fundamentalists versus 

contrarians we have: 

 1

2

m
Rx gx


 , (26) 

where either 0eqx  , or 
*1

2

m
R g


  and thus * 2

1
R

m
g

  . In the former case we get the 

fundamental steady state, where the price is equal to its fundamental value and the 

difference in fractions is: 

    1 2tanh 1
2

eq eq eqm w U U w C
 

    
 

. 

Since it follows from expressions (22) and (23) that 1
eqU C   and 2 0eqU   when w  1, the 

steady state difference in fractions simplifies: 

  tanh (1 ) tanh
2 2

eq C
m wC w C

    
        

   
. (27) 
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Possible other (non-fundamental) steady states should satisfy: 

    * * * * * *
1 2tanh ( ) (1 )

2
m w U U w kgx x Rx C

 
      

 
. (28) 

Since it can be derived that  * 2*
1 1U kRx R C     and   * 2*

2 1U kx R g R   , we finally 

obtain: 

   * 2*tanh 1
2

m kgx R C
 

    
 

. (29) 

Therefore we can state the following lemma. 

Lemma 1: The fundamental steady state in case of fundamentalists versus contrarians is a unique 

steady state of the system. Memory does not affect the position of this steady state. 

Proof of Lemma 1: 

Since g < 0, 
2

0
R

g
  holds and expression * 2

1
R

m
g

   is always greater than 1. On the other hand, 

the value of the hyperbolic tangent function is by definition between –1 and 1. In fact, since k > 0, g < 

0, R > 1, C > 0 and the variable x is squared, the right-hand side of expression (29) is always between 

–1 and 0. Expression (29) thus never gives a solution and the fundamental steady state (0, )eqm  is a 

unique steady state of the system. Since there is no memory strength parameter in expression (27) 

and thus also in expression (26), memory does not affect the position of this steady state. 

3.2. Stability of the steady state 

In order to analyze stability of the steady state we shall rewrite our system as a difference 

equation: 

  1 1t tX F X  , (30) 

where  1 1, 1 2, 1 3, 1 1, 1 2, 1, , , ,t t t t t tX x x x u u       is a vector of new variables, which are defined 

as: 1, 1 1:t tx x  , 2, 1 2:t tx x  , 3, 1 3:t tx x  , 1, 1 1, 2:t tu U   and 2, 1 2, 2:t tu U  . 

We therefore obtain the following 5-dimensional first-order difference equation: 

1, 2, 1, 1

1
t t t tx x n gx

R     

 2, 1 2,
1, 1 1, 1

1, 1 2, 1 1, 2,

exp exp1 1

exp exp exp exp

t t

t t

t t t t

U u
gx gx

R RU U u u

 

   


 
 

       
               

, (31) 

 2, 1 1, 1t t tx x x   , (32) 
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 3, 2 2, 1t t tx x x   , (33) 

  1, 1, 1 1, 1 2, 1 1, 1 2, 1(1 )t t t t t tu U wu w kRx x Rx C    
         , (34) 

   2, 2, 1 2, 1 1, 1 2, 1 3, 1 2, 1(1 )t t t t t t tu U wu w k x Rx gx Rx     
        . (35) 

The local stability of a steady state is determined by the eigenvalues of the Jacobian matrix, 

which we do not present here due to the spatial limitations. We then compute the Jacobian 

matrix of the 5-dimensional map. At the fundamental steady state Xeq = (0, 0, 0, –C, 0) we 

obtain the new Jacobian matrix. A straightforward computation shows that the 

characteristic equation is in our case given by: 

  22
2

1
( ) 0eqg n g w

R
    

    
 

, (36) 

with solutions (eigenvalues): 1 2

1 eqn g
R

  , 2,3 0   and 4,5 w  . The steady state Xeq is 

stable for 1  ; therefore in cases 2
eqR gn R    and 1w  . 

Thus we can state the following lemma. 

Lemma 2: The fundamental steady state in case of fundamentalists versus contrarians is globally 

stable for –R < g < 0. Memory does not affect the stability of this steady state. 

Proof of Lemma 2: 

From the characteristic equation (36) we can observe three eigenvalues, where two of them are in fact 

double eigenvalues. The first eigenvalue assures stability when 2
eqR gn R   , while the second and 

third (double) eigenvalue always assure stability. The fundamental steady state is stable for 

2 2
eq eq

R R
g

n n
   , but since 2

eqn  depends on other parameters of the system and g < 0, stability is 

(more conveniently) guaranteed at least for 0R g   . Since the memory strength parameter is 

represented (only) by the third (double) eigenvalue, memory does not affect the stability of the steady 

state, as has been shown by the reduced system. 

3.3. Bifurcations and the Period Two-cycle 

A bifurcation is a qualitative change of the dynamical behaviour that occurs when 

parameters are varied (Brock and Hommes, 1998). A specific type of bifurcation that occurs 

when one parameter is varied is called a co-dimension one bifurcation. There are several 

types of such bifurcations, viz. period doubling, saddle-node and Hopf bifurcations. The 

first type has eigenvalue –1 of the Jacobian matrix, the second type has eigenvalue 1 and the 

third type has complex eigenvalues on the unit circle. 



 
Memory and Asset Pricing Models with Heterogeneous Beliefs 325 

If we take a look at the eigenvalue 1, which we are in our case interested in, we can observe 

that a saddle-node bifurcation can never occur. Namely, the expression: 

 2

1
1 eqn g

R
  (37) 

can never hold, since the left-hand side is a positive constant and the right-hand side is 

always negative for g < 0, R > 0 and 2 0eqn  . On the other hand, the expression: 

 
2

1
1 eqn g

R
   (38) 

may be satisfied for 2 0eqn  , since both sides of the expression are then negative. Thus a 

(primary) period doubling bifurcation may occur in our model for the following -value: 

 1
* ln

R

C R g


 
   

, (39) 

which has been computed by plugging 2

1

exp 1

eqn
C


   

 into expression (38) and solving 

for the memory strength parameter . 

Now we can check the existence of a period two-cycle  * * * *( , ),( , )x m x m . Taking into 

account that  * 2*
1 1U kRx R C    and   ** 2

2 1U kx R g R   , a period two-cycle occurs 

when 
*1

2

m
R g


  , and thus * 2

1
R

m
g

   satisfies: 

   * 2*tanh 1
2

m kgx R C
 

    
 

. (40) 

Therefore we can state the following lemma. 

Lemma 3: In case of fundamentalists versus contrarians the fundamental steady state (0, meq) is 

unstable for g < –2R and there exists a period two-cycle  * * * *( , ),( , )x m x m . For –2R < g < –R there 

are two possibilities: (1) if * 2
1 eqR

m m
g

    then (0, meq) is the unique, globally stable steady state, 

while (2) if * 2
1 eqR

m m
g

    then the steady state (0, meq) is unstable and there exists a period two-

cycle  * * * *( , ),( , )x m x m . Memory does not affect the position of the period two-cycle. 

Proof of Lemma 3: 

For g < –2R it is clear from the expression for eigenvalue 1 of the characteristic equation (36) that the 

fundamental steady state is unstable. Furthermore, since 0 < m* < 1, the expression (40) has two 
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solutions, x* and –x*. If expression (38) is satisfied, it then follows from expressions * 2
1

R
m

g
   and 

(40) that  * * * *( , ),( , )x m x m  is a period two-cycle. Finally, for –2R < g < –R, the fundamental 

steady state is unstable and expression (40) has solutions *x  if and only if 

* tanh
2

eq C
m m

 
   

 
. Since the memory strength parameter does not affect the difference in 

fractions of belief types, memory does not affect the position of the period two-cycle. 

As in the paper of Brock and Hommes (1998), very strong contrarians with g < –2R may lead to 

the existence of a period two-cycle, even when there are no costs for fundamentalists (C = 0). 

When the fundamentalists’ costs are positive (C > 0), strong contrarians with –2R < g < –R may 

lead to a period two-cycle. As the intensity of choice increases to  = *, a period doubling 

bifurcation occurs in which the fundamental steady state becomes unstable and a (stable) 

period two-cycle is created, with one point above and the other one below the fundamental. 

When the intensity of choice further increases, we are likely to find a value  = **, for which 

the period two-cycle becomes unstable and a Hopf bifurcation of this period two-cycle 

occurs, as in Brock and Hommes (1998). The model would then get an attractor consisting of 

two invariant circles around each of the two (unstable) period two-points, one lying above 

and the other one below the fundamental. Immediately after such a Hopf bifurcation, the 

price dynamics is either periodic or quasi-periodic, jumping back and forth between the two 

circles. The proof of this phenomenon is not straightforward due to the non-zero period 

points, although the 5-dimensional system (31) – (35) is still symmetric with respect to the 

origin. We shall thus demonstrate the occurrence of the Hopf bifurcation and the emergence 

of the attractor numerically in the next section. 

3.4. Numerical analysis 

Our numerical analysis in the case of fundamentalists and contrarians will be conducted for 

fixed values of parameters R = 1.1, k = 1.0, C = 1.0 and g = –1.5. We shall thus vary the 

intensity of choice parameter  and of course the memory strength parameter w. Four 

analytical tools will be used2; bifurcation diagrams, largest Lyapunov characteristic 

exponent (LCE) plots, phase plots, and time series plots. 

The dynamic behaviour of the system can first and foremost be determined by investigating 

bifurcation diagrams. In Figure 1 the bifurcation diagrams for two different values of the 

memory strength parameter are presented. We can observe that for low values of  we have 

a stable steady state, i.e. the fundamental steady state. As has been proven in Lemma 1, the 

position of this steady state, i.e. xeq = 0, is independent of the memory, which is clearly 

demonstrated by the simulations. For increasing  a (primary) period doubling bifurcation 

occurs at  = *; the steady state becomes unstable and a stable period two-cycle appears, as 

                                                                 
2 However, we will not discuss these tools here in more detail, since they are fairly well-known; instead we will direct 

the interested reader to more detailed discussions in Arrowsmith and Place (1990), Shone (1997), and Brock and 

Hommes (1998). 
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proven in Lemma 3. As can be seen from the simulations, this bifurcation value is also 

independent of the memory. The stability of the steady state is thus unaffected by the 

memory, as proven in Lemma 2. 

If  increases further, indeed a (secondary) Hopf bifurcation occurs at  = **, as has been 

claimed in Section 3.3; the period two-cycle becomes unstable and an attractor appears 

consisting of two invariant circles around each of the two (unstable) period two-points, one 

lying above and the other one below the fundamental. It is a supercritical Hopf bifurcation, 

where the steady state gradually changes either into an unstable equilibrium or into an 

attractor (cf. Guckenheimer and Holmes, 1983; Frøyland, 1992; Kuznetsov, 1995). The 

position of the period two-cycle is independent of the memory, but it is not independent of 

the intensity of choice, as can be seen from expression (40). Numerical simulations suggest 

that the secondary bifurcation value also does not vary with changing memory strength 

parameter w. For  > ** chaotic dynamic behaviour appears, which is interspersed with 

many (mostly higher order) stable cycles. Such a bifurcation route to chaos was also called 

the rational route to randomness (Brock and Hommes, 1997a), while the last part of it has 

been referred to as the breaking of an invariant circle. 

 
Notes: Horizontal axis represents the intensity of choice (). Vertical axis represents deviations of the price from the 

fundamental value (x) in the upper two diagrams and the value of the largest LCE in the lower two diagrams, 

respectively. The diagrams differ with respect to the memory strength parameter w; the left one corresponds to w = 0.3, 

while the right one corresponds to w = 0.9. 

Figure 1. Bifurcation diagrams and Largest LCE plots of  in case of fundamentalists versus contrarians 
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By examining largest Lyapunov characteristic exponent (LCE) plots of  we arrive at the 

same conclusions about the dynamic behaviour of the system. It can be seen from Figure 1 

that the largest LCE is smaller than 0 and the system is thus stable until the primary 

bifurcation, which is independent of memory. At the bifurcation value, a qualitative change 

in dynamics occurs, i.e. a period doubling bifurcation and we obtain a stable period two-

cycle. Largest LCE is again smaller than 0 and the system is thus stable until the secondary 

bifurcation. At this bifurcation value, again a qualitative change in dynamics occurs, i.e. a 

Hopf bifurcation, but the dynamics is more complicated. 

For lower values of w the largest LCE after ** is non-positive, but close to 0, which implies 

quasi-periodic dynamics. After some transient period the largest LCE becomes mainly 

positive with exceptions, which implies chaotic dynamics, interspersed with stable cycles. In 

fact, the largest LCE plot has a fractal structure (cf. Brock and Hommes, 1998, p. 1258). In the 

case of w = 0.9 the global dynamics after ** immediately becomes chaotic. Memory thus 

certainly affects the dynamics after the secondary bifurcation. Since the latter is a period 

doubling bifurcation, we are talking about period doubling routes to chaos. 

Next, we shall examine plots of the attractors in the (xt, xt–1) plane and in the (xt, n1,t) plane3 

without noise and with IID noise added to the supply of risky shares. In the upper left plot 

of each of the four parts of Figures 2 and 3 we can first observe the appearance of an 

attractor for the intensity of choice beyond the secondary bifurcation value. The orbits 

converge on such an attractor consisting of two invariant ‘circles’ around each of the two 

(unstable) period two-points4, one lying above and the other one below the fundamental 

value. As the intensity of choice increases, the circles ‘move’ closer to each other. In the 

upper right and lower left plot of each of the four parts of Figures 2 and 3 we can observe 

that the system seems already to be close to having a homoclinic orbit. The stable manifold 

of the fundamental steady state, (0, )eqsW m , contains the vertical segment, xeq = 0, whereas 

the unstable manifold, (0, )equW m , has two branches, one moving to the right and one to the 

left. Both of them are then ‘folding back’ close to the stable manifold. 

For as Brock and Hommes (1998, p. 1254) have proven for the asset pricing model without 

additional memory, at infinite intensity of choice and strong contrarians, g < –R, that 

unstable manifold (0, 1)uW   is bounded and all orbits converge on the saddle point (0, –1). 

In particular, all points of the unstable manifold converge on (0, –1) and are thus also on the 

stable manifold. Consequently, the system has homoclinic orbits for infinite intensity of 

choice. In the case of strong contrarians and high intensity of choice it is therefore 

reasonable to expect that we will obtain a system close to having a homoclinic intersection 

between the stable and unstable manifolds of the fundamental steady state. This is indeed 

what can be observed from the lower left plot of each of the two parts of Figures 2 and 3 and 

it suggests the occurrence of chaos for high intensity of choice. As can be seen from the 

lower right plot of each of the two parts of Figures 2 and 3, the addition of small dynamic 

noise to the system does not alter our findings. 

                                                                 
3 Attractors in the (xt, n2,t) plane are just flipped (rotated by 180 degrees) images of attractors in the (xt, n1,t) plane and 

will thus not be separately examined. 
4 Though we are topologically speaking about circles, the actual shape of such an attractor can be quite diverse, as seen 

from the figures. 
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Notes: Horizontal axis represents deviations of the price from the fundamental value (xt). Vertical axis represents 

lagged deviations of the price from the fundamental value (xt–1). The groups of four diagrams differ with respect to the 

memory strength parameter w; the left group corresponds to w = 0.3, while the right group corresponds to w = 0.9. 

Figure 2. Phase plots of (xt, xt–1) in case of fundamentalists versus contrarians 

 
Notes: Horizontal axis represents deviations of the price from the fundamental value (xt). Vertical axis represents the 

fraction of fundamentalists (n1,t). The groups of four diagrams differ with respect to the memory strength parameter w; 

the left group corresponds to w = 0.3, while the right group corresponds to w = 0.9. 

Figure 3. Phase plots of (xt, n1,t) in case of fundamentalists versus contrarians 

 = 4  = 9  = 4  = 9 

 = 25 (without noise)  = 25 (with small noise)  = 25 (without noise)  = 25 (with small noise) 

 = 4  = 9  = 4  = 9 

 = 25 (without noise)  = 25 (with small noise)  = 25 (without noise)  = 25 (with small noise) 
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Again, we can observe that memory has an impact on the global dynamics of the system. 

That is, both the convergence of the system on an attractor consisting of two invariant 

‘circles’ around each of the two unstable period two-points and the ‘moving’ of the 

circles closer to each other seem to be happening faster (at lower intensity of choice) when 

more memory is present in the model. Moreover, at the same intensity of choice we seem to 

be closer to obtaining a system that has a homoclinic intersection between the stable and 

unstable manifolds of the fundamental steady state when the memory strength is higher. 

Finally, we shall examine time series plots of deviations of the price from the fundamental 

value and of the fraction of fundamentalists5. Figure 4 shows some time series 

corresponding to the attractors in Figures 2 and 3, with and without noise added to the 

supply of risky shares. Similarly to the findings of Brock and Hommes (1998), we can 

observe that the asset prices are characterized by an irregular switching between a stable 

phase with prices close to their (unstable) fundamental value and an unstable phase of up 

and down price fluctuations with increasing amplitude. 

This irregular switching is of course reflected in the fractions of fundamentalists and 

contrarians in the market. Namely, when the oscillations of the price around the unstable 

steady state gain sufficient momentum, it becomes profitable for the trader to follow 

efficient market hypothesis fundamental value despite the costs that are involved in this 

strategy. The fraction of fundamentalists approaches unity and the asset price stabilizes. But 

then the nonzero costs of fundamentalists bring them into position where they are unable to 

compete in the market; the fraction of fundamentalists rapidly decreases to zero, while the 

fraction of contrarians with no costs approaches unity with equal speed. The higher the 

intensity of choice, ceteris paribus, the faster this transition is complete; when  approaches 

the neoclassical limit, the entire mass of traders tends to use the best predictor with respect 

to costs, i.e. the strategy with the highest fitness.\ 

Additional memory does not change the pattern of asset prices per se, but it does affect its 

period. Namely, at the same intensity of choice and higher memory strength the period of 

this irregular cycle appears to be elongated on average, in such a way that the stable phase 

with prices close to their fundamental value lasts longer, while the duration of the unstable 

phase of up and down price fluctuations does not change significantly. The effect of 

including more memory thus mainly appears to be stabilizing with regard to asset prices. 

With regard to fractions of different trader types we could say that including additional 

memory affects the transition from the short period of fundamentalists’ dominance to the 

longer period of contrarians’ dominance in the market. This transition takes more time to 

complete at the same intensity of choice. More memory thus causes the traders to stick 

longer to the strategy that has been profitable in the past, but might not be so profitable in 

the recent periods. 

                                                                 
5 Since the fraction of contrarians is just the unity complement of the fraction of fundamentalists, i.e. n1,t + n2,t = 1, the 

former will thus not be separately graphically examined. 
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Notes: Horizontal axis represents the time (t). Vertical axis in each pair of time series plots first represents deviations of 

the price from the fundamental value (xt), and then the fraction of fundamentalists (n1,t). The plots on the left-hand side 

and the right-hand side of the figure differ with respect to the memory strength parameter w; the ones on the left 

correspond to w = 0.3, while the ones on the right to w = 0.9. 

Figure 4. Time series of prices and fractions in case of fundamentalists versus contrarians 
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4. Fundamentalists versus opposite biased beliefs 

The second case we are going to examine is a three-type heterogeneous agents model with 

fundamentalists and opposite biased beliefs as market participants. Fundamentalists again 

exhibit a deterministic function of the form: 

 1, 0tf  , (41) 

though this time with no information gathering costs, i.e. C = 0. Biased beliefs exhibit 

deterministic functions: 

 2, 2 2; 0tf b b  , (42) 

 3, 3 3; 0tf b b  , (43) 

for optimist and pessimist biases, respectively6. Biases also exhibit zero information 

gathering costs. We have the following fractions of belief types equation: 

 
, 1

, 3

, 11

exp
; 1,2,3

exp

h t

h t

i ti

U
n h

U









   
  

. (44) 

Finally, we have the fitness measures of each type: 

  1, 1, 1 1 1(1 )t t t t tU wU w kRx x Rx         , (45) 

   2, 2, 1 1 2 1(1 )t t t t tU wU w k x Rx b Rx         , (46) 

   3, 3, 1 1 3 1(1 )t t t t tU wU w k x Rx b Rx         . (47) 

In order to analyze memory in our heterogeneous asset pricing model, we shall first 

determine the position and stability of the steady state, and then examine the possible 

qualitative changes in dynamics; all in relation to the memory strength parameter. Then we 

shall perform some numerical simulations to combine global stability analysis with local 

stability analysis. 

4.1. Position of the steady state 

In our three-type heterogeneous agents model of fundamentalists versus biased beliefs, we 

shall again start by rewriting our system as a difference equation: 

  2 1t tX F X  , (48) 

                                                                 
6 In this chapter we will mainly focus on the symmetric case. 
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where  1 1, 1 2, 1 1, 1 2, 1 3, 1, , , ,t t t t t tX x x u u u       is a vector of new variables, defined as: 

1, 1 1:t tx x  , 2, 1 2:t tx x  , 1, 1 1, 2:t tu U  , 2, 1 2, 2:t tu U   and 3, 1 3, 2:t tu U  . 

We therefore obtain the following 5-dimensional first-order difference equation: 

  2, 1 3, 1
1, 2, 2 3, 3 2 33 3

, 1 , 11 1

exp exp1 1

exp exp

t t
t t t t

i t i ti i

U U
x x n b n b b b

R R U U

 

 

 

  

                       
 

 
2, 3,

2 33 3

, ,1 1

exp exp1

exp exp

t t

i t i ti i

u u
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R u u

 

 
 

                   
, (49) 

 2, 1 1, 1t t tx x x   , (50) 

  1, 1, 1 1, 1 2, 1 1, 1 2, 1(1 )t t t t t tu U wu w kRx x Rx    
        , (51) 

   2, 2, 1 2, 1 1, 1 2, 1 2 2, 1(1 )t t t t t tu U wu w k x Rx b Rx    
        , (52) 

   3, 3, 1 3, 1 1, 1 2, 1 3 2, 1(1 )t t t t t tu U wu w k x Rx b Rx    
        . (53) 

Our three-type heterogeneous agents model of fundamentalists versus biased beliefs in 

general can have the following steady state price deviations: 

  2 2 3 3

1
x n b n b

R
  . (54) 

We obtain the fundamental steady state for 2 3 0b b b     (opposite biased beliefs), where 

0eqx  . This is implied by 1 2 3 0eq eq equ u u    when w  1 and consequently by 

1 2 3

1

3

eq eq eqn n n   , originating from the rewritten expression (44). 

By performing a generalization we can state the following lemma. 

Lemma 4: The fundamental steady state in the case of fundamentalists versus opposite biased beliefs 

is a unique steady state of the system. Memory does not affect the position of this steady state. 

Proof of Lemma 4: 

We will prove a more general result for the case with h = 1, …, H purely biased types bh (including 

fundamentalists with b1 = 0). Proceeding from the non-transformed variables the system is: 

 ,
1

,
H

t h t h
h

Rx n b


  (55) 
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   

   
, 2 1 2 2

,

, 2 1 2 21

exp (1 )
; 1 .

exp (1 )

h t t t h t

h t H

i t t t i ti

wU w k x Rx b Rx
n h H

wU w k x Rx b Rx





   

   

         
       

 (56) 

After subtracting off identical terms from the exponents of both numerator and denominator in 

expression (56) we obtain a new expression for the fractions: 

 
  

  
, 2 1 2

,

, 2 1 21

exp (1 )
; 1 ,

exp (1 )

h t t t h

h t H

i t t t ii

wU w k x Rx b
n h H

wU w k x Rx b





  

  

       
     




 (57) 

where ,h tU  is the fitness of trader type h, adjusted by subtracting off identical terms as above. The 

dynamic system defined by (55) and (57) is thus of the form: 

 1 2( ),t k t tRx V x Rx     (58) 

where the right-hand side function is defined as: 

 
 

 
, 2 1

1

, 2 11

exp ( ) (1 )
( ) .

exp ( ) (1 )

h t t h t H

k t h h hhH

i t t i ti

wU y w kb y
V y b n b

wU y w kb y






 


 

      
    







 (59) 

Since it follows from (52) and (53) that   * * *1h hU kx R b Rx   , steady states of expressions (55) 

and (57) or expression (58) are determined by: 

 * * * *( ) ( )k kRx V x Rx V rx      (60) 

where r = R – 1. Since a steady state has to satisfy expression (60), following Brock and Hommes 

(1998, p. 1271), a straightforward computation shows that: 

 
 1 12

1
1

exp expd d
( ) exp

d dexp exp

H Hh h h
k i hh iH

H
ii ii

kb kb y kb y
V y kb y b

y ykb y kb y


  


 
 

 

 
                     

 
 

 

   2 2

1 1 1

H H H

h h h h h h h h h h hh h h
kn b kn b n b kn b kn b b   

  
        

 
22 0,h hk b b      

 (61) 

where the inequality follows from the fact that the term between square brackets can be interpreted as 

the variance of the stochastic process, where each bh is drawn with probability nh. Therefore, ( )kV y  

is increasing and *( )kV rx   decreasing in x*. It then follows from expression (60) that the steady 
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state x* has to be unique. From expression (59) we obtain 
1

(0)
H h

k h

b
V b

H 
  , so that x* equals the 

fundamental steady state ifequation reference goes here and only if 0b  , i.e. when all biases are 

exactly balanced. Since there is no memory strength parameter left in expressions (60) and (0)kV , 

memory does not affect the position of this steady state. It has to be mentioned though, that our 

derivation holds for finite intensity of choice, since fractions are only then all positive. 

4.2. Stability of the steady state and bifurcations 

The local stability of a steady state is again determined by the eigenvalues of the Jacobian 

matrix. At the fundamental steady state Xeq = (0, 0, 0, 0, 0) the Jacobian matrix exhibits the 

characteristic equation that is in our case given by: 

  22 2 22 2
( ) ( 1) ( 1) 0

3 3
g w k b w k b w w

R
      

  
          

  
, (62) 

which has the following three solutions, two of them being double: 1 0  , 2,3 w   and 

 22 2 2 2
4,5

1
2 (1 ) 3 2 ( 1) 3 24 (1 )

6
b k w Rw b k w Rw b k w R

R
   

 
         

 
. 

The fundamental steady state is stable for 1  , which in our case is limited to the product 

of eigenvalues 4,5  being smaller than one, i.e. 22
( 1) 1

3
k b w   . In terms of the intensity 

of choice this happens for 
2

3

2 ( 1)kb w
  


, while in terms of the memory strength this is 

guaranteed for 
2

3
1

2
w

k b
  . 

Thus we can state the following lemma. 

Lemma 5: The fundamental steady state in case fundamentalists versus opposite biased beliefs is 

globally stable for 
2

3

2 ( 1)kb w
  


. Memory affects the stability of this steady state by restricting 

it to the given interval of the parameter value. 

Proof of Lemma 5: 

From the characteristic equation (62) we can observe five eigenvalues. The first three 

eigenvalues always assure stability, while the last two eigenvalues limit stability. Given k > 

0, b > 0,   0, R > 1 and 0  w  1, the condition for stability in terms of  implies 

2

3

2 ( 1)kb w
  


. Similarly, the condition for stability in terms of w indicates 

2

3
1

2
w

k b
  . 

Memory therefore affects the stability of the steady state as shown. 
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If we now take a look at the eigenvalues 4,5 of the characteristic equation (62), which are of 

interest in our case, we can observe that a saddle-node bifurcation would occur for: 

 
2

3

2 (1 )

R

b k R
 


. (63) 

This can never hold, since 0   and the left-hand side is always non-negative, while 1R   

and the right-hand side is always negative. On the other hand, a period doubling bifurcation 

would occur for: 

 
2

3 ( 1)

2 ( 1)( 1)

R w

b k R w
 


 
. (64) 

This can never hold either, since 0   and the left-hand side is again always non-negative, 

while 0 1w   and the right-hand side is either negative or not defined. 

The remaining qualitative change of the three discussed in Section 4.3 is the Hopf 

bifurcation. For this to occur, a complex conjugate pair of eigenvalues has to cross the unit 

circle. Eigenvalues 4,5 are complex for  2
2 2 22 ( 1) 3 24 (1 ) 0b k w Rw b k w R      , which 

produces the following interval of values: 

 
   

2 2

3 6 2 ( ) 3 6 2 ( )

2 ( 1) 2 ( 1)

R w R R R w R w R R R w

b k w b k w


     
 

 
. (65) 

We therefore state the following lemma. 

Lemma 6: There exists an intensity of choice value * such that the fundamental steady state, 

which is stable for 0 *   , becomes unstable and remains such for *  . For 

2

3
*

2 ( 1)kb w
  


 the system exhibits a Hopf bifurcation. Memory affects the emergence of 

this bifurcation, viz. with more memory the bifurcation occurs later. 

As we have just established, in the case of fundamentalists versus opposite biased beliefs 

increasing intensity of choice to switch predictors destabilizes the fundamental steady state. 

This happens through a Hopf bifurcation. We can thus conclude, as did Brock and Hommes 

(1998) for the simpler version of the model, that in the presence of biased agents the first 

step towards complicated price fluctuations is different from that in the presence of 

contrarians. This fact does not change when we take memory into account. 

Proof of Lemma 6: 

When  increases, terms with  in the expressions for the eigenvalues 4,5 increase as well, and one of 

the eigenvalues has to cross the unit circle at some critical *  . The fundamental steady state 

thus becomes unstable. Since it is obvious from the characteristic equation (62) that for all 0   we 

have (1) 0g   and ( 1) 0g   , a bifurcation has to occur. At the moment of the bifurcation the 
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product of eigenvalues 4,5  has to be equal one, i.e. 22
( 1) 1

3
k b w   . This happens either when 

we have two real eigenvalues with product equal to one or a complex conjugate pair of eigenvalues. 

Since 
2

3
*

2 ( 1)kb w
  


 falls into the interval (65) for any given finite memory strength, we can 

conclude that for *   the eigenvalues have to be complex and thus a Hopf bifurcation occurs. 

Since the memory strength parameter is present in the expression for *, memory affects the 

emergence of this bifurcation; the higher the value of this parameter, the higher the bifurcation value. 

4.3. Numerical analysis 

Our numerical analysis in the case of fundamentalists and opposite biased beliefs will be 

conducted for fixed values of parameters R = 1.1, k = 1.0, b2 = 0.2 and b3 = –0.2. We shall thus 

vary the memory strength parameter w and the intensity of choice parameter . The same 

four analytical tools will be used than in Section 3.4. 

Dynamic behaviour of the system can again first and foremost be determined by 

investigating bifurcation diagrams. From Figure 5 we can observe that for low values of  

we have a stable steady state, i.e. the fundamental steady state. As has been proven in 

Lemma 4, the position of this steady state, i.e. xeq = 0, is independent of the memory, which is 

clearly demonstrated by the simulations. For increasing  a bifurcation occurs at  = *, 

which is a Hopf bifurcation; the steady state becomes unstable and an attractor appears, 

consisting of an invariant circle around the (unstable) steady state. It is again a supercritical 

Hopf bifurcation, where the steady state gradually changes either into an unstable 

equilibrium or into an attractor. 

The bifurcation value varies with changing memory strength parameter, as given by 

expression in Lemma 6. As can also be seen from Figure 5 at higher memory strength the 

bifurcation occurs later. For  > * complex dynamical behaviour appears, which is 

interspersed with stable cycles. As we have already discovered in Section 4.2, irrespective of 

the amount of additional memory that is taken into account such a (bifurcation) route to 

complicated dynamics is different from that in the presence of contrarians, where we 

observed period doubling route to chaos (rational route to randomness). 

By examining largest Lyapunov characteristic exponent (LCE) plots of  we arrive at more 

precise conclusions about the dynamic behaviour of the system. It can be seen from Figure 5 

that the largest LCE is smaller than 0 and the system is thus stable until the bifurcation. At the 

bifurcation value a qualitative change in dynamics occurs, i.e. a Hopf bifurcation. The 

dynamics is somewhat more complicated. Namely, we can observe that the largest LCE after 

 = * is non-positive, but mainly close to 0, which implies periodic and quasi-periodic 

dynamics, i.e. for high values of the intensity of choice only regular (quasi-)periodic 

fluctuations around the unstable fundamental steady state occur. An important finding is 

that the predominating quasi-periodic dynamics does not seem to evolve to chaotic dynamics 

and the route to complex dynamics is indeed different from the routes examined so far. 
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Notes: Horizontal axis represents the intensity of choice (). Vertical axis represents deviations of the price from the 

fundamental value (x) in the upper two diagrams and the value of the largest LCE in the lower two diagrams, 

respectively. The diagrams differ with respect to the memory strength parameter w; the left one corresponds to w = 0.3, 

while the right one corresponds to w = 0.9. 

Figure 5. Bifurcation diagrams and Largest LCE plots of  in case of fundamentalists versus opposite 

biased beliefs 

Next, we shall examine plots of the attractors in the planes, determined by (xt, xt–1) and (xt, n1,t). 

In the upper left plot of each of the two parts of Figure 6 we can first observe the appearance of 

an attractor for the intensity of choice beyond the bifurcation value. The orbits converge to such 

an attractor consisting of an invariant ‘circle’ around the (unstable) fundamental steady state. 

The attractor obtained in the (xt, n1,t) plane is somewhat different. Namely, the unstable steady 

state dissipates into numerous points and evolves into a ‘loop’ shape, as shown in Figure 7. 

As the intensity of choice increases, the dynamics remains periodic or quasi-periodic; in case 

of past deviations of prices from the fundamental value and fractions of biased beliefs the 

invariant circle slowly changes its shape into a ‘(full) square’ (see Figure 6), while in case of 

fractions of fundamentalists the loop slowly changes into a ‘three-sided square’ (see Figure 7). 

For high values of intensity of choice we seem to obtain (stable) higher period cycles; in the 

case of past deviations of prices from the fundamental value and fractions of biased beliefs 

we seem to attain a stable period four-cycle, while in the case of fractions of fundamentalists 

it is difficult to obtain any solid indications based solely on numerical simulations due to  
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Notes: Horizontal axis represents deviations of the price from the fundamental value (xt). Vertical axis represents 

lagged deviations of the price from the fundamental value (xt–1). The groups of four diagrams differ with respect to the 

memory strength parameter w; the left group corresponds to w = 0.3, while the right group corresponds to w = 0.9. 

Figure 6. Phase plots of (xt, xt–1) in case of fundamentalists versus opposite biases 

 

 
Notes: Horizontal axis represents deviations of the price from the fundamental value (xt). Vertical axis represents the 

fraction of fundamentalists (n1,t). The groups of four diagrams differ with respect to the memory strength parameter w; 

the left group corresponds to w = 0.3, while the right group corresponds to w = 0.9. 

Figure 7. Phase plots of (xt, n1,t) in case of fundamentalists versus opposite biases 

 = 100  = 450  = 450  = 1500 

 = 1500  = 5000  = 10000  = 35000 

 = 100  = 450  = 450  = 1500 

 = 1500  = 5000  = 10000  = 35000 
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convergence problems for very high values of intensity of choice. In the latter case we can 

observe stable period four- and six-cycles, however (see lower right plot of each of the two 

parts of Figure 7). Indeed, Brock and Hommes (1998) proved for the case of exactly opposite 

biased beliefs and infinite intensity of choice in their simpler version of the model without 

additional memory that the system has a stable four-cycle attracting all orbits, except for 

hairline cases converging on the unstable fundamental steady state. Additionally, they 

discovered that for all three trader types average profits along the four-cycle equal b2. 

Again, we can observe that the memory has an impact on the dynamics of the system. 

Namely, both the convergence of the system on an attractor and the further development of 

such an attractor seem to be dependent on the value of the memory strength parameter. The 

precise impact of memory is somewhat more difficult to establish due to the dependence of 

the bifurcation value on memory strength and the subsequent need to choose higher 

intensities of choice with higher memory strength in order to demonstrate different nature 

of attractors of the system. However, we can still establish that at the same intensity of 

choice (after the bifurcation value) the system apparently needs less additional memory in 

order to develop a specific stage of an attractor or even a (stable) higher period cycle. 

Finally, we shall examine time series plots of deviations of the price from the fundamental value 

and of the fractions of all three types of traders. Figure 8 shows some time series corresponding 

to the attractors in Figures 6 and 7. We can observe that opposite biases may cause perpetual 

oscillations around the fundamental, even when there are no costs for fundamentalists, but can 

not lead to chaotic movements. Furthermore, as has already been indicated by the appearance 

of stable higher period cycles for high intensities of choice, in a three-type world, even when 

there are no costs and memory is infinite, fundamentalist beliefs can not drive out opposite 

purely biased beliefs, when the intensity of choice to switch strategies is high. 

Hence, according to the argumentation of Brock and Hommes (1998, p. 1260), the market 

can protect a biased trader from his own folly if he is part of a group of traders whose biases 

are ‘balanced’ in the sense that they average out to zero over the set of types. Centralized 

market institutions can make it difficult for unbiased traders to prey on a set of biased 

traders provided they remain ‘balanced’ at zero. On the other hand, in a pit trading situation 

unbiased traders could learn which types are balanced and simply take the opposite side of 

the trade. In such situations biased traders would be eliminated, whereas a centralized 

trading institution could ‘protect’ them. 

Additional memory does not change the pattern of asset prices and trader fractions per se, but it 

does affect its period. Namely, at the same intensity of choice and higher memory strength the 

period of these cycles appears to be elongated on average, in a way that both the negative and 

the positive deviation of the price from the fundamental value last longer. The same is valid 

for fractions ob biased traders, while in the case of fractions of fundamentalists the prolongation 

of the period of the irregular cycle appears in the form of less frequent ‘spikes’, which is 

understandable, since more persistent deviations of prices from the fundamental imply more 

space for biased traders and less chance for appearance of the fundamentalists. More memory 

causes the traders to stick longer to the strategy that has been profitable in the past, but might 

not be so profitable in the recent periods; therefore the system approaches purely quasi-

periodic dynamics when the memory strength increases at given intensity of choice. 
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Notes: Horizontal axis represents the time (t). Vertical axis in each set of time series plots represents deviations of the 

price from the fundamental value (xt), and the fractions of fundamentalists (n1,t), optimistic biased beliefs (n2,t) and 

pessimistic biased beliefs (n3,t). The plots on the left-hand side and the right-hand side of the figure differ with respect 

to the memory strength parameter w; the ones on the left correspond to w = 0.3, while the ones on the right to w = 0.9. 

Figure 8. Time series of prices and fractions in case of fundamentalists versus opposite biases 
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5. Concluding remarks 

In a market with fundamentalists and contrarians the fundamental steady state is the unique 

steady state of the system, which arises for low values of intensity of choice. Memory affects 

neither the position of this steady state nor its stability. For increasing intensity of choice a 

primary bifurcation, i.e. a period doubling bifurcation occurs; the steady state becomes 

unstable and a stable period two-cycle appears. Both the primary bifurcation value and the 

position of the period two-cycle are independent of the memory. For further increasing 

intensity of choice a secondary bifurcation, i.e. a supercritical Hopf bifurcation, occurs; the 

period two-cycle becomes unstable and an attractor appears consisting of two invariant 

circles around each of the two (unstable) period two-points, one lying above and the other 

one below the fundamental. For high intensity of choice chaotic asset price dynamics occurs, 

interspersed with many stable period cycles. Such a bifurcation route to chaos is often called 

the rational route to randomness. 

In case of strong contrarians and high intensity of choice it is reasonable to expect that we 

will obtain a system that is close to having a homoclinic intersection between the stable and 

unstable manifolds of the fundamental steady state, which indicates the occurrence of chaos. 

There exists a certain limited interval of memory strength values, for which at a given 

intensity of choice we are more likely to obtain such a system with more additional memory 

in the model. A rational choice between fundamentalists’ and contrarians’ beliefs triggers 

situations that do not reach fruition due to practical considerations and are thus 

unattainable, ‘castles in the air’, as Brock and Hommes (1998, p. 1258) would put it. As a 

consequence we obtain market instability, characterized by irregular up and down 

oscillations around the unstable efficient market hypothesis fundamental price. Additional 

memory lengthens on average the period of this irregular cycle and mainly appears to be 

stabilizing with regard to asset prices. 

In a market with fundamentalists and opposite biases the fundamental steady state is also 

the unique steady state of the system, arising for low values of intensity of choice. Memory 

does not affect the position of this steady state, but does affect its stability. For increasing 

intensity of choice a supercritical Hopf bifurcation occurs; the steady state becomes unstable 

and an attractor appears. Memory affects the emergence of this bifurcation; the higher the 

memory strength, the higher the bifurcation value. More memory thus has a stabilizing 

effect on dynamics. For high intensity of choice the dynamic behaviour is more complex. 

However, irrespective of the amount of additional memory such a route to complicated 

dynamics is different from that in the presence of contrarians, for after the bifurcation value 

only regular (quasi-)periodic fluctuations around the unstable fundamental steady state 

occur. Consequently, an important finding is that the predominating quasi-periodic 

dynamics does not seem to evolve to chaotic dynamics. 

After the incidence of the bifurcation the higher value of the memory strength parameter 

causes the dynamics to be less periodic and more quasi-periodic; the dynamics therefore 

converges on purely quasi-periodic behaviour with increasing memory strength. Opposite 

biases may cause perpetual oscillations around the fundamental, even without costs for 

fundamentalists, but can not lead to chaotic movements. Furthermore, in a three-type world, 
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even when there are no costs and memory is infinite, fundamentalist beliefs can not drive out 

opposite purely biased beliefs, when the intensity of choice to switch strategies is high. Hence, 

following the argumentation of Brock and Hommes (1998, p. 1260), the market can protect a 

biased trader from his own folly if he is part of a group of traders whose biases are balanced. 

In conclusion, both our analytical work and our numerical simulations suggest that biases 

alone do not trigger chaotic asset price fluctuations. Sensitivity to initial states and irregular 

switching between different phases seem to be triggered by trend extrapolators; in our case 

by contrarians. Apparently, some (strong) trend extrapolator beliefs are needed, such as 

strong trend followers or strong contrarians, in order to trigger chaotic asset price 

fluctuations. A key feature of our heterogeneous beliefs model is that the irregular 

fluctuations in asset prices are triggered by a rational choice in prediction strategies, based 

upon realized profits, viz. the observed deviations from the fundamentals are driven by 

short-run profit seeking. We can also talk about rational animal spirits that, according to 

Brock and Hommes (1997b), exhibit some qualitative features of asset price fluctuations in 

the actual financial markets, such as the autocorrelation structure of prices and returns. 
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