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1. Introduction 

Fins are extensively used to enhance the heat transfer between a solid surface and its 

convective, radiative, or convective radiative surface. Finned surfaces are widely used, for 

instance, for cooling electric transformers, the cylinders of air-craft engines, and other heat 

transfer equipment. In many applications various heat transfer modes, such as convection, 

nucleate boiling, transition boiling, and film boiling, the heat transfer coefficient is no longer 

uniform. A fin with an insulated end has been studied by many investigators [Sen, S. 

Trinh(1986)]; and [Unal (1987)]. Most of them are immersed in the investigation of single 

boiling mode on an extended surface. Under these circumstances very recently, [Chang 

(2005)] applied standard Adomian decomposition method for all possible types of heat 

transfer modes to investigate a straight fin governed by a power-law-type temperature 

dependent heat transfer coefficient using 13 terms. [Liu (1995)] found that Adomian method 

could not always satisfy all its boundaries conditions leading to boundaries errors. 

The governing equations for the temperature distribution along the surfaces are nonlinear. 

In consequence, exact analytic solutions of such nonlinear problems are not available in 

general and scientists use some approximation techniques to approximate the solutions of 

nonlinear equations as a series solution such as perturbation method; see [Van Dyke M. 

(1975)], and Nayfeh A.H. (1973)], and homotopy perturbation method; see [He J. H. (1999, 

(2000), and(2003)].  

In this chapter, we applied HPM to solve the linear and nonlinear equations of heat transfer 

by conduction in one-dimensional in two slabs of different material and thickness L. 

2. The perturbation method 

Many physics and engineering problems can be modelled by differential equations. 

However, it is difficult to obtain closed-form solutions for them, especially for nonlinear 
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ones. In most cases, only approximate solutions (either analytical ones or numerical ones) 

can be expected. Perturbation method is one of the well-known methods for solving 

nonlinear problems analytically. 

In general, the perturbation method is valid only for weakly nonlinear problems[Nayfeh 

(2000)]. For example, consider the following heat transfer problem governed by the 

nonlinear ordinary differential equation, see [Abbasbandy (2006)]:     

 ,(1 ) 0, (0) 1u u u uε+ + = =        (1) 

where ε > 0 is a physical parameter, the prime denotes differentiation with respect to the 

time t. Although the closed-form solution of u(t) is unknown, it is easy to get the exact result 
,(0) 1 / (1 )u ε= − + , as mentioned by [Abbasbandy (2006)]. Regard that ε as a perturbation 

quantity, one can write u(t) into such a perturbation series 

 2 3
0 1 2 3( ) ( ) ( ) ( ) ( ) .................... u t u t u t u t u tε ε ε= + + + +                  (2) 

Substituting the above expression into (1) and equating the coefficients of the like powers of 

ε, to get the following linear differential equations 

 
,

0 0 00, (0) 1, u u u+ = =
 

(3) 

 
, ,

1 1 0 0 1, (0) 0, u u u u u+ = − =
 

(4) 

 
, , ,

2 2 0 1 1 0 2( ), (0) 0, u u u u u u u+ = − + =
 

(5) 

 , , , ,
3 3 0 2 1 1 2 0 3( ), (0) 0, u u u u u u u u u+ = − + + =  (6) 

Solving the above equations one by one, one has 

0( ) tu t e−=
 

2
1( ) t tu t e e− −= −

 

 

2 3
2

1 3
( ) 2

2 2
t t tu t e e e− − −= − +

 
(7) 

Thus, we obtain ( )u t as a perturbation series  

 2 2 2 31 3
( ) ( ) ( 2 ) .............

2 2
t t t t t t u t e e e e e eε ε− − − − − −= + − + − + +         (8) 

which gives at t = 0 the derivative 

 , 2 3 4 5 6 7 8 9 10(0) 1 ............. u ε ε ε ε ε ε ε ε ε ε= − + − + − + − + − + − +    (9) 



 
Homotopy Perturbation Method to Solve Heat Conduction Equation 63 

Obviously, the above series is divergent for 1ε ≥ , as shown in Fig. 1. This typical example 

illustrates that perturbation approximations are valid only for weakly nonlinear problems in 

general. In view of the work by [Abbasbandy (2006)], the HAM extends a series 

approximation beyond its initial radius of convergence. 

 

Figure 1. Comparison of the exact and approximate solutions of (1). Solid line: exact solution 
,(0) 1 / (1 )u ε= − + ; Dashed-line: 31th-order perturbation approximation; Hollow symbols: 15th-order 

approximation given by the HPM; Filled symbols: 15th-order approximation given by the HAM when 

1 / (1 2 )h ε= − + . 

To overcome the restrictions of perturbation techniques, some non-perturbation techniques 

are proposed, such as the Lyapunov's artificial small parameter method [Lyapunov A.M. 

(1992)], the δ-expansion method [Karmishin et al(1990)] , the homotopy perturbation 

method [He H., J.,(1998)], and the variational iteration method (VIM), [He H., J.,(1999)],. 

Using these non-perturbation methods, one can indeed obtain approximations even if there 

are no small/large physical parameters. However, the convergence of solution series is not 

guaranteed. For example, by means of the HPM, we obtain the same and exact 

approximation of Eq.(1), as the perturbation result in Eq.(9), that is divergent for ε > 1, as 

shown in Fig.1. ; For details, see [Abbasbandy (2006)]. This example shows the importance 

of the convergence of solution series for all possible physical parameters. From physical 

points of view, the convergence of solution series is much more important than whether or 

not the used analytic method itself is independent of small/large physical parameters. If one 

does not keep this in mind, some useless results might be obtained. For example, let us 

consider the following linear differential equation [Ganji et al (2007)]: 

 2 , , 0t x xxtu u u x R t+ = ∈ >  
                                    (10) 

 
( ,0) xu x e−=

 
                                                      (11) 
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Its exact solution reads 

 ( , ) x t
exactu x t e− −=  

                                                (12) 

By means of the homotopy perturbation method, [Ganji et al (2007)] wrote the original 

equation in the following form: 

 
3

2

( , : ) ( , : ) ( , : ) ( , : )
(1 ) [ ] 0

x t p x t p x t p x t p
p p

t t x x t

ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂
− + + − =

∂ ∂ ∂ ∂ ∂
     (13) 

subject to the initial condition 

 ( ,0 : ) xx p eϕ −=  
                                                   (14) 

where [0;1]p ∈ is an embedding parameter. Then, regarding p as a small parameter, [Ganji 

et al (2007)] expanded  ( , : )x t pϕ  in a power series 

 
0

1

( , : ) ( , ) ( , ). m
m

m

x t p u x t u x t pϕ
+∞

=

= + 
 

                            (15) 

which gives the solution. For p = 1, and substitute (15) into the original equation (13) and 

initial condition in (14), then equating the coefficients of the like powers of p, one can get 

governing equations and the initial conditions for ( , )mu x t . In this way, [Ganji et al (2007)] 

obtained the mth-order approximation  

 
0

1

( , ) ( , ) ( , )
m

k
k

u x t u x t u x t
=

≈ +  (16) 

and the 5th-order approximation reads 

 6 5 4 3 2( , ) [ 66 1470 13320 47440 45360 720]
720

x

HPM

e
u x t t t t t t t

−

≈ + + + + + +     (17) 

However, for any given 0x ≥ , the above approximation enlarges monotonously to the 

positive infinity as the time t increases, as shown in Fig.2. Unfortunately, the exact solution 

monotonously decreases to zero! Let 

 

( ) exact HAM

exact

u u
t

u
δ

−
=

 

                                          (18) 

where ( )tδ  denotes the relative error of the HPM approximation (17). As shown in Fig. 2, 

the relative error δ(t) monotonously increases very quickly: 

In fact, it is easy to find that the HPM series solution (16) is divergent for all x and t except t 

= 0 which however corresponds to the given initial condition in (11). In other words, the 

convergence radius of the HPM solution series (17) is zero. It should be emphasized that, the 

variational iteration method (VIM) obtained exactly the same result as (17) by the 6th 
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iteration see; [He H. J., (1999)], and [Ganji et al (2007)]. This example illustrates that both of 

the HPM and the VIM might give divergent approximations. Thus, it is very important to 

ensure the convergence of solution series obtained. 

 

Figure 2. Approximations of (10) given by the homotopy perturbation method. Dashed-line: exact 

solution(12); Solid line: the 5th-order HPM approximation(17); Dash-dotted line: the relative error δ(t) 

defined by(18).  

3. Outline of Homotopy Perturbation Method (HPM) 

The homotopy analysis method (HAM) has been proposed by Liao in his PhD dissertation 

in [Liao (1992)]. Liao introduced the so-called auxiliary parameter in [Liao (1997a)] to 

construct the following two-parameter family of equation: 

 0(1 ) ( ) ( )p L u u hpN u− − =  (19) 

where 0u is an initial guess. [Liao (1997a)] pointed out that the convergence of the solution 

series given by the HAM is determined by h, and thus one can always get a convergent 

series solution by means of choosing a proper value of h. Using the definition of Taylor 

series with respect to the embedding parameter p (which is a power series of p ), [Liao 

(1997b)] gave general equations for high-order approximations. 

[He J. H. (1999)] followed Dr. Liao’s early idea of Homotopy Perturbation Method (HPM) 

when he constructed the one-parameter family of equation: 

 (1 ) ( ) ( ) 0p L u pN u− + =  (20) 

where Eq.(20) represented special case of Eq.(19) for convergent solution of (HAM) at 

1h = − . To illustrate the basic ideas of this method, consider the following general nonlinear 

differential equation [see Ghasemi et al (2010)]. 
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( ) ( ) 0,A u f r r− = ∈Ω

 
(21) 

With boundary conditions  

 
( , ) 0,

u
B u r

n

∂
= ⊂ Γ

∂  
(22) 

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic 

function, and is the boundary of the domain . 

The operator A can be generally divided into linear and nonlinear parts, say L and N. 

Therefore (21) can be 

written as 

 ( ) ( ) ( ) 0L u N u f r+ − =  (23) 

[He (1999)] constructed a homotopy ( , ) : [0,1]v r p RΩ × → which satisfies: 

 01 0H(v, p) = (  - p)[L(v) - L(v )] + p[A(v) - f(r)] =  (24) 

where r ∈Ω , [0,1]p ∈ that is called homotopy parameter, and 0v  is an initial approximation 

of (19). Hence, it is obvious that: 

 00 0H(v, ) = L(v) - L(v ) = 
 

(25) 

and 

 
1 [ ( ) ] 0H(v, ) = A v - f(r) = 

 
(26) 

In topology, 0L(v) - L(v ) is called deformation, and [ ( ) ]A v - f(r) is called homotopic. The 

embedding parameter p monotonically increases from zero to unit as the trivial problem 

0 0H(v, ) =  in (25) is continuously deforms the original problem in (26), 1 0H(v, ) = . The 

embedding parameter [0,1]p ∈  can be considered as an expanding parameter. [Nayfeh A.H. 

(1985)] Apply the perturbation technique due to the fact that 0 1p≤ ≤ , can be considered as 

a small parameter, the solution of (21) or (23) can be assumed as a series in p, as follows: 

 
2 3

0 1 2 3 .................... v v pv p v p v= + + + +  (27) 

when 1p → , the approximate solution, i.e., 

 
0 1 2 3

1
lim ....................
p

 u v v v v v
→

= = + + + +

 
(28) 

The series (28) is convergent for most cases, and the rate of convergence depends on  A(v) , 

[He, L. (1999)]. 
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4. Application of Homotopy Perturbation Method HPM 

An analytic method for strongly nonlinear problems, namely the homotopy analysis method 

(HAM) was proposed by Liao in 1992, six years earlier than the homotopy perturbation 

method by [He H., J.,(1998)], and the variational iteration method by [He H., J.,(1999)]. 

Different from perturbation techniques, the HAM is valid if a nonlinear problem contains 

small/large physical parameters. 

More importantly, unlike all other analytic techniques, the HAM provides us with a simple 

way to adjust and control the convergence radius of solution series. Thus, one can always 

get accurate approximations by means of the HAM. In the next section, HPM is applied to 

solve the linear and nonlinear equations of heat transfer by conduction in one-dimensional 

in a slab of thickness (L). [Anwar (2010)] solved the linear and non-linear heat transfer 

equations by means of HPM. 

4.1. Non-Linear Heat transfer equation 

Consider the heat transfer equation by conduction in one-dimensional in a slab of thickness 

L. The governing equation describing the temperature distribution is: 

 ( ) 0, [0, ]
d dT

k x L
dx dx

= ∈  (29) 

Where the two faces are maintained at uniform temperatures 1T  and 2T  with 1 2T T> the slab 

make of a material with temperature dependent thermal conductivity ( )k k T= ; see [Rajabi 

A.(2007)]. The thermal conductivity k is assumed to vary linearly with temperature, that is:  

 2
2 1 2

1 2

[1 ] (0) , ( )
T T

k k T T T L T
T T

ε
−

= + = =
−

 (30) 

where ε  is a constant and 2k is the thermal conductivity at temperature 2T . Introducing the 

dimensionless quantities 

2

1 2

,
T T

T T
θ

−
=

−
  1 2

2

k k

k
ε

−
=  

x
X

L
=   [0,1]X ∈  

where 1k  is the thermal conductivity at temperature 1T , then (29) reduces to 

 

2
2

2

( )
0, [0,1]

(1 )

(0) 1, (1) 0

d
d dX X
dX

θ
θ

ε
εθ

θ θ

+ = ∈
+

= =

 (31) 

The problem is formulated by using (19) as: 

 0(1 ) [ ( , ) ( )] [ ( , )] 0p L X p X pN X pθ θ θ
∧ ∧

− − + =   (32) 
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Where the Linear operator: 

 ,,( )L θ θ=   (33) 

and, 

 0 0XXθ =   (34) 

from Eq.(31), the initial guess is: 

 0( ) 1X Xθ = −   (35) 

and the linear operator: 

 1 2[ ] 0L C X C+ =   (36) 

and the nonlinear operator of ( , )X pθ
∧

is: 

 
2[ ( , )] ( , ) [ ( , ). ( , ) ( ( , ) ) ] 0XX XX XN X p X p X p X p X pθ θ ε θ θ θ

∧ ∧ ∧ ∧ ∧

= + + =
  (37) 

and: 

 (0, ) 1, (1, ) 0p pθ θ
∧ ∧

= =   (38) 

where [0,1]p ∈  is an embedding parameter. For p = 0 and 1, we have 

 0( ,0) ( ) ( ,1) ( )X X X Xθ θ θ θ
∧ ∧

= =   (39) 

0( )Xθ tends to ( )Xθ  as p varies from 0 to 1. Due to Taylor’s series expansion: 

 
1

0

( , )1
( , ) ( )

!

s

o s
s

p

X p
X p X

s p

θ
θ θ

∧
∞∧

=
=

∂
= +

∂
   (40) 

and the convergence of series (40) is convergent at 1p = . Then by using (35) and (36) one 

obtains 

 
0

0

( ) ( ) ( )s
s

X X Xθ θ θ
∞

=

= +   (41) 

For the s-th- order problems, if we first differentiate Eq.(32) s times with respect to p then 

divide by s! and setting p = 0 we obtain: 

 
1

,, , , ,,
1 1 1 1

0

[ ( ) ( )] [ ( ) ( . )] 0
s

s s s s s n n s n n
n

L X u X Xθ θ θ ε θ θ θ θ
−

− − − − − −
=

− + + + =   (42) 
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Where: 

 (0) (1) 0s sθ θ= =   (43) 

 
0, 1

1, 1s

s
u

s

 ≤
= 

>
  (44) 

The general solutions of (42) can be written as: 

 *
0( ) ( ) ( )s sX X Xθ θ θ= +   (45)  

where *( )s Xθ is the particular solution.  

The linear non-homogeneous (42) is solved for the order s = 1, 2, 3,..., for s=1, (42) becomes: 

 

22
0 0 01

0 1 12 2
( ) 0 (0) 0, (1) 0
d d dd

dX dXdX dX

θ θ θθ
ε θ θ θ+ + = = =   (46) 

Then  

 
2

1
2

0
d

dX

θ
ε+ =   (47) 

the solution of (47) gives : 

 2
1 ( )

2
X X

ε
θ = −   (48) 

For s = 2, Eq.(42) becomes: 

 
22 2

0 02 1 1
1 0 2 22 2 2

(2 ) 0, (0) 0, (1) 0
d dd d d

dX dXdX dX dX

θ θθ θ θ
ε θ θ θ θ+ + + = = =   (49) 

Solution of (49) gives : 

 
2

2 3
2 [2 ]

2
X X X

ε
θ = − −   (50) 

Then, solution of (31) is: 

 
2

2 2 3( ) (1 ) ( ) [2 ]
2 2

X X X X X X X
ε ε

θ = − + − + − −   (51) 

Results of θ obtained for different values of ε are presented in Table 1 and Fig. 3. Clearly, 

for small value for 0 1ε≤ ≤  then (51) is a good approximation to the solution. That means 

for 0ε =  , then 1 2k k= , for 1ε = , then 1 22k k= . However, as ε increases, (51) produces 
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inaccurate divergent results. The results obtained via HPM are compared to those via 

General Approximation Method GAM obtained by Khan R. A.(2009). For this problem, it is 

found that HPM produces agreed results compared to GAM.  

 

X ε =.5 ε =.8 ε =1.0 ε =1.5 ε =2 

0.1 0.912375 0.91008 0.9045 0.876375 0.828 

0.2 0.824 0.82304 0.816 0.776 0.704 

0.3 0.734125 0.73696 0.7315 0.692125 0.616 

0.4 0.642 0.64992 0.648 0.618 0.552 

0.5 0.546875 0.56 0.5625 0.546875 0.5 

0.6 0.448 0.46528 0.472 0.472 0.448 

0.7 0.3446249 0.36384 0.3735 0.386625 0.384 

0.8 0.2359999 0.2537599 0.2639999 0.2839999 0.2959999 

0.9 0.1213749 0.1331199 0.1404999 0.1573749 0.1719999 

Table 1. Solutions θ  via X for different values of ε . 

Special computer program was used as special case, the temperature distribution along a 

road of length (L = 1 m) when 0
1 100T C= and 0

2 50T C= , are presented in Table 2 and Fig.4. 
 

X ε =.5 ε =.8 ε =1.0 ε =1.5 ε =2 

0.0 100 100 100 100 100 

0.1 95.61875 95.504 95.225 93.81875 91.4 

0.2 91.2 91.152 90.8 88.8 85.2 

0.3 86.70625 86.848 86.575 84.60625 80.8 

0.4 82.1 82.496 82.4 80.9 77.6 

0.5 77.34375 78 78.125 77.34375 75 

0.6 72.4 73.264 73.6 73.6 72.4 

0.7 67.23125 68.192 68.675 69.33125 69.2 

0.8 61.8 62.688 63.2 64.2 64.8 

0.9 56.06874 56.656 57.025 57.86874 58.6 

1.0 50 50 50 50 50 

Table 2. Solutions T via X for different values of ε   

4.2. Linear Heat transfer equation 

In this section we consider the linear one-dimensional equation of heat transfer by 

conduction (diffusion equation) [Anderson (1984)]:  

 
2

2
0 0 1, 0

T T
x t

t x
α

∂ ∂
− = ≤ ≤ >

∂ ∂
  (52) 

for initial condition 



 
Homotopy Perturbation Method to Solve Heat Conduction Equation 71 

 

 

Figure 3. Graphical results θ  via X obtained by HPM for different values of ε . 

 

Figure 4. Graphical results of Temperature via X obtained by HPM for different values of ε . 

 ( ,0) ( ) sin(2 . )T x g x xπ= =   (53) 

and boundary condition  

 (0, ) (1, ) 0T t T t= =   (54) 

α is thermal conductivity that is assumed constant with temperature. To solve the parabolic 

partial differential equation (52) using HPM, we consider a correction functional equation 

as: 

 
2

0
2

(1 )[ ] [ ] 0
uT T T

p p
t t t x

α
∂∂ ∂ ∂

− − + − =
∂ ∂ ∂ ∂

  (55) 

Then: 

0

2

4
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2

0 0
2

0
u uT T

p p
t t t x

α
∂ ∂∂ ∂

− − − =
∂ ∂ ∂ ∂

  (56) 

 
2

2
0

T T
p

t x
α

∂ ∂
− =

∂ ∂
  (57) 

 
2 3 2 2 3

0 1 2 3 0 1 2 3
2

( ...) ( ..)
0

T pT p T p T T pT p T p T
p

t x
α

∂ + + + + ∂ + + + +
− =

∂ ∂
   (58) 

For zeroth order of p: 

 
0 0

T

t

∂
=

∂
  (59) 

Then 0( , ) sin(2 . )T x t xπ=  

For first order of p: 

 
2

01
2

0
TT

t x
α

∂∂
− =

∂ ∂
  (60) 

 
21 4 sin(2 . ) 0

T
x

t
π α π

∂
+ =

∂
  (61) 

 
2

1( , ) sin(2 . ) 4 sin(2 . )T x t x x tπ π α π= −
  (62) 

For second order of p: 

 
2

2 1
2

0
T T

t x
α

∂ ∂
− =

∂ ∂
  (63) 

 
2 4 2 2

2( , ) sin(2 . ) 4 sin(2 . ) 8 sin(2 . )T x t x x t x tπ π α π π α π= − +
  (64) 

Using equation (56) for other orders of p, we can obtain the following results: 

 
2 2 21

( , ) sin(2 . )[1 (4 . ) (4 . ) .....]
2

T x t x t tπ π α π α= − + −   (65) 

It is obvious that ( , )T x t  converge to the exact solution as increasing orders of p:  

 
2( , ) sin(2 . ).exp( 4 . )T x t x tπ π α= −   (66) 

Fig.5 and Fig.6 represent the HPM solution T(x, t) for 0.05α = , and 0.1α = respectively for 

0 1x≤ ≤ , 0 0.4t≤ ≤ . 
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X t=0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 

0 0 0 0 0 0 

0.05 0.3091373 0.2082383 0.1402717 9.448861E-2 6.364859E-2 

0.1 0.5879898 0.3960766 0.2668017 0.1797206 0.1210618 

0.15 0.8092399 0.5451131 0.3671944 0.2473463 0.1666153 

0.2 0.9512127 0.6407476 0.4316148 0.2907406 0.1958462 

0.25 0.9999998 0.6736112 0.4537521 0.3056525 0.205891 

0.3 0.9508218 0.6404843 0.4314375 0.2906211 0.1957657 

0.35 0.8084964 0.5446123 0.366857 0.247119 0.1664622 

0.4 0.5869664 0.3953872 0.2663373 0.1794078 0.1208511 

0.45 0.3079342 0.207428 0.1397258 0.0941209 0.0634009 

0.5 0 0 0 0 0 

0.55 -0.3103399 -0.2090485 -0.1408174 -0.0948562 -6.389621E-2 

0.60 -0.5890125 -0.3967655 -0.2672657 -0.1800332 -0.1212724 

0.65 -0.8099824 -0.5456133 -0.3675313 -0.2475732 -0.1667681 

0.70 -0.9516023 -0.64101 -0.4317916 -0.2908597 -0.1959264 

0.75 -0.9999982 -0.6736101 -0.4537514 -0.3056521 -0.2058907 

0.80 -0.9504291 -0.6402198 -0.4312593 -0.2905011 -0.1956849 

0.85 -0.8077511 -0.5441103 -0.3665189 -0.2468912 -0.1663087 

0.90 -0.5859417 -0.3946969 -0.2658723 -0.1790946 -0.1206401 

0.95 -0.3067303 -0.206617 -0.1391795 -9.37529E-2 -6.315302E-2 

1 0 0 0 0 0 

Table 3. Solution T(x, t) for 0 1x≤ ≤ , 0 0.4t≤ ≤  at 0.05α = . 

 

Figure 5. Solution T(x, t) for 0 1x≤ ≤ , 0 0.4t≤ ≤ and 0.05α = . 
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X t=0 t = 0.1 t = 0.2 t = 0.3 t = 0.4 

0 0 0 0 0 0 

0.05 0.3091373 0.2537208 0.2082383 0.1709092 0.1402717 

0.1 0.5879898 0.4825858 0.3960766 0.3250752 0.2668017 

0.15 0.8092399 0.6641742 0.5451131 0.4473952 0.3671944 

0.2 0.9512127 0.7806966 0.6407476 0.5258861 0.4316148 

0.25 0.9999998 0.8207381 0.6736112 0.5528585 0.4537521 

0.3 0.9508218 0.7803758 0.6404843 0.52567 0.4314375 

0.35 0.8084964 0.6635639 0.5446123 0.4469841 0.366857 

0.4 0.5869664 0.4817458 0.3953872 0.3245094 0.2663373 

0.45 0.3079342 0.2527334 0.207428 0.1702441 0.1397258 

0.5 0 0 0 0 0 

0.55 -0.3103399 -0.2547078 -0.2090485 -0.1715741 -0.1408174 

0.60 -0.5890125 -0.4834251 -0.3967655 -0.3256406 -0.2672657 

0.65 -0.8099824 -0.6647836 -0.5456133 -0.4478057 -0.3675313 

0.70 -0.9516023 -0.7810164 -0.64101 -0.5261015 -0.4317916 

0.75 -0.9999982 -0.8207368 -0.6736101 -0.5528576 -0.4537514 

0.80 -0.9504291 -0.7800536 -0.6402198 -0.5254529 -0.4312593 

0.85 -0.8077511 -0.6629522 -0.5441103 -0.4465721 -0.3665189 

0.90 -0.5859417 -0.4809047 -0.3946969 -0.3239429 -0.2658723 

0.95 -0.3067303 -0.2517453 -0.206617 -0.1695785 -0.1391795 

1 0 0 0 0 0 

Table 4. Solution T(x, t) for 0 1x≤ ≤ , 0 0.4t≤ ≤ at 0.1α =  . 

 

Figure 6. Solution T(x, t) for 0 1x≤ ≤ , 0 0.4t≤ ≤ and 0.1α =  
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5. Discussion 

For example.1, clearly, for 0 1ε≤ ≤ , (51) is a good approximation to the solution. That means 

for ε = 0, then 1 2k k= , and for ε = 1, then 1 22k k= . However, as ε increases, (51) produces 

inaccurate divergent results. For example 2, (66) is a good approximation to the solution as α 

values decreased. That means as α increase, (66) produces inaccurate divergent results.  

6. Conclusion  

Homotopy Perturbation Method HPM is applied to solve the linear and nonlinear partial 

differential equation. Two numerical simulations are presented to illustrate and confirm the 

theoretical results. The two problems are about heat transfer by conduction in two slabs. 

Results obtained by the homotopy perturbation method are presented in tables and figures. 

Results are compared with those studied by the generalized approximation method by 

[Sajida et al (2008)]. Homotopy Perturbation Method is considered as effective method in 

solving partial differential equation. 
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