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1. Introduction 

Metal gratings have an interesting property known as resonance absorption in the optics 

region [Raeter 1982], which causes partial or total absorption of incident light energy. This 

absorption is associated with the resonant excitation of plasmons on a grating surface; 

incident light couples with surface plasmons via an evanescent spectral order generated by 

the grating [Nevièr 1982]. Resonance absorption in metal film gratings has been the subject 

of many theoretical [Nevièr 1982] and experimental investigations focused on various 

applications including chemical sensing [DeGrandpre 1990, Zoran 2009], surface enhanced 

phenomena such as Raman scattering [Nemetz 1994], and photonic bandgaps [Barnes 1995, 

Tan 1998].  

A thin-film metal grating, which is a corrugated thin metal film, also results in absorption 

similar to that observed for thick gratings [Inagaki, Motosuga 1985, Chen 2008, Bryan-

Brown 1991, Davis 2009]. Absorption in thin-film metal gratings, however, is much more 

complicated than in thick gratings because of the existence of coupled plasmon modes in 

addition to those observed in thick gratings. If the metal film is sufficiently thick, single-

interface surface plasmons (SISPs) alone are excited [Raeter 1977, Okuno 2006, Suyama 

2009]. However, if the film is sufficiently thin, simultaneous excitation of surface plasmons 

occurs on both surfaces; these plasmons interfere with each other and produce two coupled 

plasmon modes, short-range surface plasmons (SRSPs) and long-range surface plasmons 

(LRSPs) [Chen 1988, Hibbins 2006]. 

Most previous studies on resonance absorption have mainly dealt with metal gratings 

whose surfaces are periodic in one direction. Metal bi-gratings, which are periodic in two 

directions, also yield plasmon resonance absorption, similar to singly periodic gratings 

[Glass 1982, Glass 1983, Inagaki, Goudonnet 1985, Harris 1996]. In this work, we therefore 

investigated coupled plasmon modes excited in multilayered bi-gratings [Matsuda 1993, 

Matsuda 1996, Suyama 2010]. We anticipated interesting behavior in the resonance 
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phenomenon due to the presence of the double periodicity. Further, in view of the fact that 

layered gratings are interesting structures for optical device applications, we investigated a 

multilayered bi-gratings, which is a stack of thin-film bi-gratings made of a dielectric or 

metal. This paper is structured as follows. After formulating the problem in Section 2, we 

briefly describe a method for obtaining a solution in Section 3. Focusing our attention on the 

resonant excitation of plasmon modes, we then show the computational results in Section 4, 

before presenting the conclusions of this study. 

2. Formulation of the problem 

Here, we formulate the problem of diffraction from multilayered bi-gratings when an 

electromagnetic plane wave is incident on it. The time-dependent factor, exp(−iωt), is 

suppressed throughout this paper as customary. 

2.1. Geometry of the gratings 

Figure 1 shows the schematic representation of multilayered sinusoidal gratings with 

double periodicity. The grating, with L-1 laminated grating layers, has a period d in both the 

X- and Y-directions. The semi-infinite regions corresponding to the medium above the  

 

Figure 1. Schematic representation of bi-gratings. (a) Multilayered bi-gratings; (b) The l th thin-film bi-

grating; (c) A bi-grating 

grating and the substrate are denoted by V1 and VL+1, respectively. The individual layers in 

the grating, beginning from the upper layer (light-incidence side), are denoted by 

( )2,3V , , .L=    All of the regions ( )V 1,2, , 1L= +    are filled with isotropic and 

homogeneous media with refractive indices n , and the permeability of each region is equal 
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to that of vacuum, 0µ . The interface between V  and 1V +  is denoted by S  ( 1,2, ,L=  ). 

The profile of S  is sinusoidal and is given by 

 ( )
12π2π

sin sin
4 1

l
i

i

h yx
z η x,y p p e

d d

−

=

    
= = + + + −   

     



    (1) 

Here, p  represents the phase of S  in each direction, and e  denotes the average distance 

between S  and 1lS + . The value h  is regarded as the groove depth of the boundary S . 

It should be noted that we can easily generalize the shape of S  by distinguishing between d 

and p  in the X-and Y-directions, by writing them as xd , yd , xp   and yp  , respectively. A 

singly periodic grating is a special case where yd → ∞  in the doubly periodic case. In the 

present paper, we concentrate our attention on describing the analysis only for the doubly 

periodic case, since it reduces to the singly periodic case through a simple procedure. 

2.2. Incident wave 

The electric and magnetic fields of an incident wave are given by 

 ( ) ( )
i i

i

i i
exp

E e
P k P

H h

   
   = ⋅
   
   

i    (2) 

with  

 ( )i i i1 0μω= ×h k e  (3) 

Here, P is the position vector for an observation point P(X, Y, Z), and i
k  is the wave vector 

of the incident wave defined by 

 
Ti , ,α β γ = − k   (4) 

where 0 sin cosn kα θ ϕ= , 0 sin sinn kβ θ ϕ= , and 0 cosn kγ θ= . The symbol k (= 2π / λ ) is the 

wave number in vacuum and λ  is the wavelength of the incident wave. We define θ  and 

ϕ  as polar and azimuth angles, respectively, as shown in Fig. 1(a), and the superscript “T” 

denotes a transposition. 

The amplitude of the incident electric field can be decomposed into TE and TM modes 

[Chen 1973] (with respect to the Z-axis) and is written as 

 i TE TMcosδ sinδ= +e e e   (5) 

 
TTE sin cos 0, ,ϕ ϕ = − e   (6) 

 
TTM cos cos cos sin sin, ,θ ϕ θ ϕ θ =  e   (7) 
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Here, the superscript TE (TM) indicates the absence of a Z component of the electric 

(magnetic) field.  

 

Figure 2. Definition of a polarization angle. 

The symbol δ is the polarization angle between TE
e  and i

e  as shown in Fig. 2; for 0δ =    

( 90δ =  ), this represents TE-mode (TM-mode) incidence. 

2.3. Diffracted wave 

We denote the diffracted fields as ( )E P  and ( )H P  in the region ( )1,2, , 1V L L= +   . 

These satisfy the following conditions: 

(C1) Helmholtz equation: 

 ( ) ( ) ( )2 2 2 1,2, 10 ,n k L L
 

∇ + = = +  
 


 


 

E
P

H
 (8) 

(C2) Radiation conditions: 

1E  and 1H  propagate or attenuate in the positive Z-direction. 

1LE +  and 1LE +  propagate or attenuate in the negative Z-direction. 

(C3) Periodicity conditions: 

 ( ) ( ) ( ), , exp , ,f X d Y Z i d f X Y Zα+ =  (9) 

 ( ) ( ) ( ), , exp , ,f X Y d Z i d f X Y Zβ+ =  (10) 

Here, f denotes any component of ( )E P  or ( )H P . 

(C4) Boundary condition ( 0 X d< < ; 0 Y d< < ; 1,2,...,L= ): 
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where 1δ  is the Kronecker delta, and ν   denotes the unit vector normal to the surface S , 

which is given by  
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 (12) 

3. Mode-matching method 

We next explain the mode-matching method [Yasuura 1965, Yasuura 1971, Okuno 1990] for 

determining the diffracted field produced by the multilayered bi-grating. We introduce 

vector modal functions in the region ( 1,...,L 1)V = +   to express the diffracted field in each 

individual region. To construct the wave functions ( )d
NE P  and ( )d

NH P , we define the 

electric modal function ( )TE,TM
mnφ ±
 P  and the magnetic modal function ( )TE,TM

mnψ ±
 P  as 

 ( ) ( )TE,TM TE,TM
mn mn mneϕ φ± ± ±=  P P   (13) 

 
TE

TE TM

TE
,mn Z mn mn

mn mn
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e e
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± ±

± ± ±

× ×
= =

× ×

  
 

  

 (14) 

 ( ) ( )TE,TM TE,TM

0

1
mn mn mnkψ ϕ

ωµ
± ± ±= ×  P P   (15) 

where ( )mnφ ±
 P  is the solution of the Helmholtz equation satisfying the periodic condition in 

the region ( 1,.2,.., 1)V L= +  . It is written as 

 ( ) ( ) ( )exp , 0, 1, 2,...mn mnik m nϕ± ±= ⋅ = ± ± P P   (16) 

where the positive and negative signs match on either side of the equation, and mnk±
  is the 

wave vector of the (m,n)th order diffracted wave given by 

 
T

, ,mn m n mnk α β γ±  = ±    (17) 

 
2 π 2 π

,m n

m n

d d
α α β β= + = +  (18) 
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  ( ) ( ) ( )
1

2 2 2 2 2 , Re 0 andIm 0mn m n mn mnn kγ α β γ γ= − − ≥ ≥   
 (19) 

Note that the superscripts + and - represent upwardly and downwardly propagating waves 

in the positive and negative Z-direction, respectively. 

In terms of the linear combinations of the vector modal functions, we form approximate 

solutions for the diffracted electric and magnetic fields in V : 
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with  

 ( )TE,TM TE,TM1

0

.mn mn mnkψ φ
ωµ

± ±±= ×  P    (21) 

Here, ( ) ( )TE TM
1 1 0A N A N− −= =
mn mn

 and ( ) ( )TE TM
1 1 0nA N A N+ +

+ += =
L mn L m

 because of the radiation 

conditions (C3) stated in Section 2.3.  

The approximate solutions ( )d
NE P  and ( )d

NH P  already satisfy the Helmholtz equation 

(C1), the periodicity conditions (C2), and the radiation conditions (C3). The unknown 

coefficients ( )TE
mnA N±
  and ( )TM

mnA N±
  are therefore determined such that the solutions 

approximately satisfy the boundary conditions (C4). In the mode-matching method 

[Yasuura 1996, Yasuura 1971, Okuno 1990], the least-squares method is employed to fit the 

solution to the boundary conditions [Hugonin 1981]. That is, we find coefficients that 

minimize the weighted mean-square error by 
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Here, 'S  is a one-period cell of the interface S , and Γ  is the intrinsic impedance of the 

medium in V . 

To solve the least-squares problem on a computer, we first discretize the weighted mean-

square error NI  by applying a two-dimensional trapezoidal rule where the number of 

divisions in the x-and y-direction is chosen as 2(2N + 1) [Yasuura 1965, Yasuura 1971, Okuno 

1990]. We then solve the discretized least-squares problem by the QR decomposition 

method. Computational implementation of the least-squares problem is detailed in the 

literature [Lawson 1974, Matsuda 1966, Suyama 2008].  

4. Numerical results 

Here we show some numerical results obtained by the method described in the preceding 

section. After making necessary preparation, we show the results for three the bi-grating, 

thin-film bi-grating and multilayered thin-film bi-gratings cases. 

4.1. Preparation 

It is known that the solutions obtained by mode-matching method [Yasuura 1965, Yasuura 

1971, Okuno 1990] have proof of convergence. We, therefore, can employ the coefficient 

( )TM,TE
mnA N±
  with sufficiently large N for which the coefficients are stable in evaluating 

diffracted fields. 

The power reflection and transmission coefficient of the (m, n) order propagating mode in 

1V  and L 1V +  are given by 

 ( )
2 2

TE TM TE TE TM TM1 1
mn 1 1 1[Re 0], ,mn mn

mn mn mn mn mn mn mnA A
γ γ

ρ ρ ρ γ ρ ρ
γ γ

+ += + ≥ = =  (23) 

 ( )
2 2

TE TM TE TE TM TM1 1
mn 1 1 1[Re 0], ,L mn L mn

mn mn L mn mn L mn mn L mnA A
γ γ

τ τ τ γ τ τ
γ γ

− −+ +
+ + += + ≥ = =   (24) 

The coefficient defined above is the power carried away by propagating diffraction orders 

normalized by the incident power. We calculate the total diffraction efficiency 
'total

mnρ ρ=  where '  denotes a summation over the propagating orders.  

Although it is known that the solutions obtained by mode-matching modal expansion 

method [Yasuura 1965, Yasuura 1971, Okuno 1990] have proof of convergence for problems 

of diffraction by gratings, we compare our results with other existing theoretical [Glass 

1983] and experimental results [Inagaki, Goudonnet 1985] on plasmon resonance absorption 

in bi-gratings to show the validity of the present method. Figure 3 shows the reflectivity 

curves calculated by the present method and those from Rayleigh's method [Glass 1983] for 

three sinusoidal silver bi-gratings with different corrugation amplitudes. As confirmed in 

Fig. 3, the reflectivity curves from the present method are coincident with those of the 
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Rayleigh’s method [Glass 1983]. Next, we make comparison with the experimental results 

[Inagaki, Goudonnet 1985] in which the resonance angle θd, i.e., the polar angle at which the 

dip of reflectivity occurs, is observed near 55° for a sinusoidal silver bi-grating with h = 0.048 

µm, d = 2.186 µm, λ = 0.633 µm, and φ  = 45°. The resonance angle calculated from the 

present metod for these parameters is θd = 54.1°, which is close to the experimental data. 

These examples show that the present method gives reliable results for the analysis of 

plasmon-resonance absorption in metal bi-gratings. 

 

Figure 3. Comparison of resonance absorption curves calculated by the present method with other 

existing theoretical results. Solid curves show our results, and dotted curves are taken from Figure 2. of 

Ref. [Glass 1983]. 

In the numerical examples presented here, we deal with a shallow sinusoidal silver bi-

grating with height h = 0.030 µm and period d = 0.556 µm. The wavelength of an incident 

light is chosen as λ = 0.650 µm. We take n2 = 0.07+i4.20 as the refractive index of silver at this 

wavelength [Hass 1963]. 

It should be noted, however, that the index of a metal film depends not only on the 

wavelength but also on the thickness of the film, in particular when the film is extremely 

thin it may take unusual values if circumstances require. When dealing with a thin metal 

structure, hence, we should be careful in using the index value given in the literature. As for 

the value taken in our computation, we assume that n2 = 0.07+i4.20 is available even for the 

case of e/d = 0.02. This is because a similar assumption was supported by experimental data 

in a problem of diffraction by an aluminum grating with a thin gold over-coating. 

4.2. A bi-grating case 

Using the numerical algorithm stated in the previous section, we first investigate the 

absorption in a metal bi-gratings by L = 1 as shown in Fig. 1(c). The semi-infinite regions 
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corresponding to the medium above the grating and the substrate are denoted by V1 and V2, 

respectively. V1 is vacuum (V) with a relative refractive index n1=1 and V2 consists of a lossy 

metal characterized by a complex refractive index n2. 

4.2.1. Diffraction efficiency  

Figure 4 shows the total diffraction efficiency of a sinusoidal silver bi-grating as functions of 

a polar angle θ when the azimuthal angle φ  = 30º is fixed. In the efficiency curves we observe 

four dips which occur at the same angles of incidence for both TE and TM polarized incident 

light. In this subsection, we demonstrate that the dips are associated with absorption that is 

caused by the coupling of surface plasmons with an evanescent mode diffracted by a 

sinusoidal bi-grating. For convenience, the four dips in Fig. 4 are labeled as A, B, C, and D. 

 

Figure 4. Total diffraction efficiencies ρtotal as functions of θ (L=1). 

4.2.2. Expansion coefficients 

In Fig. 5 we plot the expansion coefficients of the (0, -1)st-order and (-1, 0)th-order TM 

vector modal function, which are two evanescent modes, as a functions of θ under the same 

parameters as in Fig. 4. Solid curves in Fig. 5 represent the real part of the expansion 

coefficient, and dashed curves for the imaginary part. We observe a resonance curve of the 

expansion coefficient A −
TM
1( 1,0)  at the angles of incidence θ = 9.5 º, i.e., dip A, and A −

TM
1(0, 1)  at 

the angles of incidence θ = 23.3 º, 41.5 º and 49.5 º, i.e., dips B, C, and D in Fig. 4 for both TE 

and TM incidence.  
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This implies that the TM component of the (0, -1)st-order and (-1, 0)th-order evanescent 

mode couples with surface plasmons at dips B and D. We can similarly confirm that dips A 

and C are associated with the coupling of the TM component of the (-1, 0)th- and (-1, -1)st-

order evanescent mode, respectively, with surface plasmons, although we do not include 

any numerical example here. 

 

Figure 5. 
TM
1(0, 1)A −  and TM

1( 1,0)A − as functions of θ  for both TM- (a) and TE- (b) polarized incident light. 

4.2.3. Field distributions and energy flows 

In order to investigate the resonant excitation of surface plasmons, we study field 

distributions and energy flows in the vicinity of the grating surface when the absorption 

occurs. Here we consider the case of the dip B at which the TM component of the (0, -1)st-

order evanescent mode couples with surface plasmons. We calculate the electric field of the 

TM component of the (0, -1)st-order evanescent mode TM
0 1E −  = ( )TM

0 1A N−  ( )TM
0 1 1,2ϕ − =   and 

the total electric field E 

t. The magnitude of these fields along the Z-axis where 

( )1 0Y Xβ α−= ∗  is plotted in Fig. 6(a). We observe in this figure that very strong electric 

fields are induced at the grating metal surface and the fields exponentially decay away from 

the surface.  

Next we show the energy flows S that are the real part of Poynting's vectors for the total 

field. The X and Y components of the energy flows S are plotted as the vector (SX, SY) in Fig. 

6(b). The energy flows are calculated over the region close to the grating surface:  

 
{ ( ) 0 0

( / 4)[sin(2πx ) sin(2π )] 0.01 }

P , , : , ,

/ .

x y z x y

z h y

≤ ≤ ≤ ≤

= + +

d d

d d d/
  (25) 

The energy flow at a point P is given by Re[S(P)], where S(P)=(1/ 2) Et(P)× Ht (P) stands for 

Poynting’s vector, E 

t and H  

t denote total fields, and the over-bar means complex conjugate. 



 
Resonant Excitation of Plasmons in Bi-Gratings 323 

We calculate the energy flow at each point located densely near the grating surface and 

show the results in Fig. 6(b). 

Figure 6(b) shows that the energy of electromagnetic fields in the vicinity of the grating 

surface flows uniformly in the direction that the (0, -1)st-order evanescent mode travels in 

the XY plane. We thus confirm that surface plasmons are excited on the grating surface 

through the coupling of the TM component of an evanescent mode. 

 

Figure 6. Field distribution (a) and Energy flow (b) for the total field when plasmon resonance 

absorption occurs at φ = 30 º , θ  = 23.3 º. 

4.2.4. Polarization conversion through plasmon resonance absorption 

Diffracted fields from a sinusoidal metal bi-grating have both TE and TM component for an 

arbitrary polarized incident light. We therefore observe polarization conversion that a TM 

(or TE) component of the incident light is converted into a TE (or TM) component of the 

reflected light. It has been pointed out [Chen 1973, Inagaki, Goudonnet 1985] that the 

polarization conversion [Elston 1991, Matsuda 1999, Suyama 2007] is strongly enhanced 

when the plasmon-resonance absorption occurs in a sinusoidal metal bi-grating. Our study 

confirms the enhancement of polarization conversion through plasmon-resonance 

absorption. In Fig. 7, the TE and TM component of the diffraction efficiency 00ρ  ( 00ρ  = TE
00ρ  

+ TM
00ρ  ) of Fig. 4 are shown for the case of the TM incidence. The TM component TM

00ρ  is 

decreased at the position of the plasmon-resonance absorption, but the TE component 
00ρ TE  

is contrary increased there. That is, the resonant excitation of surface plasmons causes the 

enhancement of polarization conversion. On the other hand, in the case of the TE incidence 

the conversion from a TE to a TM component occurs through the plasmon-resonance 

absorption. It should be noted that the conversion efficiency depends on the azimuthal 

angle ϕ  and the depth of the grating surface h.  
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Figure 7. Diffraction efficiencies of 00ρ  (a) TE
00ρ  and TM

00ρ  (b) as functions of θ ; parameters are the 

same as in Figure 4. 

4.2.5. Prediction of resonance angles 

We seek to determine a complex incidence angle θc for which total or partial absorption 

occurs, i.e., ( )total 00ρ ρ=  takes a minimum. This angle relates to the propagation constant of 

the surface plasmon on the corrugated surface. Here, we denote by SPα̂  and SPβ̂  the X and 

Y components of the surface plasmon wave vector normalized by the wave number k1: 

   
c

c

sin cos

sin sin

ˆ / ,

ˆ / .

m d

n d

θ φ λ

θ φ λ

= +

= +

SP

SP

α

β
 (26) 

In reality, we cannot realize a complex incidence angle cθ . We can, however, estimate the 

real angle of incidence at which the absorption occurs by taking the real part of Eq. (26). 

If the wavevector of the surface plasmon ( SPα̂ , SPβ̂ ) is obtained, we can estimate the 

resonance angle SPθ  for each azimuthal angle ϕ  from the phase-matching condition for 

coupling of a surface plasmon wave with the (m, n)th-order evanescent mode:  

 
SP SP

SP SP

ˆRe{ } sin cos / ,

ˆRe{ } sin sin / .

m d

n d

α θ ϕ λ

β θ ϕ λ

= +

= +
  (27) 

We solve the homogenous problem [Nevièr 1982] for a sinusoidal metal bi-grating by 

present method and then obtain the surface-plasmon wave vector. Table 1 shows the 

propagation constants of the surface plasmon and the resonance angles SPθ . The data 

demonstrate that the estimated resonance angle SPθ agrees with dθ  which is the absorption 

peak in Fig. 4. Figure 8 shows the estimated resonance angle SPθ  as a function of the 

azimuthal angle ϕ  for the sinusoidal bi-grating considered in Fig. 4. Note that points A, B, 

C, and D in Fig. 8 are results obtained from the absorption peak of total-efficiency curves in 

Fig. 4. From this figure, we can find the resonance angle for each azimuthal angle. 



 
Resonant Excitation of Plasmons in Bi-Gratings 325 

Dip Mode Re( SPα̂ ) Im( SPα̂ ) Re( SPβ̂ ) Im( SPβ̂ ) 
SPθ   dθ   

A (-1, 0) -1.026277 -0.000804 0.087099 -0.001279 9.49 9.5 

B (0, -1) 0.343795 -0.004910 -0.971021 -0.002498 23.39 23.3 

C (0, -1) -0.595897 -0.001282 -0.837168 -0.000549 41.44 41.5 

D (0, -1) 0.668265 -0.004365 -0.778336 -0.005224 50.50 50.5 

E 
(0, -1) 0.149639 -0.000679 -1.019425 -0.000679 12.22 

12.2 
(-1, 0) -1.019426 -0.000679 0.149639 -0.000679 12.22 

0.03µm, 0.556µm, 0.650µmah d λ= = =
 

Table 1. Propagation Constants and Estimated Resonance Anglesa 

 

Figure 8. Resonance angles SPθ  as functions of azimuthal angle φ . 

4.2.6. Simultaneous resonance absorption 

From Fig. 8, it is predicted the angle of incidence at which the simultaneous resonance 

absorption occurs from the position of the intersection of the (-1,0) and (0,-1) curve. At the 

intersection E, the (0,-1)st- and (-1,0)th-order evanescent modes couple simultaneously with 

two surface-plasmon waves at the same angle of incidence. Thus, two surface-plasmon 

waves are excited simultaneously in directions symmetric with respect to the plane of 

incidence and interact with each other. The interference of the surface-plasmon waves 

causes the standing wave in the vicinity of the grating surface. This is confirmed from Figs. 

9, the strong fields along the Z-axis where Y=X, and where the X and Y components of 

Poynting's vectors S on a surface 0.01d above the one-unit cell of the grating surface are 
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plotted as the vector ( )S ,SX Y . We further observe in Fig. 10 that the simultaneous excitation 

of the surface plasmons waves causes the strong absorption for both TE- and TM-polarized 

incident light. 

It has been reported [Barnes 1995, Ritchie 1968] that surface-plasmon band gaps exist at the 

angles of incidence at which simultaneous excitation of plasmon waves occurs, and that the 

appearance of the band gaps depends strongly on the surface profile. Hence, there is a 

possibility that a band gap will be observed at the point E in Figs. 9 and 10 provided that the 

grating profile is appropriately chosen, because two plasmon modes are excited at that point.  

 

Figure 9. Field distributions and Energy flows for the total field when plasmon resonance absorption 

occurs. 

 

Figure 10. Total diffraction efficiencies ρ total as functions of θ. 
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4.3. A Thin-film Bi-grating case 

As a numerical example, we consider a sinusoidal silver (Ag) film bi-grating having a 

common period as shown in Fig. 1(b). The values of the parameters are the same as those in 

Fig. 4 except for the thickness of the silver film. Using the present algorithm, we calculated 

the diffraction efficiencies and field distributions to clarify the properties of the coupled 

surface plasmon modes. 

4.3.1. Diffraction efficiency 

First, we consider a sinusoidal silver-film bi-grating. The bi-grating is denoted by L = 2 

(V/Ag/V). Figure 11 shows the (0,0)th order power reflection 00ρ  in 1V  (Vacuum) (a) and 

the transmission coefficient 00τ  in 3V  (Vacuum) (b) as functions of the incident angle θ  

for two values of de /  when the azimuth angle 0φ =   is fixed; e is the thickness of the 

silver film. We observe partial absorption of the incident light as dips in the efficiency 

curves in Fig. 11(a), in addition to the constant absorption corresponding to the 

reflectivity of silver. We assume that the dips are caused by resonant excitation of surface 

plasmons. If this is the case, each of the dips can be related to one of the three types of 

plasmon modes: a SISP that is observed as a single dip at 8.0θ =   on the / 0.4e d =  curve, 

and a SRSP and LRSP corresponding to the dips in the / 0.08e d =  curve at 6.54θ =   and 

8.8 , respectively.  

 

Figure 11. The (0, 0)-th order diffraction efficiencies 00ρ  (a) and 00τ  (b) as functions of θ  for two 

values of de /  (L=2).  

When the grating is thick ( 0.4/e d = ), the power can be seen in 1V  alone and no transmitted 

power exists in 3V  in Fig. 11. Increasing θ  from 0 , we first observe the dip at 8.0θ =   

corresponding to absorption in Fig. 11(a). If the grating is relatively thin ( / 0.08e d = ), the 

power exists in both 1V  and 3V . Although the power in 3V  is generally small, it becomes 

large at the incidence angles for which absorption was observed in Fig. 11. This suggests 

that coupled oscillations occur on the upper and lower surfaces of the grating.  
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4.3.2. Expansion coefficients 

We examined the same phenomena observing the modal expansion coefficients in V ( 1,3)l l = . 

Figures 12 and 13 illustrate the (-1,0)th-order coefficients A +TM
1(-1,0)  for / 0.4e d =  and 0.08, 

respectively. We observe, in Fig. 12(a) ( / 0.4e d = ), the resonance characteristics (enhancement 

and rapid change in phase) of the coefficient TM
1(-1,0)A +  near 8.0θ =  . The coefficient 0TM

3(-1,0)A − =  

remains unchanged, as seen in Fig. 12(b). This means that the incident wave illuminating the 

grating at this angle causes coupling between the (-1,0)th-order evanescent mode and some 

oscillation excited on the upper surface of the grating. The oscillation exists locally in the 

vicinity of the illuminated surface and hence does not have any influence on the field in 3V . 

 

Figure 12. The (-1, 0)th order modal coefficients 
TM
1( 1,0)-A +

 (a) and 
TM
3(-1,0)A −

(b) as functions of θ  at 

/ 0.4e d = . 

 

Figure 13. The (-1, 0)th order modal coefficients TM
1( 1,0)-A +  (a) and TM

3(-1,0)A −  (b) as functions of θ  at 

/ 0.08e d = . 

In Fig. 13 ( / 0.08e d = ), we find the resonance characteristics in both A +TM
1(-1,0)  and TM

3(-1,0)A − . In 

addition, they appear around two incidence angles: 6.54θ =   and 8.8θ =  . This means that 
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the oscillation in the vicinity of the upper surface causes another oscillation on the lower 

surface at this thickness. The oscillations interfere with each other and result in two coupled 

oscillating modes: the SRSP and LRSP. This means that the TM component of the (-1,0)th order 

evanescent mode couples with the surface plasmons simultaneously excited on the upper and 

lower surface of the film grating. The two surface plasmons interfere with each other and 

result in symmetric and antisymmetric coupled modes, SRSP and LRSP, as we will see next. 

4.3.3. Field distributions and energy flows 

We consider the same phenomena observing the field distributions and energy flows near 

the grating surfaces. In the former we find that the total field is enhanced. In the latter we 

observe the symmetric (even) and anti-symmetric (odd) nature of the oscillations, which 

correspond to the LRSP and SRSP [Raeter 1977].  

 

Figure 14. Field distributions (a) and energy flows (b) at 8.0θ =  , which corresponds to the single dip 

on the / 0.4e d =  curve in Fig. 11.  

 

Figure 15. Field distributions (a) and energy flows (b) at 6.54θ =  , which corresponds to the left dip 

on the / 0.08e d =  curve in Fig. 11.  
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Figure 16. Field distributions (a) and energy flows (b) at 8.8θ =  , which corresponds to the right dip 

on the / 0.08e d =  curve in Fig. 11.  

Figures 14, 15, and 16 show the field distributions of the X- and Z-components of the total 

electric fields (a) and energy flows (b) in the vicinity of the silver-film grating at the 

incidence angles at which absorption was observed in Fig. 11. The abscissa and ordinate 

show the magnitude and distance in the Z direction normalized by the wavelength λ . The 

parallel broken lines represent the grating surfaces.  

Figure 14 shows XE  and 
Z
E  (a), SX and SZ (b) for the case of / 0.4e d =  at 8.0θ =  , which 

corresponds to the single dip in Fig. 11(a). Figures 15 and 16 show the same thing for the 

/ 0.08e d =  case. Figure 15 illustrates the results at 6.54θ =  , where the left dip is observed 

in Fig. 11(a). On the other hand, Fig. 16 depicts the results at 8.8θ =  , corresponding to the 

right dip in Fig. 11(a). In Figs. 14 to 16, we observe strong enhancement of XE  and 
Z
E  

(note that the magnitude of the incident radiation is 1), which is observed at the incidence 

angles where absorption occurs. 

We observed that the total field above the grating surface decays exponentially in the Z 

direction and the magnitude of the total field is almost ZE  in Fig. 14(a). The state of affairs is 

nearly the same in the metal region except for the rapid decay. Because the grating is thick, 

the oscillation near the upper surface does not reach the lower surface and, hence, the field 

below the grating is zero. Figure 14(b) illustrates the energy flow S, which is magnified by 

15 in the metal region. We see that the energy flow is almost in the X direction and that it 

goes in opposite directions in vacuum and in metal. This is commonly observed when a 

SISP is excited.  

In Figs. 15(a) and 16(a), we again see the enhancement of XE  and ZE  on the upper and 

lower surface of the silver-film grating, respectively. The rate of enhancement in Fig. 15(a) is 

not as large as that in Fig. 16(a). ZE  is strongly enhanced at both the upper and lower 

surfaces of the grating and exponentially decays away from each surface. We thus observe 

the simultaneous excitation of surface plasmons at the surfaces. We can understand the 

difference of the field distributions assuming that the former and the latter refer to Figs. 15 

and 16 are the results of the SRSP and the LRSP mode excitation. Figures 15(b) and 16(b) 

complement the understanding showing the even and odd nature of relevant oscillations. 
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4.4. Multilayered thin-film bi-gratings case 

Next, we consider multilayered thin-film bi-gratings as shown in Fig. 1(a) indicated by L = 4 

( 2V/Ag/SiO /Ag/V ) that consists of a stack of silver and SiO2 films pairs. As listed in the 

figure, the values of the parameters are the same as those in Fig. 11 except for L = 4, 

2SiO 1.5,n =
2SiO d 0.3 or 0.08/e = . 

4.4.1. Diffraction efficiency 

Figure 17 shows the (0,0)th order power reflection 00ρ  in 1V  (Vacuum) (a) and the 

transmission coefficient 00τ  in V5 (Vacuum) (b) as functions of the incident angle θ  for two 

different values of 
2SiO /e d . The curve for 

2SiO / 0.08e d =  is almost the same as for a sinusoidal 

silver film bi-grating (Fig. 11): the coupled surface plasmon modes, SRSP and LRSP, are 

excited. On the other hand, in the curve for 
2SiO / 0.3e d = , we find a new type of absorption of 

incident light besides the plasmon resonance absorption associated with SRSP or LRSP.  

This is related to the resonant excitation of a guided wave supported by the SiO2 film. This 

absorption is characterized by its occurrence over a wider range of θ . For example, in the 

case of 
2SiO / 0.3e d = , the extinction power is more than 50% for all angles of incidence θ  

ranging from 0  to 12 . 

 

Figure 17. The (0, 0)-th order diffraction efficiencies 00ρ  (a) and 00τ  (b) as functions of θ  for two 

values of eSiO2/d (L=4). 

4.4.2. Field distributions 

In order to examine the properties of the wide absorption found in Fig. 17, we investigated 

the field distributions of the total electric field Etotal and the TM component of the (0, 0)th-

order diffracted electric field 
(0,0)

TM

l
E  in the vicinity of the SiO2 film. The magnitude of Etotal 

and TME
l (0,0)

(l =1,2,...5) along the Z-axis are plotted in Fig. 18 where 0θ =   and 
2SiO / 0.3e d = . 



 
Plasmonics – Principles and Applications 332 

We observe in the figure that the field distributions of Etotal inside the SiO2 film indicates a 

standing wave pattern corresponding to the normal mode of a one dimensional cavity 

resonator, and that the distribution is almost close to that of 
3(0 ,0)

TME . Hence, we conclude that 

the wide absorption observed in the multilayered grating V/Ag/SiO2/Ag/V is associated with 

resonance of the (0, 0)th-order diffracted wave 
3(0 ,0)

TME  in the SiO2 film sandwiched by a 

sinusoidal silver film grating. 

 

Figure 18. Standing wave pattern of the electric filed in the SiO2 film. 

5. Conclusions 

We have investigated the resonance absorption associated with the resonant excitation of 

surface plasmons in bi-gratings. Calculating diffraction efficiency, expansion coefficients, 

field profiles, and energy flows, we examined the characteristics of the resonant excitation of 

surface plasmons in detail. Interesting phenomena were revealed, including the conversion 

of a TM (or TE) component of the incident light into a TE (or TM) component at several 

different incidence angles, strong field enhancement on the grating surface where surface 

plasmons are excited, and simultaneous resonance absorption that does not occur in the case 

of a singly periodic grating in general. The results presented here facilitate a clear 

understanding of the coupled plasmon modes, SISP, SRSP and LRSP, excited in a thin film 

doubly periodic metal grating.  
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