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Visual Feedback Control of a Robot in an Unknown Environment 

(Learning Control Using Neural Networks) 

Xiao  Nan-Feng and Saeid  Nahavandi 

1. Introduction 

When a robot has no transcendental knowledge about an object to be traced 
and an operation environment, a vision sensor is needed to attach to the robot 
in order to recognize the object and the environment. On the other hand, it is 
also desirable that the robot has learning ability in order to improve effectively 
the trace operation in the unknown environment. 
Many methods(1)-(11) have been so far proposed to control a robot with a cam-
era to trace an object so as to complete a non-contact operation in an unknown 
environment. e.g., in order to automate a sealing operation by a robot, Hosoda, 
K.(1) proposed a method to perform the sealing operation by the robot through 
off-line teaching beforehand. This method used a CCD camera and slit lasers 
to detect the sealing line taught beforehand and to correct on line the joint an-
gles of the robot during the sealing operation.
However, in those methods(1)-(3), only one or two image feature points of the 
sealing were searched per image processing period and the goal trajectory of 
the robot was generated using an interpolation. Moreover, those methods 
must perform the tedious CCD camera calibration and the complicated coor-
dinate transformations. Furthermore, the synchronization problem between 
the image processing system and the robot control system, and the influences 
of the disturbances caused by the joint friction and the gravity of the robot 
need to be solved. 
In this chapter, a visual feedback control method is presented for a robot to 
trace a curved line in an unknown environment. Firstly, the necessary condi-
tions are derived for one-to-one mapping from the image feature domain of 
the curved line to the joint angle domain of the robot, and a multilayer neural 
network which will be abbreviated to NN hereafter is introduced to learn the 
mapping. Secondly, a method is proposed to generate on line the goal trajec-
tory through computing the image feature parameters of the curved line. 
Thirdly, a multilayer neural network-based on-line learning algorithm is de-
veloped for the present visual feedback control. Lastly, the present approach is 
applied to trace a curved line using a 6 DOF industrial robot with a CCD cam-

Source: Industrial-Robotics-Theory-Modelling-Control, ISBN 3-86611-285-8, pp. 964, ARS/plV, Germany, December 2006, Edited by: Sam Cubero
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era installed in its end-effecter. The main advantage of the present approach is 
that it does not necessitate the tedious CCD camera calibration and the com-
plicated coordinate transformations.
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Figure 1.  Vision-based trace operation            
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2. A Trace Operation by a Robot 

When a robot traces an object in an unknown environment, visual feedback is 
necessary for controlling the position and orientation of the robot in the tan-
gential and normal directions of the operation environment. Figure 1 shows a 
robot with a CCD camera installed in its end-effecter. The CCD camera guides 
the end-effecter to trace a curved line from the initial position I to the target 
position G. Since the CCD camera is being fixed at the end-effecter, the CCD 
camera and the end-effecter always move together. 

3. Mapping from Image Feature Domain to Joint Angle Domain 

3.1 Visual feedback control 

For the visual feedback control shown in Fig. 1, the trace error of the robot in 
the image feature domain needs to be mapped to the joint angle domain of the 
robot. That is, the end-effecter should trace the curved line according to 

ja , 1a +j  in the image domain of the features 
j

A ,
1

A +j
 shown in Fig. 2. 

Let , d∈R6×1 be the image feature parameter vectors of 
j

a , 1a +j  in the image 

feature domain shown in Fig. 2, respectively. The visual feedback control 
shown in Fig. 1 can be expressed as 

e=|| d – ||,  (1) 

where || · || is a norm, and e should be made into a minimum. 

From the projection relation shown in Fig. 2, we know 

=ϕ(
tc
p ),                                                        (2) 

where ϕ∈R6×1 is a nonlinear mapping function which realizes the projection 
transformation from the workspace coordinate frame O to the image feature 
domain shown in Fig. 2. 

It is assumed that ptc ∈R6×1 is a position/orientation vector from the origin of 

the CCD camera coordinate frame C  to the gravity center of 
j

A . Linearizing 

Eq.(2) at a minute domain of 
tc
p  yields 

= Jf · tc
pδ ,                                                  (3) 
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where and p tc  are minute increments of  and ptc , respectively, and Jf =

p tc∂ ∂ ∈R6×6 is a feature sensitivity matrix. 

Furthermore, let  and ∈R6×1 are a joint angle vector of the robot and its 

minute increment in the robot base coordinate frame B . If we map  from 

B to p t c in O using Jacobian matrix of the CCD camera Jc∈R6×6, we can get 

p t c = Jc· .                                                   (4) 

From Eqs.(3) and (4), we have  

= (JfJc)-1 · .                                           (5) 

Therefore, the necessary condition for realizing the mapping expressed by 
Eq.(5) is that (JfJc)-1 must exist. Moreover, the number of the independent im-
age feature parameters in the image feature domain (or the element numbers 

of ) must be equal to the degrees of freedom of the visual feedback control 

system.

 3.2 Mapping relations between image features and joint angles 

Because Jf and Jc are respectively linearized in the minute domains of ptc  and 

, the motion of the robot is restricted to a minute joint angle domain, and 
Eq.(5) is not correct for large . Simultaneously, the mapping is weak to the 

change of (JfJc)-1. In addition, it is very difficult to calculate (JfJc)-1 on line during 
the trace operation. Therefore, NN is introduced to learn such mapping.  

Firstly, we consider the mapping from ptc  in O  to  in the image feature 

domain.  and 
tc
p are increments of  and 

tc
p  for the end-effecter to move 

from Aj to Aj+1, respectively. As shown in Fig. 2, the mapping is depend on 
tc
p ,

and the mapping can be expressed as 

=
1
(

tc
p ,

tc
p ),                                             (6) 

where
1
( )∈R6×1 is a continuous nonlinear mapping function.We have from 

Eq.(6),

tc
p = 2 ( ,

tc
p ),                                             (7) 

where
2
( )∈R6×1 is a continuous nonlinear mapping function. When  is uni-

quely specified in the image feature domain, there is a one-to-one mapping re-
lationship between 

tc
p  and . Therefore, Eq.(7) is expressed as 
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tc
p =

3
( , ),                                                (8) 

where
3
( )∈R6×1 is a continuous nonlinear mapping function. 

Secondly, we consider the mapping from  in B to
c
p  in O. Let 

c
p ∈R6×1 be 

a position/ orientation vector of the origin of C with respect to the origin of 

O,  and 
c
p  be increments of  and 

c
p  for the end-effecter to move from Aj

to Aj+1, respectively. 
c
p  is dependent on  as shown in Fig. 2, and we obtain 

from the forward kinematics of the CCD camera 

c
p = '

3
( , ),                                                 (9) 

where '

3
( )∈R6×1 is a continuous nonlinear mapping function.

Since the relative position and orientation between the end-effecter and the 
CCD camera are fixed, the mapping from 

c
p  to 

tc
p  is also one-to-one. We get 

tc
p =

4
(

c
p ),                                                 (10) 

where
4
( )∈R6×1 is a continuous nonlinear mapping function. Combining 

Eq.(9) and Eq.(10) gives 

tc
p = '

4
( , ),                                            (11.a) 

and we have from Eq.(11.a)  

=
5
(

tc
p , ),                                            (11.b) 

where
5
( )∈R6×1 is a continuous nonlinear mapping function. It is known from 

Eq.(11.b) that if the CCD camera moves from Aj to Aj+1, the robot has an uni-
que .

Combing Eq.(8) and Eq.(11.b) yields

=
6
( , , ),                                            (12) 

where
6
( )∈R6×1 is a continuous nonlinear mapping function. In this paper, 

NN is used to learn 
6
( ).  
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3.2 Computation of image feature parameters 

For 6 DOF visual feedback control, 6 independent image feature parameters 
are chosen to correspond to the 6 joint angles of the robot. An image feature 
parameter vector )( j = )(

1
[ jξ , )(

2

jξ ,···, Tj ])(

6
ξ  is defined at the window j shown in Fig. 

3. L and W are length and height of the window j, respectively.

Defining )( j

qr
g  at the window j by 

)( j

qr
g =

°̄

°
®
­

pixelblack1

pixelwhite0
,                                    (13.a) 

the elements of )( j  are defined and calculated by the following equations: 

(1) The gravity center coordinates 

)(

1

jξ =
¦¦

¦¦ ⋅

= =

= =

L

q

W

r

j

qr

L

q

W

r

j

qr

g

qg

1 1

)(

1 1

)(

,                             (13.b) 
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)(
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L
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W

r

j
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)(

,                        (13.c)  

(2) The area

)(

3

jξ = ¦¦
= =

L

q

W

r

j

qr
g

1 1

)(

,   (13.d)  
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(3) The lengths of the main and minor axes of the equivalent ellipse 

)(

4

jξ = )(

3

2)(

11

2)(

02

)(

20

)(

02

)(

20

2

)(4)(
j

jjjjj

ξ

λλλλλ ++−++
,  (13.e)  

)(

5

jξ = )(

3

2)(

11

2)(

02

)(

20

)(

02

)(

20

2

)(4)(
j

jjjjj

ξ

λλλλλ ++−−+
,                                  (13.f) 

Where

)(

11

jλ = ][][ )(

2
1 1

)(

1

)( j
L

q

W

r

jj

qr
rqg ξξ −−¦¦ −⋅

= =
,                                 (13.g) 

)(

20

jλ = ¦ ¦ −⋅
= =

L

q

W

r

jj

qr
qg

1 1

)(

1

)( ][ ξ 2,                             (13.h) 

)(

02

jλ = ¦ ¦ −⋅
= =

L

q

W

r

jj

qr
rg

1 1

)(

2

)( ][ ξ 2, (13.i)

(4)  The orientation 

)(

6

jξ = )(

02

)(

20

)(

111tan
2

1
jj

j

λλ

λ

−
−

.                                    (13.j)  

At time t=imT,  and  in Eq.(12) are given by  

= )()( imj

,                                                (14.a)  

= )(im ,                                            (14.b) 

   

where )()( imj  and )()1( imj+
 are image feature parameter vectors in the win-

dow j and j+1 shown in Fig. 3. )()0( im , )()1( im  and )()2( im  can be calculated 

for j=0,1,2 in Eq.(13.a)~(13.j). 

4. Goal Trajectory Generation Using Image Feature Parameters 

In this paper, a CCD camera is used to detect the image feature parameters of 
the curved line, which are used to generate on line the goal trajectory. The se-
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quences of trajectory generation are shown in Fig. 4. Firstly, the end-effecter is 
set to the central point of the window 0 in Fig. 4(a). At time t=0, the first image 
of the curved line is grasped and processed, and the image feature parameter 
vectors )0()0( , )0()1(  and )0()2(  in the windows 0,1,2 are computed respec-

tively. From time t=mT to t=2mT, the end-effecter is only moved by 
)0( = )0()1( – )0()0( . At time t=mT, the second image of the curved line is 

grasped and processed, the image feature parameter vector )()2( m  shown in 

Fig. 4(b) is computed. From t=2mT to t=3mT, the end-effecter is only moved by 
)(m = )0()2( )0()1(− . At time t=imT, (i+1)th image is grasped and processed, the 

image feature parameter vector )()2( im  shown in Fig. 4(c) is computed. From 

t=imT to t=(i+1)mT, the end-effecter is only moved by 

)(im = ])1[(])1[( )0()1( mimi −−− .

u

v
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5. Neural Network-Based Learning Control System 

5.1 Off-line learning algorithm 

In this section, a multilayer NN is introduced to learn 
6
( ). Figure 5 shows the 

structure of NN which includes the input level A, the hidden level B, C and the 
output level D. Let M, P, U, N be the neuron number of the levels A, B, C, D, 
respectively, g=1,2, ,M, l=1,2, ,P, j=1,2, ,U and i=1,2, ,N. Therefore, NN 
can be expressed as

Input

layer A

Hidden

layer B

Hidden

layer C

Output

layer D

.

.

.

.

.

.

.

.

.

..

.
.
.
.

1

N

1

U

j

1

P

1

g

M

l i

AB
glw BC

ljw CD
jiw

.

....
. ...

Figure 5.  Neural network (NN) structure             
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Figure 6.  Off-line learning of NN     
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where R

mx ,
R

m
y  and 

R

m
z  (m=g, l, j, i; R=A, B, C, D) are the input, the output and 

the bias of a neuron, respectively. 
AB

gl
w ,

BC

lj
w  and CD

lj
w  are the weights between 

A

g
y  and 

B

l
x ,

B

l
y  and C

j
x ,

C

j
y  and 

D

i
x , respectively. The sigmoid function of NN 

is defined by 

)(xf = x

x

e

e
β

β

−

−

+

−

1

1
,                                           (16)  

where  is a real number which specifies the characteristics of )(xf . The learn-

ing method of NN is shown in Fig. 6, and its evaluation function is defined as  

¦ −−=
−

=

1

0

)]()([)]()([
2

1 S

k
nr

T

nrf
kkkk

S
E ,                  (17)  

where )(k
r

 and )(k
n

∈R6×1 are the increments of the robot joint angle vec-

tor and the output vector of the neural network, respectively. The positive in-
teger S is the number of the learning samples )(k , )(k

r
, )()( kj , )(k  for the 

end-effecter to move along the curved line from the initial position I to the goal 
position G. )(k , )(k

r
, )()( kj  and )(k  are off-line measured in advance, re-

spectively. )(k , )()( kj  and )(k  are divided by their maximums before input-

ting to NN, respectively. CD

ji
w  of NN is changed by

CD

ji

f

f

CD

ji
w

E
w

∂

∂
−= η , j=1,2, ,U; i=1,2, ,N ,      (18.a)  

where CD

ji
w  is an increment of CD

ji
w ,

f
η  is a learning rate of NN. From 

Eqs.(15)~(17), we obtain   

=
∂

∂
CD

ji

f

w

E
)]()([ kk

niri
θθ −−− f' C

j

D

i
yx )( ,   (j=1,2, ,U; i=1,2, ,N),                 (18.b)  

where )(k
ri

θ  and )(k
ni

θ are the ith element of )(k
r

 and )(k
n

, respec-

tively. AB

gl
w  and BC

lj
w  of NN are changed by the error back-propagation algo-

rithm. Here, the detailed process of error back propagation is omitted. 
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The present learning control system based on NN is shown Fig. 7. The initial 
AB

gl
w , BC

lj
w  and CD

ji
w  of NN are given by random real numbers between –0.5 and 

0.5. When NN finishes learning, the reference joint angle )1( +k
n

 of the robot is 

obtained by 

¿
¾
½

−⋅⋅⋅===

+=+

)1,,1,0(,)0(),0()0(

),()()1(

Sk

kkk

nn

nnn

d
,                                   (19) 

where d∈R6×1 is an output of NN when )0( , )0()0(  and )0(  are used as ini-

tial inputs of NN. The PID controller )(zcG  is used to control the joint an-

gles of the robot. 

5.2 On-line learning algorithm 

For the visual feedback control system, a multilayer neural network NNc is in-
troduced to compensate the nonlinear dynamics of the robot. The structure 
and definition of NNc is the same as NN, and its evaluation function is defined 
as

Ec(k) = eT(k)We(k)                                      (20)  

where e(k)∈R6×1 is an input vector of )(
c

zG , and W∈R6×6 is a diagonal weighting 

matrix. CD

ji
w  of NNc is changed by 

CD

ji

c

c

CD

ji
w

E
w

∂

∂
−= η , j=1,2, ,U; i=1,2, ,N ,       (21.a)  

where CD

ji
w  is an increment of CD

ji
w , and cη  is a learning rate. From 

Eqs.(15)~(17), we have 

=
∂

∂
CD

ji

c

w

E
ie− wif' C

j

D

i
yx )(   (j=1,2, ,U; i=1,2, ,N),   (21.b)  

where ie  is the ith element of e(k), and wi is the ith diagonal element of W. AB

gl
w

and BC

lj
w  of NNc are changed by the error back-propagation algorithm, the pro-

cess is omitted. 
The initial AB

gl
w , BC

lj
w  and CD

ji
w  of NNc are given by random number between –0.5 

and 0.5. )1( +k
n

, )(k
n

 and )1( −k
n

 are divided by their maximums before in-

putting to NNc, respectively. K is a scalar constant which is specified by the 
experiments. While NNc is learning, the elements of e(k) will become smaller 
and smaller.
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Figure 7. Block diagram of learning control system for a robot with visual feedback 
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In Fig. 7, I is a 6×6 unity matrix. )]([ k ∈R6×1 and )]([ k
r
J = )(/)]([ kk ∂∂ ∈R6×6 

are the forward kinemics and Jacobian matrix of the end-effecter (or the rigid 
tool), respectively. Let )(k

t
p = ,[

1t
p ,

2t
p ··· T

t
p ],

6
 be a position/orientation vector 

which is defined in O and corresponds to the tip of the rigid tool, we have 

pt(k) = )]([ k ,                                          (22.a) 

)(k
t

•

p = )()]([ kk
r

•

⋅J .                                (22.b)  

The disturbance observer is used to compensate the disturbance torque vector 
)(k ∈R6×1 produced by the joint friction and gravity of the robot. The PID 

controller )(z
c
G  is given by

)(z
c
G = P

K + I
K

z

z

−1
+ D
K ( 11 −− z ),                      (23)  

where
P

K ,
I

K  and 
D

K ∈R6×6 are diagonal matrices which are empirically de-

termined.

5.3 Work sequence of the image processing system 

The part circled by the dot line shown in Fig. 7 is an image processing system. 
The work sequence of the image processing system is shown in Fig. 8. At time 
t=imT, the CCD camera grasps a 256-grade gray image of the curved line, the 
image is binarizated, and the left and right terminals of the curved line are de-

tected. Afterward, the image parameters )0()0( , )0()1(  and )0()2( or )()2( im are

computed using Eqs. (13.a)~(13.j) in the windows 0,1,2 shown in Figs. 4(a)~(c). 
Furthermore, in order to synchronize the image processing system and the ro-
bot joint control system, the 2nd-order holder )(

2
z

h
G  in Section 5.4 is intro-

duced. )()0( im , )()1( im  and )(im  are processed by )(
2

z
h
G , and their discrete time 

values )()0( k , )()1( k  and )(k  are solved at time t=kT.

5.4 Synchronization of image processing system and robot control system 

Generally, the sampling period of the image processing system is much longer 
than that of the robot control system. Because the sampling period of 

)()0( im , )()1( im  and )(im  is m times of the sampling period of )(k , it is difficult to 

synchronize )()0( im , )()1( im , )(im  and )(k  by zero-order holder or 1st-order hol-

der. Otherwise, the robot will drastically accelerate or decelerate during the vi-
sual feedback control. 
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In this section, )()0( im  and )()1( im  are processed by the 2nd-order holder )(
2

z
h
G .

For instance, )( j

l
ξ  is the lth element of )( j , and )( j

l
ξ  is compensated by the 2nd-

order curved line from t=imT to t= (i+1)mT. At time t=kT, )()( kj  (j=0,1) is calcu-

lated by 

)( j (k)= +)()( imj { −+
−

])1[(
)(2 )(

2

2

mi
m

imk j })()( imj ,  (0�k–im<m/2),                   (24.a) 

)( j (k)= )()( imj + { −+
¿
¾
½

¯
®
­ +−

− ])1[(
])1([2

1 )(

2

2

mi
m

mik j })()( imj , (m/2�k–im<m).             (24.b) 
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Figure 8. Work sequence of image processing   
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6. Experiments 

In order to verify the effectiveness of the present approach, the 6 DOF indus-
trial robot is used to trace a curved line. In the experiment, the end-effecter (or 
the rigid tool) does not contact the curved line. Figure 9 shows the experimen-
tal setup. The PC-9821 Xv21 computer realizes the joint control of the robot. 
The Dell XPS R400 computer processes the images from the CCD camera. The 
robot hand grasps the rigid tool, which is regarded as the end-effecter of the 
robot. The diagonal elements of 

P
K ,

I
K  and 

D
K  are shown in Table 1, the con-

trol parameters used in the experiments are listed in Table 2, and the weight-
ing matrix W is set to be an unity matrix I.
Figures 10 and 11 show the position responses (or the learning results of NN 
and NNc) )(

1
kp

t
, )(

2
kp

t
 and )(

3
kp

t
 in the directions of x, y and z axes of O. )(

1
kp

t
, )(

2
kp

t

and )(
3

kp
t

 shown in Fig. 10 are teaching data. Figure 11 show the trace responses 

after the learning of NNc. Figure 12 shows the learning processes of NN and 
NNc as well as the trace errors. Ef converges on 10-9 rad2, the learning error E*

shown in Fig. 12(b) is given by E*= NkE
k

c
/])([

1N

0

¦
−

=

, where N=1000. After the 10 tri-

als (10000 iterations) using NNc, E* converges on 7.6×10-6 rad2, and the end-
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effecter can correctly trace the curved line. Figure 12(c) shows the trace errors 
of the end-effecter in x, y, z axis directions of O , and the maximum error is 
lower than 2 mm. 

Table 1.  Diagonal ith element of
P

K ,
I

K  and
D

K

Table 2.  Parameters used in the experiment 

0,63
0,64
0,65
0,66
0,67
0,68

0 1 2 3 4 5

Time  s

P
o

si
ti

o
n

  
m

-0,15

-0,1

-0,05

0

0,05

0 1 2 3 4 5

Time  s

P
o
si

ti
o
n
  

m

(a)Position pt1 in x direction (b)Position pt2 in y direction 

i
P

K

N m/rad 

I
K

N m/rad 

D
K

N m/rad 

 1   25473 0.000039 0.0235 

 2    8748 0.000114 0.0296 

 3   11759 0.000085 0.0235 

 4     228 0.004380 0.0157 

 5    2664 0.000250 0.0112 

 6     795 0.001260 0.0107 

Neuron numbers 

of NN and NNc

M=18, P=36 

U=72, N=6

Sampling period T =5 ms, mT=160 ms  

Control

Parameters
fη =0.9, cη =0.9, =1,

K=100,  S=732

Window size L=256, W=10
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Figure 10. The teaching data for the learning of NN 
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Figure 11.  The trace responses after the learning of NNc (after 10th trials) 
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Figure 12. Learning processes and trace errors 

7. Conclusions 

In this chapter, a visual feedback control approach based on neural network is 
presented for a robot with a camera installed on its end-effecter to trace an ob-
ject in an unknown environment. Firstly, the necessary conditions for mapping 
the image features of the object to be traced to the joint angles of the robot are 
derived. Secondly, a method is proposed to generate a goal trajectory of the 
robot by measuring the image feature parameters of the object to be traced. 
Thirdly, a multilayer neural network is used to learn off-line the mapping in 
order to produce on line the reference inputs for controlling the robot. 
Fourthly, a multilayer neural network-based learning controller is designed for 
the compensation the nonlinear robotic dynamics. Lastly, the effectiveness of 
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the present approach is verified by tracing a curved line using a 6 DOF indus-
trial robot with a CCD camera installed on its end-effecter. 
Through the above research, the following conclusions are obtained: 

1. If the mapping relations between the image feature domain of the object 
and the joint angle domain of the robot are satisfied, NN can learn the 
mapping relations. 

2. By computing the image feature parameters of the object, the goal trajec-
tory for the end-effecter to trace the object can be generated. 

3. The approach does not necessitate the tedious CCD camera calibration 
and the complicated coordinate transformation. 

4. Using the 2nd-order holder and the disturbance observer, the synchroni-
zation problem and the influences of the disturbances can be solved. 

The above research is supported by the Natural Science Foundation of China 
(No. 60375031) and the Natural Science Foundation of Guangdong (No. 36552), 
the authors expresses their heartily thanks to the Foundations. 
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