
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 3

Successive Linearization of Heat and Mass Transfer
over an Unsteady Stretching Permeable Surface in the
Presence of Thermal Radiation and a Variable Chemical
Reaction

Stanford Shateyi and Sandile S. Motsa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/51228

1. Introduction

Theoretical studies of viscous incompressible flows over continuous stretching surfaces
through a quiescent fluid have their origins in the pioneering work of Crane 1970. These
types of flows occur in many industrial processes, such as in glass fibre production, food
stuff processing reactor fluidization, and transpiration cooling. The prime aim in almost
every extrusion is to maintain the surface quality of the extrudate. The pioneering works of
Crane have been extended by many researchers to explore various aspects of the flow and
heat and mass transfer occurring in infinite domains of the fluid surrounding the stretching
sheet, [Liu and Andersson 2008; Abd EL-Aziz 2009; Abel and Mahesha 2008; Shateyi and
Motsa 2009; Ziabakhsh et al. 2010; Motsa and Sibanda 2011], among others.

Many practical diffusive processes involve molecular diffusion of species in the presence of
chemical reaction within and/or at the boundary. Chemical reaction can tremendously alter
diffusion rates in convective heat and mass transfer processes. The effect of a chemical
reaction depends on whether the reaction is heterogenous or homogeneous, as well as
whether it occurs at an interface or a single phase volume reaction. We call a reaction of
order n, if the reaction rate is proportional to the nth power of the concentration. The study
of chemical reaction processes is useful for improving a number of chemical technologies
such as polymer production and food processing. Various aspects of this problem have been
studied by some researchers (Alam et al. 2009; Shateyi et al. 2010; Cortel 2007; Alam and
Ahammad 2011; Afify and Elgazery 2012).

There has been much interest in the study of radiative heat transfer flows due to the effect
of radiation on performance of many engineering systems applying electrically conducting
fluids. Many engineering processes such as nuclear plants, gas turbines, satellites and space
vehicles, take place at high temperatures and thus the effect of thermal radiation cannot be
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ignored. Recently, flow, heat and/or mass transfer with thermal radiation have been studied
by (Abd El-Aziz 2008; Shateyi and Motsa 2009; Pal and Mondal 2011).

In this chapter, we explore the semi analytic solution of the non linear heat and mass
transfer over an unsteady stretching permeable surface with prescribed wall conditions in the
presence of thermal radiation and a non-uniform chemical reaction. The proposed method
of solution employed in this work is based on an extension of the quasilinearization method
(QLM) that was initially proposed in Bellman and Kalaba (1965). This method employs
Taylor series linearization to convert a nonlinear two-point boundary value problem into an
iterative scheme of solution which can be integrated using various numerical techniques.
Mandelzweig and his co-workers (see for example, Krivec et al. 1991; Mandelzweig 2005;
Krivec and Mandelzweig 2008, among others) have recently extended the application of
the QLM to a wide variety of nonlinear BVPs and established that the method converges
quadratically. The integration of the QLM iteration scheme is performed using the
Chebyshev spectral collocation method Canuto et al. 1988. Several studies (see for example,
Awad et al.2011; Makukula et al. 2010a; Makukula et al. 2010b; Makukula et al. 2010c;
Makukula et al. 2010d; Motsa 2011; Motsa and Shateyi 2010; Motsa 2011 and Shateyi Motsa
2011) have shown that blending the Chebyshev spectral method with iteration schemes like
the QLM results in a highly accurate method which can be used to solve a wide variety of
nonlinear boundary value problems.

In this work we present new iteration schemes which are based on systematically extending
the QLM. The objective of this work is to demonstrate that the convergence rate of the QLM
can be significantly improved by using the proposed iterations schemes.

2. Mathematical formulation

The study investigates the unsteady laminar boundary layer in a quiescent viscous
incompressible fluid on a horizontal sheet which comes through a slot at the origin. At
t = 0, the sheet is stretched with velocity Uw(x, t) along the x-axis, keeping the origin in the
fluid of ambient temperature T∞ and concentration C∞. The RosseLand approximation is
used to describe the radiative heat flux in the energy equation. We also assume a variable
chemical reaction.

The velocity, temperature and concentration fields in the boundary layer are governed by the
two dimensional boundary layer equations for mass, and chemical species given by

∂u

∂x
+

∂v

∂y
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u
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∂2u

∂y2
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+ u
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+ v

∂C

∂y
= Dm

∂2C

∂y2
− Kl(C − C∞)n, (4)

Where u, v are the velocity components in the x and y directions,respectively, ν is the
kinematic viscosity,g is the acceleration due to gravity, ρ is the density of the fluid, T and T∞
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are the temperature of the fluid inside the thermal boundary layer and of the fluid in the free
stream, respectively while C and C∞ are the corresponding concentrations, α0 is the thermal
diffusivity, cp is the specific heat at constant pressure, Dm is the mass diffusivity and qr is the
radiative heat flux.

The boundary conditions are given as follows:

u = Uw, v = Vw, T = Tw, C = Cw at y = 0, (5)

u → 0, T → T∞, C = C∞, as y → ∞. (6)

The stretching velocity Uw(x, t), the surface temperature Tw(x, t) and the surface
concentration are assumed to be of the form: Uw(x, t) = a/(1 − ct), Tw(x, t) = T∞ + bx/(1 −
ct), Cw(x, t) = C∞ + bx/(1 − ct), where a, b and c are positive constants with (ct<1), and
both a and c have dimension reciprocal time.

The radiative heat flux qr is described by the Rosseland approximation such that

qr = −
4σ∗

3K

∂T4

∂y
, (7)

where σ∗ and K are the Stefan-Boltzman constant and the mean absorption coefficient,
respectively. Following Chamkha (1997), we assume that the temperature differences within
the flow are sufficiently small so that the T4 can be expressed as a linear function after using
Taylor series to expand T4 about the free stream temperature T∞ and neglecting higher order
terms. This results in the following approximation

T4
≈ 4T3

∞
T − 3T4

∞
(8)

Using equations (7) and (8) in equation (3) we obtain

∂qr

∂y
= −

16σ∗T3
∞

3K

∂2T

∂y2
.

2.1. Similarity solutions

Now we introduce the following dimensionless functions of f , θ and φ and similarity
variable η (Ishak et al., 2009).

η =

(

Uw

νx

)
1
2

y, ψ = (νxUw)
1
2 f (n), θ(n) =

T − T∞

Tw − T∞

, φ =
C − C∞

Cw − C∞

, (9)

where

ψ(x, y, t) is a stream function defined as u =
∂ψ
∂y and v = −

∂ψ
∂x
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The governing equations are then transformed into a set of ordinary equations and associated
boundary conditions as given below:

f ′′′ + f f ′′ − ( f ′)2
− A( f ′ +

η

2
f ′′) = 0, (10)

(3R + 4)θ′′ + 3RPr[ f θ′ − 2 f ′θ −
A

2
(3θ + ηθ′)] = 0, (11)

φ′′ + Sc[ f φ′
− 2 f ′φ −

A

2
(3φ + ηφ′)]− ScKφn = 0, (12)

where A=c/a is the component that measures the unsteadiness, Pr = ν/α is the Prandtl
number, R = 16σT3

∞/3Kk is the radiation parameter, Sc = ν/Dm is the Schmidt number and
K = Kl(Cw − C∞)n−1x/Uw(x, t) is the local chemical reaction parameter.

The boundary conditions are:

f (0) = fw, f ′(0) = 1, φ(0) = 1, θ(0) = 1, (13)

f ′(∞) = 0, θ(∞) = 0, φ(∞) = 0, (14)

with fw < 0 and fw > 0 corresponding to injection and suction, respectively.

3. Method of solution

To solve the governing system of equations (12 - 14) we observe that equation (10) depends
on f (η) only. Thus, it can be solved independently of the other equations in the system. The
solution for f (η) is then substituted in equations (11) and (12) which can also be solved for
θ and φ separately. We begin by obtaining the solution for f (η). We assume that an estimate
of the the solution of (10) is fγ. For convenience, we introduce the following notation

f0 = f , f1 = f ′, f2 = f ′′, f3 = f ′′′. (15)

In terms of the new variables (15), equation (10) can be written as

L[ f0, f1, f2, f3] + N[ f0, f1, f2, f3] = 0, (16)

where

L[ f0, f1, f2, f3] = f3 − A( f1 +
η

2
f2), N[ f0, f1, f2, f3] = f0 f2 − f 2

1 (17)

We introduce the following coupled system,

L[ f0, . . . , f3] + N( f0,γ, . . . , f3,γ) +
3

∑
s=0

( fs − fs,γ)
∂N

∂ fs
( f0,γ, . . . , f3,γ) + G( f0, . . . , f3) = 0, (18)

G( f0, . . . , f3) = N( f0, . . . , f3)− N( f0,γ, . . . , f3,γ)−
3

∑
s=0

( fs − fs,γ)
∂N

∂ fs
( f0,γ, . . . , f3,γ). (19)
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Note that when equations (18) and (19) are added, we obtain equation (16). Separating the
known and unknown variables, equation (18) can be written as

L[ f0, . . . , f3] +
3

∑
s=0

fs
∂N

∂ fs
( f0,γ, . . . , f3,γ) + G( f0, . . . , f3) = 0 (20)

where

H( f0,γ, . . . , f3,γ) =
3

∑
s=0

fs,γ
∂N

∂ fs
( f0,γ, . . . , f3,γ)− N( f0,γ, . . . , f3,γ) (21)

We use the quasilinearization method (QLM) of Bellman and Kalaba (1965) to solve equation
(20). The QLM determines the (i + 1)th iterative approximation fs,i+1 as the solution of the
differential equation

L[ f0,i+1, . . . , f3,i+1] +
3

∑
s=0

fs,i+1
∂N

∂ fs
( f0,γ, . . . , f3,γ) + G( f0,i, . . . , f3,i) (22)

+
3

∑
s=0

( fs,i+1 − fs,i)
∂G

∂ fs
( f0,i, . . . , f3,i) = H( f0,γ, . . . , f3,γ).

Separating the unknowns fs,i+1 from the known functions fs,i yields

L[ f0,i+1, . . . , f3,i+1] +
3

∑
s=0

[

∂N

∂ fs
( f0,γ, . . . , f3,γ) +

∂G

∂ fs
( f0,i, . . . , f3,i)

]

fs,i+1 = (23)

3

∑
s=0

fs,i
∂G

∂ fs
( f0,i, . . . , f3,i)− G( f0,i, . . . , f3,i) + H( f0,γ, . . . , f3,γ),

subject to

f0,i+1(0) = 0, f1,i+1(0) = 1, f1,i+1(∞) = 0, (24)

We assume that fs,0 is obtained as a solution of the linear part of equation (20) given by

L[ f1,0, . . . , f3,0] +
3

∑
s=0

fs,0
∂N

∂ fs
( f0,γ, . . . , f3,γ) = H( f0,γ, . . . , f3,γ), (25)

which yields the iteration scheme

L[ f0,r+1, . . . , f3,r+1] +
3

∑
s=0

fs,r+1
∂N

∂ fs
( f0,r, . . . , f3,r) = H( f0,r, . . . , f3,r). (26)
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It can easily be shown that equation (26) is the standard QLM iteration scheme for solving
(16).

When i = 0 in (23) we can approximate fs as

fs ≈ fs,1. (27)

Thus, setting i = 0 in (23) we obtain

L[ f0,1, . . . , f3,1] +
3

∑
s=0

[

∂N

∂ fs
( f0,γ, . . . , f3,γ) +

∂G

∂ fs
( f0,0, . . . , f3,0)

]

fs,1 =

3

∑
s=0

fs,0
∂G

∂ fs
( f0,0, . . . , f3,0)− G( f0,0, . . . , f3,0) + H( f0,γ, . . . , f3,γ), (28)

which yields the iteration scheme

L[ f0,r+1, . . . , f3,r+1] +
3

∑
s=0

[

∂N

∂ fs
( f0,r, . . . , f3,r) +

∂G

∂ fs
( f

(0)
0,r+1, . . . , f

(0)
3,r+1)

]

fs,r+1 =

3

∑
s=0

f
(0)
s,r+1

∂G

∂ fs
( f

(0)
0,r+1, . . . , f

(0)
3,r+1)− G( f

(0)
0,r+1, . . . , f

(0)
3,r+1) + H( f0,r, . . . , f3,r) (29)

where f
(0)
s,r+1 is the solution of

L[ f
(0)
0,r+1, . . . , f

(0)
3,r+1] +

3

∑
s=0

f
(0)
s,r+1

∂N

∂ fs
( f0,r, . . . , f3,r) = H( f0,r, . . . , f3,r). (30)

The general iteration scheme obtained by setting i = m (m ≥ 2) in equation (23), hereinafter
referred to as scheme-m is

L[ f0,r+1, . . . , f3,r+1] +
3

∑
s=0

[

∂N

∂ fs
( f0,r, . . . , f3,r) +

∂G

∂ fs
( f

(m−1)
0,r+1 , . . . , f

(m−1)
3,r+1 )

]

fs,r+1 =

3

∑
s=0

f
(m−1)
s,r+1

∂G

∂ fs
( f

(m−1)
0,r+1 , . . . , f

(m−1)
3,r+1 )− G( f

(m−1)
0,r+1 , . . . , f

(m−1)
3,r+1 ) + H( f0,r, . . . , f3,r) (31)
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where f
(m−1)
s,r+1 is obtained as the solution of

L[ f
(m−1)
0,r+1 , . . . , f

(m−1)
3,r+1 ] +

3

∑
s=0

[

∂N

∂ fs
( f0,r, . . . , f3,r) +

∂G

∂ fs
( f

(m−2)
0,r+1 , . . . , f

(m−2)
3,r+1 )

]

f
(m−1)
s,r+1 =

3

∑
s=0

f
(m−2)
s,r+1

∂G

∂ fs
( f

(m−2)
0,r+1 , . . . , f

(m−2)
3,r+1 )− G( f

(m−2)
0,r+1 , . . . , f

(m−2)
3,r+1 ) + H( f0,r, . . . , f3,r) (32)

The iterative schemes (26) and (31) can easily be solved using numerical methods such
as finite differences, finite elements, Runge-Kutta based shooting methods or collocation
methods. Several studies, (see for example, Awad et al.2011; Makukula et al. 2010a;
Makukula et al. 2010b; Makukula et al. 2010c; Makukula et al. 2010d; Motsa 2011; Motsa
and Shateyi 2010; Motsa 2011 and Shateyi Motsa 2011), have shown that the Chebyshev
spectral collocation (CSC) method is very robust in solving iterations schemes of the type
discussed in this work. The CSC method is based on approximating the unknown functions
by the Chebyshev interpolating polynomials in such a way that they are collocated at the
Gauss-Lobatto points defined as

zj = cos
π j

M
, j = 0, 1, . . . , M. (33)

where M is the number of collocation points used (see for example Canuto et al.
1988, Trefethen 2000). For the convenience of numerical implementation, the domain [0, ∞)
is truncated as [0, Le] where Le is chosen to be a sufficiently large real number. In order to
implement the method, the physical region [0, Le] is transformed into the region [−1, 1] using
the mapping

η = Le
z + 1

2
, −1 ≤ z ≤ 1 (34)

The derivatives of f at the collocation points are represented as

dn f

dηn
=

M

∑
k=0

D
2
kj f (zk), j = 0, 1, . . . , M (35)

where D = 2D/Le, with D being the Chebyshev spectral differentiation matrix (see for
example, Canuto et al. 1988, Trefethen 2000). Thus, applying the CSC on the functions fs we
obtain

fs = D
s
F (36)

where F = [ f0(z0), f0(z1), . . . , f0(zM−1), f0(zM)]T .

Thus, applying the spectral method, with derivative matrices on equation (26) and the
corresponding boundary conditions gives the following matrix system

CrFr+1 = Hr (37)
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with the boundary conditions

f0,r+1(zM) = 0,
M

∑
k=0

DMk f0,r+1(zk) = 0,
M

∑
k=0

D0k f0,r+1(zk) = 1, (38)

where

Cr = D
3 +

(

a2,r −
A

2
ηd

)

D
2 + (a1,r − A)D + a0,r. (39)

The vector Hr corresponds to the function H when evaluated at the collocation points and
as,r (s = 0, 1, 2) is a diagonal matrix corresponding to the vector of ai,r which is defined as

as,r =
∂N

∂ fs
(40)

and ηd is an (M + 1) × (M + 1) diagonal matrix of η. The boundary conditions (38) are
imposed on the first, Mth and (M + 1)th rows of Cr and Hr to obtain
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Hr(zN−2)

0
0



















(41)

Starting from a suitable initial guess f0,0(η), the iteration scheme (41) can be used to
iteratively give approximate solutions of the governing equation (10). The application of
the CSC on the general iteration schemes (31) and (32) can be done in a similar manner for
any value of m.

4. Results and discussion

In this section we present the results for the governing physical parameters of interest.
In applying the Chebyshev spectral method described in the previous section M = 100
collocation points were used. The value of Le for numerically approximating infinity was
chosen to be Le = 20. In order to assess the accuracy of the proposed iteration methods,
the present numerical results were compared against results generated using the MATLAB
routine bvp4c. For illustration purposes, results are presented for the first three iterations
schemes obtained by setting m = 0, 1, 2.

In Table 1 we give a comparison between the results of scheme-0 against results generated
using bvp4c. We observe that the QLM results converge very rapidly to the bvp4c results.
It takes only three or four iterations to achieve an exact match that is accurate to order 10−8

for the selected parameters of A. We also observe in this table that stretching increases the
absolute values of the skin friction.
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iter. A = 0 A = 0.5 A = 1 A = 1.5 A = 2

1 -1.000000000 -1.166255146 -1.317872855 -1.455413216 -1.581765234

2 -1.000000000 -1.167211134 -1.320520326 -1.459662889 -1.587362322

3 -1.000000000 -1.167211513 -1.320522065 -1.459665895 -1.587366111

4 -1.000000000 -1.167211515 -1.320522065 -1.459665895 -1.587366111

5 -1.000000000 -1.167211517 -1.320522065 -1.459665895 -1.587366111

bvp4c -1.000000000 -1.167211517 -1.320522065 -1.459665895 -1.587366111

Table 1. Comparison of the bvp4c values of f ′′(0) at different values of A for Scheme-0 (QLM)

iter. A = 1 A = 2 A = 3 A = 4

Scheme-0

1 -1.215913833273934 -1.508012270141307 -1.750647835613831 -1.963118416905635

2 -1.315711765474042 -1.586229425552791 -1.816415412229436 -2.022058898487201

3 -1.320495400678920 -1.587365641569519 -1.816850675892770 -2.020976536521761

4 -1.320522063086358 -1.587366111631070 -1.816849325533777 -2.020950025633773

5 -1.320522064602713 -1.587366111619306 -1.816849325468859 -2.020950025517386

6 -1.320522064602713 -1.587366111619306 -1.816849325468859 -2.020950025517386

Scheme-1

1 -1.315711765474042 -1.586229425552791 -1.816415412229436 -2.022058898487201

2 -1.320522063086358 -1.587366111631070 -1.816849325533777 -2.020950025633773

3 -1.320522064602713 -1.587366111619306 -1.816849325468859 -2.020950025517386

4 -1.320522064602713 -1.587366111619306 -1.816849325468859 -2.020950025517386

5 -1.320522064602713 -1.587366111619306 -1.816849325468859 -2.020950025517386

6 -1.320522064602713 -1.587366111619306 -1.816849325468859 -2.020950025517386

Scheme-2

1 -1.315240928788073 -1.585906261457893 -1.816236653612290 -2.021499891062478

2 -1.320522059975388 -1.587366111619187 -1.816849325470411 -2.020950025519239

3 -1.320522064602713 -1.587366111619306 -1.816849325468859 -2.020950025517386

4 -1.320522064602713 -1.587366111619306 -1.816849325468859 -2.020950025517386

5 -1.320522064602713 -1.587366111619306 -1.816849325468859 -2.020950025517386

6 -1.320522064602713 -1.587366111619306 -1.816849325468859 -2.020950025517386

Table 2. f ′′(0) at different values of A for scheme-0,1,2
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iter. A = 1 A = 2 A = 3 A = 4

Scheme-0

1 0.104608231328780 0.079353841477999 0.066201489855027 0.057831608611751
2 0.004810299128671 0.001136686066515 0.000433913239423 0.001108872969816
3 0.000026663923793 0.000000470049787 0.000001350423911 0.000026511004376
4 0.000000001516355 0.000000000011764 0.000000000064918 0.000000000116388
5 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
6 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000

Scheme-1

1 0.004810299128671 0.001136686066515 0.000433913239423 0.001108872969816
2 0.000000001516355 0.000000000011764 0.000000000064918 0.000000000116388
3 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
4 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
5 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
6 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000

Scheme-2

1 0.005281135814640 0.001459850161413 0.000612671856568 0.000549865545092
2 0.000000004627325 0.000000000000119 0.000000000001552 0.000000000001853
3 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
4 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
5 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000
6 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000

Table 3. f ′′(0) at different values of A

Tables 2 and 3 give the results of the comparison of the values of f ′′(0) between three levels of
the iteration schemes and their corresponding errors. In computing the errors it was assumed
that the result corresponding to the 6th iteration is the converged solution. From numerical
experimentation it was found that all the iteration schemes would have completely converged
to a fixed value by the time the 5th or 6th iteration is used. The results from Table 2 and
3 clearly indicate that the the convergence to the solution progressively improves when you
use the higher level iteration schemes. For instance, from Table 3 we note that it takes only 2
iterations to achieve full convergence in scheme-1 and scheme-2 compare to four iterations in
scheme-0. This results demonstrates the improvement offered by the proposed new iteration
scheme on the original quasilinearization method which corresponds to scheme-0.

In Figs. 1 - 7 we give illustrations showing the effect of the governing parameters on the
flow properties. Unless otherwise specified, the sample illustrations were generated using
R = 1, Pr = 0.7, Sc = 1, K = 1, A = 1. In Figs. 1 - 3 we show the velocity, temperature
and concentration profiles for different values of A. In Fig. 1 we observe that the velocity
f ′(η) is a monotonically decreasing function of the stretching parameter A. From Figs. 2
and 3, we observe that both the temperature and concentration distributions are reduced as
values of the stretching parameter increase. The velocity, thermal and solutal boundary layer
thicknesses all decrease as the values of A increase. As a consequence the transition from
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laminar flow to turbulent flow is delayed. This shows that stretching of surfaces can be used
as a flow stabilizing mechanism.

A = 0, 0.5, 1, 1.5, 2
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Figure 1. The variation of A on the flow velocity, f ′(η)

A = 0, 0.5, 1, 1.5, 2
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Figure 2. Effect of A on the fluid temperature, θ(η)
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A = 0, 0.5, 1, 1.5, 2
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Figure 3. Effect of A on the fluid concentration, φ(η)

Fig. 4 depicts the effects of the Prandtl number on the temperature distributions. We observe
that as Pr increases, the temperature profiles and the thermal boundary layer thickness
become smaller. This is because when Pr increases, the thermal diffusivity decreases, leading
to the decrease of the energy transfer ability that decreases the thermal boundary layer.
The effect of thermal radiation R on the temperature field is shown in Fig. 5. From this
figure we see that the effect of increasing the thermal radiation parameter R is to reduce the
temperature profiles.

Pr = 0.2, 0.7, 2, 5
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Figure 4. Temperature profiles for various values of Pr

Fig. 6 shows the dimensionless concentration profiles for different values of the Schmidt
number Sc. We clearly see from this figure that the concentration boundary layer thickness
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decreases as the Schmidt number Sc increases. This phenomenon occurs because when
Sc, the mass diffusivity decreases and the fluid becomes heavier. The effects of chemical
reaction K on the concentration distributions is displayed in Fig. 7. It should be noted
here that physically positive values of K implies the destructive reaction. We observe in this
figure that an increase in the chemical reaction leads to the decrease in the concentration can
profiles. This shows that diffusion rate can be tremendously altered by chemical reaction.
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Figure 5. Effect of R on the fluid temperature, θ(η)

Sc = 0.2, 0.6, 1, 10
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Figure 6. Effect of Sc on the solute concentration, φ(η)
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K = 0, 1, 5, 10
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Figure 7. The solute concentration profiles for various values of K.

5. Conclusion

In this chapter we explored the semi-analytic solution of the non linear heat and mass
transfer flow over an unsteady stretching permeable surface with prescribed wall conditions
in the presence of thermal radiation and non-uniform chemical reaction. From the present
investigation we may conclude the following:

1. Blending the QLM scheme with Chebyshev spectral collocation method leads to more
accurate and faster convergence scheme.

2. Radiation significantly affect the fluid flow properties.

3. The diffusion rate is significantly altered by chemical radiation.

4. The velocity, temperature and concentration profiles decrease with increasing values of
the stretching parameter A.
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