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1. Introduction 

The experience of applying evolutionary computing to time series describing local physical 

problems has benefited the modelling culture by showing that many different mathematical 

formulae can be produced to describe the same problem. This experience brings into the 

focus the roles of pluralism in the modelling culture as opposed to searching for the best 

model, where physical problems provide relevance and context to the choice of modelling 

techniques. Both of these roles are often overlooked and do not directly influence research 

agenda. Although the focus of this paper is on evolutionary computing, it also promotes a 

pluralistic modelling culture by studying other modelling techniques, as well as by keeping 

the role of physical problems in the foreground. 

Estimating suspended sediment loads is a problem of practical importance and includes 

such problems as changing courses in rivers, loss of fertile soil, filling reservoirs and impacts 

on water quality. The study of these problems in the short-run are referred to as sediment 

transport and erosion for those in the long-run. Past empirical capabilities remain invaluable 

but are not sufficient on their own as management and engineering solutions often require 

an insight into the problem. Empirical knowledge has been incorporated into the body of 

distributed modelling techniques giving rise to sophisticated modelling software tools but 

their applications require a great deal of resources. There remains a category of problems, 

often referred to as time series analysis, which uses the sequences of time variations and 

predicts the future values. This category of models provides useful information to 

management of local problems. For instance, such models may be used to schedule 

dredging requirements or other maintenance activities. Time series analysis is developing 

into local management tools and it is a focus of this chapter. 
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The aim of this chapter is to predict suspended sediment load of a river into the future. 

Besides the traditional empirical Sediment Rating Curve (SRC), there are several strategies 

for analysing such time series and evolutionary computing is one of Artificial Intelligence (AI) 

approaches, which broadly include capabilities for searching and recognising patterns 

among others. This chapter also employs Artificial Neural Network (ANN), which is 

another AI approach. Yet another strategy is to regard time series as outcomes of many 

random drivers and this assumption is supported by a whole body of probabilistic 

approaches, where this chapter uses Multi-Linear Regression (MLR) analysis to model the 

same data. Over the past few decades, research has increasingly focused on the application 

of deterministic chaos (or chaos theory or dynamic systems) showing that many of 

apparently randomly varying system behaviours can be explained by deterministic chaos. 

The concept behind this modelling strategy is that the particular data can largely be 

explained by deterministic behaviour, where in time the system evolves asymptotically 

towards an attractor. Its random-looking variations are assumed to be an internal feature of 

the system and depending on its initial conditions, its state under a certain range may 

become highly erratic but with a predictable behaviour. Evidently, none of these strategies 

are identical and different models rarely produce identical results. This chapter therefore 

compares the performance of these modelling strategies for solving an engineering problem. 

The study employs 26 years of the Mississippi River data recorded at Tarbert + RR Landings 

and involve both flows and suspended sediment load. The river discharges about 200 

million metric tons of suspended sediment per year to the Gulf of Mexico, where it ranks 

about sixth in the world today. 

2. Literature review  

Sediment Rating Curve (SRC) is an empirical approach used by practitioners in the 

engineering studies of sediment and erosion problems. The log linear rating curve method 

has been used widely and Sivakumar and Wallender (2005) outline the many flaws 

associated with this technique, including the lack of fit due to missing variables (e.g. Miller, 

1951), retransformation bias (e.g. Ferguson, 1986), and non-normality of the error 

distribution (e.g. Thomas, 1988). According to Sivakumar and Wallender (2005), the 

technique has been modified including, among others, use of separate curves for different 

seasons (Miller, 1951), stratifying the data according to the magnitude of flow and applying 

a separate curve for each stratum (Glysson, 1987), and use of a single multivariate model 

instead of multiple rating curves (Cohn et al., 1992). Sivakumar and Wallender (2005) argue 

that there is not a simple (and universal) ‘water discharge-suspended sediment 

concentration-suspended sediment load’ relationship. A brief overview of past studies is as 

follows. 

Kisi, et al (2008) review the application of ANN and neuro-fuzzy techniques to time series 

analysis of sediment loads at various timescales, uncertainty in the data. Variations of these 

techniques have also been reported by Jain (2001), Tayfur (2002), Cigizoglu (2004), Kisi 

(2004), Raghuwanshi et al. (2006), Cigizoglu & Kisi (2006). Other studies on the application 
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of ANN to suspended sediment include that by Wang et al (2008), who applied ANN to 

derive the coefficients of regression analysis for their SRC model. 

Aytek and Kishi (2008) used the GP approach to model suspended sediment for two stations 

on the Tongue River in Montana, USA, and indicate that the GP formulation performs quite 

well compared to sediment rating curves and multi linear regression models. 

Chaotic signals have also been identified in time series of suspended sediment loads by 

Sivakumar and Jayawardena (2002, 2003), Farmer and Sidorowich, 1987). The outcomes 

revealed the usefulness of these methods towards an effective prediction capability.  

Overall, a general understanding of the analysis of suspended sediment load is yet to 

emerge and one way to gain an insight into the problem is to carry out inter-comparison 

studies of the performance of a host of models applied to diversity of rivers of different 

shapes and sizes. 

3. Study area and data  

3.1. Understanding the problem  

Sediment transport is concerned with entrained soil materials carried in water by erosion on 

the catchment and within channels. Sediment particles are categorised as follows (i) the 

saltation load (not discussed here); (ii) bedload (not discussed here) and (iii) suspended load 

including clay (< 62μm in particle diameter), silt and sand. Suspended load (both as “fine-

grained sediment” and “wash load”) is directly a result of the turbulence in water and forms 

a large proportion of the transported load, where the turbulence is a measure of the energy 

in the water to carry the load. 

Sediment discharge is a measure of the mass rate of sediment transport at any point in space 

and time and determines whether the load is being transported or deposited. The whole 

process comprises soil erosion, sediment transport and sediment yield, where the deposited 

load delivered to a point in the catchment is referred to as sediment yield and is expressed 

as tons per unit area of the basin per year, measured at a point. Estimation of sediment yield 

(and soil erosion) is essential for management but these and mathematical models are used 

to gain an insight into the underlying processes. Sediment yield is estimated by (i) direct 

measurement, (ii) using local time series models to predict future states; (iii) using 

mathematical models to study jointly both erosion and sediment processes.  

Suspended sediment forms most of the transported load and can be affected by many 

parameters including rainfall, land use pattern, slope, soil characteristics, e.g. soil moisture 

content but their considerations lead to distributed models, which are complex. Recorded 

suspended sediment derives distributed models by serving them as boundary conditions or 

input sources but their inherent information is not tapped on. There is a case for local 

models to study the information contained in recorded sediment loads alone in terms of 

flow and sediment hydrographs. This chapter is concerned with the study of the suspended 

load of a river, as discussed below. 



 
Genetic Programming – New Approaches and Successful Applications 258 

 

Figure 1. Mississippi River Station at Tarbert + RR Landings 

(http://pubs.usgs.gov/circ/circ1133/geosetting.html). 

3.2. Study area 

The flow–sediment time series data of a Mississippi river Station is used in the study, the 

location of which is shown in Figure 1. The gauge is situated at Tarbert + RR Landings, LA 

(USGS Station no. 07373291, latitude 30°57′40″, longitude 91°39′52″) and it is operated by the 

US Geological Survey (USGS) – the location map is shown in Figure 1. The Mississippi River 

discharges an average of about 200 million metric tons of suspended sediment per year to 

the Gulf of Mexico and to the ocean. 

3.3. Review of data records 

Daily suspended sediment measurements for the above station have been made available by 

the USGS from April 1949. The data used herein span over a period of about 26 years 

(amounting to 9496 datapoints) starting on October 1, 1949. Figures 2 show the variation of 

the daily suspended sediment and stream flow series observed at the above station. 

Of the 26 water-years of the data sample of daily records of flow and suspended sediment 

(9496 datapoints), the first 25 water years of data (9131 datapoints) were used to train the 

models and the remaining 365 datapoints of daily records were used for testing. The 

statistical parameters of stream flow and sediment concentration data are shown in Table 1. 

These results show that the overall contribution of the datapoints in the test period is 

average; its individual characteristics in terms of kurtosis show the annual hydrographs to 

be less peaked and more flat but at the same time, the suspended sediment load during the 

year is significantly high. Thus, the minimum values during this year were significantly 

above the average but persistent and though less dynamic. 
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Figure 2. Variation of Daily Suspended Sediment and Flow Data in the Mississippi River Basin 
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 Training set Testing set All Dataset 

Data Type 

Suspended 

Sediment 

(ton/day) 

Discharge 

(m3/sec) 

Suspended 

Sediment 

(ton/day) 

Discharge 

(m3/sec) 

Suspended 

Sediment 

(ton/day) 

Discharge 

(m3/sec) 

Datapoints 9131 9131 365 365 9496 9496 

Mean 6.37E5 1.27E4 4.52E5 1.58E4 6.30E5 1.28E4 

St dev 6.30E5 7.60E3 2.53E5 7.80E3 6.21E5 7.60E3 

Max 4.97E6 4.25E4 1.22E6 3.45E4 4.97E6 4.25E4 

Min. 4.00E3 2.80E3 6.70E4 5.40E3 4.00E3 2.80E3 

CV 1.0 0.60 0.56 0.49 0.99 0.59 

Skew 1.78 0.95 0.10 0.51 1.82 0.93 

Kurt 3.98 0.34 -0.98 -0.85 4.20 0.27 

*Data = Number of Data; Std = Standard Deviation; Max = Maximum Value; Min = Minimum Value; CV = Coefficient 

of Variation; Skew = Skewness; Kurt = Kurtosis 

Table 1. Statistical Parameters for Dataset from the Mississippi River Basin 

3.4. Overview of the models 

The sediment rating curve method is the traditional method for converting measured flows 

to predict suspended sediment load and this paper aims to test the performance of 

evolutionary computing models but uses a host of other techniques for the inter-comparison 

purpose. These models are outlined in this section but evolutionary computing is explained 

in more detail. Their underlying notion is that past values contain a sufficient amount of 

information to predict the future values and a systematic way of representing this notion is 

purported in Table 2 in terms of a selection of models. These models, in essence, are 

reminiscent of regression analysis but GEP, ANN and MLR models approach the problem in 

their own individual ways to unearth the structure of the information inherent in time 

series. Notably, the SRC model is expressed by Model 1 and the deterministic chaos model 

is expressed by Model 0. These models will all be evaluated by using coefficient of 

Correlation (CC), Relative Absolute Errors (RAE) and Root Mean Square Errors (RMSE). 

Model Input variables Output variables The Structure 

Model 0 St-1, St-2… St Chaos 

Model 1 Qt St ANN, SRC 

Model 2 Qt , St-1 St GEP, ANN, MLR 

Model 3 Qt ,Qt-1 St GEP, ANN, MLR 

Model 4 Qt , Qt-1 , St-1 St GEP, ANN, MLR 

Model 5 Qt,Qt-1,Qt-2 St GEP, ANN, MLR 

Model 6 Qt,Qt-1,Qt-2,St-1 St GEP, ANN, MLR 

Where Qt and St represent respectively flow and suspended sediment load at day t. 

Table 2. Modelling Structures of the Selected Modelling Techniques  
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3.4.1. Sediment rating curve 

Sediment rating-curve is a flux-averaged relationship between suspended sediment, S, and 

water discharge, Q, expressed as a power law in the form of: =
bS aQ , where a and b are 

coefficients. Values of a and b for a particular stream are determined from data via a linear 

regression between (log S) and (log Q). The SRC model is represented in terms of Model 1 in 

Table 2. For more critical views on this model, references may be made Kisi (2005) and 

Walling (1977), among others. 

3.4.2. Evolutionary computing 

Evolutionary computing techniques apply optimisation algorithms as a tool to facilitate the 

mimicking of natural selection. A building block approach to generalised evolution driven 

by natural selection is yet to be presented, although Khatibi (2011) has outlined a rationale 

for it. Traditional understanding of natural selection for biological species is well developed, 

according to which the process takes place at the gene level of all individuals of all species 

carrying hereditary material for reproduction by inheriting from their parents and by 

passing on a range of their characteristics to their offspring. The process of reproduction is 

never a perfect copying process, as mutation may occur from time to time in biological 

reproductions involving the random process of reshuffling the genes during sexual 

reproduction. The paper assumes preliminary knowledge on genes, chromosomes, gene 

pool, DNA and RNA, where the environment also has a role to play. The environment for 

the production of proteins and sexual reproduction is different than the outer environment 

for the performance of the individual entities supported by the proteins or produced by 

sexual reproduction. The outer environment is characterised by (i) being limited in 

resources, (ii) having no foresight, (iii) organisms tend to produce more offspring than can 

be supported, a process that is driven by positive feedback loops, and (iv) there is a process 

of competition and selection. Some of these details are normally overlooked or simplified in 

evolutionary computing and therefore the paper stresses the point that natural selection 

takes place at the gene level and this is not directly applicable to that at the social level.  

Facts on natural selection are overwhelming but there are myths as well, e.g. the myth of 

“the survival of the fittest” and this term is widely used in evolutionary computing. 

Although the fittest has a selective advantage to survive, this is not a guarantee for the 

survival in the natural world. An overview of the dynamics of natural selection in an 

environment is that (i) the environment can only support a maximum population of certain 

size, but there is also a lower size at the critical mass below which a population is at risk of 

losing its viability; (ii) there is a process of reproduction, during which natural selection 

operates at the gene level, although there are further processes operating at the individual 

levels beyond the direct reach of natural selection (e.g. interactions among the individuals 

catered for by other mechanisms or each individual is under selection pressure by the 

environment); (iii) the process of reproduction is associated with mutation, which gives rise 

to the production of gene pools. 
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A great deal of the above overview has been adopted in evolutionary computing, the history 

of which goes back to the 1960s when Rechenberg (1973) introduced evolution strategies. 

The variants of this approach include genetic algorithm (Holland, 1975), evolutionary 

programming (Fogel et al, 1966), genetic programming (Koza, 1992) and Gene Expression 

Programming (GEP), Ferreira (2001a). This paper uses the latter approach, which in a simple 

term is a variation of GP but each of these techniques have differences with one another. 

These techniques have the capability for deriving a set of mathematical expressions to 

describe the relationship between the independent and dependent variables using such 

functions as mutation, recombination (or crossover) and evolution.  

This chapter is concerned with GEP and one of the important preliminary decisions in its 

implementations is to establish the models represented in Table 2 (Models 2-6). There is no 

prior knowledge of the appropriateness of any of these models and therefore this is normally 

fixed in a preliminary modelling task through a trial-and-error procedure. Whichever the 

model choice (Model 2 – Model 6 or similar other ones), each implementation of GEP builds 

up the model in terms of the values of the coefficients (referred to as terminals) and the 

operations (functions) through the procedure broadly outlined in Figure 3.  

 

Figure 3. Simplified Outline of Implementation of Evolutionary Programming Models 

The working of a gene expression program depicted in Figure 3 is outlined as follows. A 

chromosome in GEP is composed of genes and each gene is composed of (i) terminals and 

(ii) functions. The gene structures and chromosomes in GEP are illustrated for the solution 

that is obtained for the dataset used in this study (see Section 4.2). The terminals as their 

names suggest are composed of constants and variables and the functions comprise 

mathematical operations, as shown by (4.a)-(4.f). 
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Figure 4. Expression Trees – (a) typical expression tree; (b) the selected GEP model in this study 

As the term terminal suggests, it comprises a set of values at the tail-ends of the genes of the 

chromosomes and these are made meaningful by the functions making up the other 

component of the genes of the chromosomes. In GEP, these are represented by a bilingual 

notation called Karva language of (i) genetic codes, which are not deemed necessary for a 

description here and (ii) expression trees (or parse trees), as illustrated by Figure 4.a and the 

recommended solution is shown in Figure 4.b, which is transcribed by Equation (4) in 

Section 4.2. The initial chromosomes of the initial population are no different than the 

solution shown in Figure 4.b but their difference is that the composition of each of the initial 

chromosomes is selected often in random and then GEP is expected to improve them 

through evolution by the strategy of selections, replication and mutation but there are other 

facilities that not mentioned facilitating a more robust solution and these include inversion, 

transposition and recombination. The improvements are carried out through selection from 

one generation to another and this is why this modelling strategy is called evolutionary 

computation. The main strength of this approach is that it does not set up any system of 

equation to predict the future but it evaluates the fitness of each chromosome and selects 

from those a new population with better performance traits. 

The GEP employed in this study is based on evolving computer programs of different sizes 

and shapes encoded in linear chromosomes of fixed lengths, Ferreira, 2001a; Ferreira, 

(2001b). The chromosomes are composed of multiple genes, each gene encoding a smaller 

subprogram. Furthermore, the structural and functional organisation of the linear 
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chromosomes allows the unconstrained operation of important genetic functions, such as 

mutation, transposition and recombination. It has been reported that GEP is 100-10,000 

times more efficient than GP systems (Ferreira, 2001a; Ferreira, 2001b) for a number of 

reasons, including: (i) the chromosomes are simple entities: linear, compact, relatively small, 

easy to manipulate genetically (replicate, mutate, recombine, etc); (ii) the parse trees or 

expression trees are exclusively the expression of their respective chromosomes; they are 

entities upon which selection acts, and according to fitness, they are selected to reproduce 

with modification. 

3.4.3. Artificial Neural Networks (ANNs) 

Whilst evolutionary programming emulates the working of Nature, ANNs emulate the 

workings of neurons in the brain. Both the brain and ANNs are parallel information 

processing systems consisting of a set of neurons or nodes arranged in layers but this is 

where the parallel ends. The actual process of information processing in the brain is a topical 

research issue but the drivers of ANNs are polynomial algebra and there is no evidence that 

the brains of humans, monkeys or any other animals employ algebraic computations such as 

optimisation methods. Although there is a great incentive to understand the working of the 

brain, it is not imperative to be constrained by it and the use of algebra in ANNs is not 

criticised here but awareness is raised as these two processes are not identical. 

The ANN theory has been described in many books, including the text by Rumelhart et al. 

(1986). The application of ANNs has been the subject of a large number of papers that have 

appeared in the recent literature. There are various implementations of ANNs but the type 

used in this study is a Multi-Layer feedforward Perceptron (MLP) trained with the use of 

back propagation learning algorithm with the following functions: (i) the input layer accepts 

the data, (ii) intermediate layer processes them, and (iii) the output layer displays the 

resultant outputs. The number of hidden layers is decided in a preliminary modelling 

process by finding the most efficient number of layers through a trial-and-error procedure. 

Each neuron in a layer is connected to all the neurons of the next layer, and the neurons in 

one layer are not connected among themselves. All the nodes within a layer act 

synchronously.  

This study implements the ANN models in terms of Models 1-6 of Table 2 and Figure 5 

shows one of the implementation selected. For each of these models, the data passing 

through the connections from one neuron to another are multiplied by weights that control 

the strength of a passing signal. When these weights are modified, the data transferred 

through the network changes; consequently, the network output also changes. The signal 

emanating from the output node(s) is the network's solution to the input problem. 

In the back-propagation algorithm, a set of inputs and outputs is selected from the training 

set and the network calculates the output based on the inputs. This output is subtracted 

from the actual output to find the output-layer error. The error is back propagated through 

the network, and the weights are suitably adjusted. This process continues for the number of 
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prescribed sweeps or until a prescribed error tolerance is reached. The mean square error 

over the training samples is the typical objective function to be minimized. After training is 

complete, the ANN performance is validated. Depending on the outcome, either the ANN 

has to be retrained or it can be implemented for its intended use. 

 

Figure 5. Implementation of the ANN Models and its Various Layers 

3.4.4. Multi Linear Regression (MLR) 

An overview of the data presented in Figure 2 invokes the thought that other than the 

annual trend within the data, the underlying process is probably random and a more 

rational way of explaining the data would be through probabilistic approaches. One such 

method applied to the selected data is the Multi-Linear Regression (MLR) model. It fits a 

linear combination of the components of a multiple signals x (e.g. recorded flows and 

suspended sediment timeseries as defined by the Models 2-6 in Table 2) to a single output 

signal y, as defined by (1.a) (e.g. predicted suspended sediment load) and returns the 

residual, r, i.e. the difference signal, as defined by (1.b): 

 
=

= +
0

N

i i
i

y b a x  (1a) 

 = − − − −1 1 2 2 ...r y a x a x b  (1b) 

Where ix  is defined in Table 2 in terms of various models and ia  values are called 

regression coefficients, which are estimated by using the least square or any other similar 

method. In this study, the coefficients of the regressions were determined using the least 

square method. 

3.4.5. Chaos theory 

A cursory view of the suspended sediment record of the Mississippi River in Figure 2 

provides no clue to a strategy for its underlying patterns, if any, although annual trend 
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superimposed on random variation may be an immediate reaction of a hydrologist. Another 

strategy to explore such possible patterns is through the application of chaos theory, more 

specifically through the “phase-space diagram” as shown in Figure 6 for this river data. A 

point in the phase-space represents the state of the system at a given time. The narrow dark 

band in the figure signifies strong determinism but its scattered band signifies the presence 

of noise and therefore there is a possibility to explain this set of data by chaos theory. The 

dark band signifies convergence of the trajectories of the phase-space with a fractal 

dimension towards the attractor of the data, where the dynamics of the system can be 

reduced to a set of deterministic laws to enable the prediction of its future states. 

 

Figure 6. Phase-space Diagram of Daily Suspended Sediment Data in the Mississippi River Basin  

Chaos theory is a method of nonlinear time series analysis and involves a host of methods, 

essentially based on the phase-space reconstruction of a process, from scalar or multivariate 

measurements of physical observables. This method is implemented in terms of Model 0 of 

Table 2. It is largely based on the representation of the underlying dynamics through 

reconstruction of phase-space, originally given by Takens, 1981. It is implemented in terms 

of two parameters of delay time and embedding dimension, according to which given a set 

of physical variables and an analytical model describing their interactions, the dynamics of 

the system can be represented geometrically by a single point moving on a trajectory, where 

each of its points corresponds to a state of the system. The phase-space diagram is 

essentially a co-ordinate system, whose coordinates represent the variables necessary to 

completely describe the state of the system at any moment.  

One difficulty in its construction is that in most practical situations, information on every 

variable influencing the system may not be available. However, a time series of a single 

variable may be available, which may allow the construction of a (pseudo) phase-space. The 

idea behind such a reconstruction is that a non-linear system is characterized by self-
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interaction, and a time series of a single variable can carry the information about the 

dynamics of the entire multi-variable system. The trajectories of the phase-space diagram 

describe the evolution of the system from some initial state, and hence represent the history 

of the system.  

This paper applies chaos theory to analyse the suspended sediment load of the Mississippi 

River data in a similar fashion to the other modelling strategies described above. It uses the 

local prediction method for training and testing, as outlined below, but it is a traditional 

practice to apply several methods to build evidence for the existence of chaotic signals in a 

particular data. These techniques employ the delay-embedding parameters of τ  and m, 

which are unknown a-priori. The following methods are used in this chapter: 

1. Average Mutual Information (AMI) is used to estimateτ ; and the minimization of the 

False Nearest Neighbours to do that of the optimal values for the embedding 

dimension, m.  

AMI (Fraser and Swinney, 1986) defines how the measurements ( )X t at time t  are 

related, from an information theoretic point of view, to measurements τ+( )X t  at time

τ+t . The average mutual information is defined as: 

 
τ

τ
τ τ

τ
+

+
= +

+


( ), ( )

( ( ), ( ))
( ) ( ( ), ( ))log[ ]

( ( )) ( ( ))X i X i

P X i X i
I P X i X i

P X i P X i
 (2a)  

where i is total number of samples. ( ( ))P X i and τ+( ( ))P X i  are marginal probabilities 

for measurements ( )X i and τ+( )X i , respectively, whereas ( ( ))P X i , τ+( ( ))P X i is their 

joint probability. The optimal delay time τ  minimises the function τ( )I  for τ=t , 

τ+( )X i adds the maximum information on ( )X i . 

The False Nearest Neighbours procedure (Kennel et al., 1992) is a method to obtain the 

optimum embedding dimension for phase-space reconstruction. By checking the 

neighbourhood of points embedded in projection manifolds of increasing dimension, 

the algorithm eliminates 'false Neighbours': This means that points apparently lying 

close together due to projection are separated in higher embedding dimensions. when 

the ratio between the number of false neighbours at the dimension m +1 and m is below 

a given threshold, generally smaller than 5%, each > +' 1m m is an optimal embedding. 

A poor reconstruction of few embedding states with several components is obtained if 

'm  is too large and the next analyses should not be performed. 

2. Correlation Dimension (CD) method: is a nonlinear measure of the correlation 

between pairs lying on the attractor. For time series whose underlying dynamics is 

chaotic, the correlation dimension gets a finite fractional value, whereas for stochastic 

systems it is infinite. For an m -dimensional phase-space, the correlation function ( )mC r  

is defined as the fraction of states closer than r  (Grassberger and Procaccia, 1983; 

Theiler, 1986): 
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where H is the Heaviside step function, 


iY  is the thi state vector, and N is the number of 

points on the reconstructed attractor. The number w is called Theiler window and it is 

the correction needed to avoid spurious results due to temporal correlations instead of 

dynamical ones. For stochastic time series ∝( ) m
mC r r  holds, whereas for chaotic time 

series the correlation function scales with r  as:  

 ∝ 2( ) D
mC r r  (2c) 

where D2, correlation exponent, quantifies the degrees of freedom of the process, and 

defined by: 

 
→

=2
0

ln ( )
lim

lnr

C r
D

r
 (2d)  

and can be reliably estimated as the slope in the ln ( )mC r vs. ln( )r  plot. 

3. Local Prediction Model: The author’s implementation of the local prediction method 

for deterministic chaos is details in Khatibi et al (2011) but the overview is that a correct 

phase-space reconstruction in a dimension m  facilitates an interpretation of the 

underlying dynamics in the form of an m-dimensional map, Tf ,according to 

 
+

= ( )j T T jY f Y  (2e) 

where jY  and 
+j TY  are vectors of dimension m, describing the state of the system at 

times j  (i.e. the current state) and +j T  (i.e. the future state), respectively. The problem 

then is to find an appropriate expression for Tf  (i.e. TF ). Local approximation entails the 

subdivision of the Tf domain into many subsets (neighbourhoods), each of which 

identifies some approximations TF ,valid only in that same subset. In other words, the 

dynamics of the system is described step-by-step locally in the phase-space. In this m-

dimensional space, prediction is performed by estimating the change of iX with time, 

which are observed values of discrete scalar timeseries, with delay coordinates in the m-

dimensional phase space. The relation between the points tX and 
+t pX  (the behaviour 

at a future time p on the attractor) is approximated by function F as: 

 
+

≅ ( )t p tX F X  (2f) 

In this prediction method, the change of tX  with time on the attractor is assumed the 

same as those of nearby points, =( , 1,2,..., )
hTX h n . Herein, 

+t pX  is determined by the dth 

order polynomial ( )tF X as follows (Itoh, 1995): 
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Using n of 
hTX  and 

+h pTX  for which the values are already known, the coefficients, f, are 

determined by solution of the following equation: 

 ≅X Af  (2h) 

where 

 
+ + +

=
1 2

( , ,..., )
p p n pT T TX X X X  (2i) 

     and 
− − − −

= 0 10 11 1( 1) 200 ( 1)( 1)...( 1)( , , ,..., , ,..., )m d m m mf f f f f f f  (2j) 

and A is the × +( )! ! !n m d m d  Jacobian matrix which in its explicit form is: 
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In order to obtain a stable solution, the number of rows in the Jacobian matrix A must 

satisfy: 

 +
≥

( )!

! !

m d
n

m d
 (2l) 

As stated by Porporato and Ridolfi (1997), even though F-values are first degree 

polynomials, the prediction is nonlinear, because during the prediction procedure every 

point ( )x t belongs to a different neighbourhood and is therefore defined by different 

expressions for f (Koçak,1997). 

4. Setting up models and preliminary results  

4.1. Performance of sediment rating curve 

The SRC model was implemented by using a simple least squares method leading to  

 S=13.2Q1.14 (3) 

The performance of this model is summarised in Table 3 and shown in Figure 7. Evidently, 

its performance is poor and the concern raised in the literature on this model is confirmed. 

This is a sufficient justification to search for reliable models. 

Model Input 
Training Testing

CC MAE RMSE CC MAE RMSE 

Model 1: Qt 0.76 2.62E5 4.11E5 0.82 3.89E5 4.86E5 

Table 3. Statistical Performance of the Sediment Rating Curve for the Training and Test Periods 
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Figure 7. Comparison of Observed Suspended Sediment with that Modelled by SRC; (a) hydrograph, 

(b) cumulative values 

4.2. Implementation of GEP 

The preliminary investigation for the construction of a relationship between flows and 

suspended sediment in GEP requires: (i) the setting of the functions, as discussed below; (ii) 

the fitness function; and (iii) a range of other parameters, but the default values, given in 

Table 11, were sufficient in this study. The following functions were investigated: 

 {+,-,×}  (4a)  
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 {+,-,×, x}  (4b)  

 {+,-,×, x2} (4c)  

 {+,-,×, x3} (4d)  

 {+,-,×, ex}  (4e)  

 {+,-,×, ln(x)}  (4f)  

The performance of each function was investigated in terms of CC, MAE, and RMSE and 

the results are shown in Table 4.a for the training periods. The results show that (i) the 

model performances are more sensitive to the choice of independent variables than the 

function choices; (ii) the models not including suspended sediment time series perform 

poorly; and (iii) the model performance is not overly sensitive to the choice of the 

function. Appendix I, Table 11 specifies the fitness function to be Root Relative Squared 

Errors (RRSE). 

Model  Qt Qt , St-1 Qt ,Qt-1 Qt , Qt-1 , St-1 Qt,Qt-1,Qt-2 Qt,Qt-1,Qt-2,St-1 

4.a): 

{+,-,×} 

CC 0.77 0.99 0.78 0.99 0.78 0.99 

MAE 2.79E5 3.88E4 2.78E5 3.25E4 2.79E5 3.37E4 

RMSE 4.13E5 8.43E4 4.07E5 7.74E4 4.05E5 7.98E4 

(4.b): 

{+,-,×, x} 

CC 0.77 0.99 0.77 0.99 0.77 0.99 

MAE 2.82E05 3.87E04 2.81E05 3.80E04 2.78E05 3.27E04 

RMSE 4.15E05 8.42E04 4.14E05 8.36E04 4.10E05 7.75E04 

(4.c): 

{+,-,×, x2} 

CC 0.77 0.99 0.78 0.99 0.78 0.99 

MAE 2.82E05 3.89E04 2.78E05 3.25E04 2.76E05 3.45E04 

RMSE 4.15E05 8.43E04 4.08E05 7.74E04 4.05E05 8.02E04 

(4.d): 

{+,-,×,x3} 

CC 0.77 0.99 0.77 0.99 0.77 0.99 

MAE 2.43E5 3.89E4 2.76E5 3.21E4 2.76E5 3.41E4 

RMSE 4.05E5 8.43E4 4.12E5 7.76E4 4.13E5 8.03E4 

(4.e): 

{+,-,×,ex} 

CC 0.77 0.99 0.77 0.99 0.77 0.99 

MAE 2.81E5 3.88E4 2.81E5 3.56E4 2.42E5 3.64E4 

RMSE 4.15E5 8.43E4 4.14E5 8.16E4 4.00E5 8.23E4 

(4.f): 

{+,-,×,ln(x)} 

CC 0.76 0.99 0.76 0.99 0.78 0.99 

MAE 2.56E5 3.89E4 2.64E5 3.25E4 2.60E5 3.21E4 

RMSE 4.09E5 8.42E4 4.10E5 7.72E4 4.02E5 7.72E4 

Table 4. a. Statistical Performance of a Selection of Functions for the Training Period 
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The performance of the GEP model is presented in Table 4.b, according to which there is not 

much to differences between performances of a number of the alternative models but (4.e) is 

selected in this study for the prediction purposes (its expression tree is given in Figure 4) 

and given below.  

 ௧ܵ = ௧ܵିଵ + 16.77ܳ௧ − 16.77ܳ௧ିଵ − 13.87 (5) 

 

Model  Qt Qt , St-1 Qt ,Qt-1 Qt , Qt-1 , St-1 Qt,Qt-1,Qt-2 Qt,Qt-1,Qt-2,St-1 

(4.a): 

{+,-,×} 

CC 0.83 0.99 0.84 0.99 0.84 0.99 

MAE 3.99E5 2.34E4 4.01E5 2.32E4 4.08E5 2.08E4 

RMSE 4.72E5 3.87E4 4.73E5 4.06E4 4.79E5 3.75E4 

(4.b) 

{+,-,×,x} 

CC 0.83 0.99 0.84 0.99 0.84 0.99 

MAE 3.99E05 2.33E04 4.01E05 2.28E04 3.96E05 2.34E04 

RMSE 4.69E05 3.87E04 4.70E05 3.08E04 4.65E05 4.04E04 

(4.c) 

{+,-,×,x2} 

CC 0.83 0.99 0.84 0.99 0.84 0.99 

MAE 4.00E05 2.35E04 4.01E05 2.32E04 3.79E05 2.31E04 

RMSE 4.69E05 3.86E04 4.71E05 4.06E04 4.67E05 3.96E04 

(4.d): 

{+,-,×,x3} 

CC 0.83 0.99 0.83 0.99 0.83 0.99 

MAE 3.87E5 2.35E4 4.00E5 2.10E4 3.96E5 2.06E4 

RMSE 4.94E5 3.87E4 4.75E5 3.81E4 4.69E5 3.69E4 

(4.e): 

{+,-,×,ex} 

CC 0.83 0.99 0.84 0.99 0.84 0.99 

MAE 3.98E5 2.35E4 3.97E5 2.06E4 3.80E5 2.17E4 

RMSE 4.67E5 3.86E4 4.66E5 3.64E4 4.84E5 3.73E4 

(4.e): 

{+,-,×,ln(x)} 

CC 0.83 0.99 0.83 0.99 0.83 0.99 

MAE 3.90E5 2.35E4 3.90E5 2.40E4 3.81E5 2.29E4 

RMSE 4.93E5 3.86E4 4.81E5 4.18E4 4.69E5 4.05E4 

Table 4 b. Statistical analysis of the estimated values for the test period 

Figure 8 compares modelled suspended sediment against their observed values, according 

to which the improvement by GEP is remarkable compared with SRC. Overall, the GEP 

modelling results follow observed values rather faithfully both in values and patterns, 

although there are still discrepancies in predicted values.  
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Figure 8. Comparison of Observed Suspended Sediment with that Modelled by GEP; (a) hydrograph, 

(b) cumulative values 

4.3. Implementation of ANN  

ANN implements another AI approach to the data represented in Figure 2 by another 

strategy, as described in Section 3.4.3. A preliminary investigation was carried out to make 

decisions on the choice of the models given in Table 2 (Models 1-6) and the ANN structure 

in terms of the neuron structure of the various layers. Table 5 presents model structures 

investigated. The preliminary modelling task also included a normalisation function for the 
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data. In this study, MATLAB was employed to develop the ANN model and its mapstd 

function was selected for the normalisation (further defaults values are given in Table 11). 

The investigated ANN model structures are defined in Table 5 and their results for both the 

training and testing periods are presented in Table 6. 

Model Identifier Model Inputs Training Testing

Model 1 Qt 2-5-1 2-5-1 

Model 2 Qt , St-1 3-5-1 3-5-1 

Model 3 Qt ,Qt-1 3-7-1 3-7-1 

Model 4 Qt , Qt-1 , St-1 4-6-1 4-6-1 

Model 5 Qt,Qt-1,Qt-2 4-9-1 4-9-1 

Model6 Qt,Qt-1,Qt-2,St-1 5-12-1 5-12-1 

Table 5. ANN Structure (number of nodes in layers) 

The performances of Models 1-6 are shown in Table 6 in terms of the values of three 

statistical indices of CC, MAE and RMSE. The performance of different models in terms of 

CC is remarkably high but Model 4 (Qt , Qt-1 , St-1) produce less deviations, which is selected 

for the final run. 

 Model Training Model Testing 

Model Inputs CC MAE RMSE CC MAE RMSE 

Qt 0.999 2.32E4 2.70E4 0.999 2.16E4 2.30E4 

Qt , St-1 0.999 2.59E4 3.12E4 0.996 2.17E4 2.64E4 

Qt ,Qt-1 0.999 2.00E4 2.79E4 0.981 4.19E4 4.84E4 

Qt , Qt-1 , St-1 0.999 2.01E4 2.51E4 0.998 1.18E4 1.37E4 

Qt,Qt-1,Qt-2 0.991 7.57E4 8.42E4 0.942 8.47E4 8.41E4 

Qt,Qt-1,Qt-2,St-1 0.995 5.66E4 6.42E4 0.976 4.63E4 5.47E4 

Table 6. Statistical Performance of the Selected Model Structure for the Training and Testing periods 

4.4. Implementation of the MLR model 

The MLR modelling strategy was implemented using Mathematica to derive regression 

coefficients for both periods of model fitting (training in the AI terminology) and testing 

using different statistical indices (CC, MAE and RMSE) given in Table 7, which shows that 

Model 2 (Qt , St-1) performs relatively better than the others. The regression equation 

suggested by this technique is given by: 

࢚ࡿ   = ࢚ࡽ0.24 + ૜૙.   (6)	૚ି࢚ࡿૢૢ
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 Model Training Model Testing 

Model Inputs CC MAE RMSE CC MAE RMSE 

Qt 0.77 2.41E5 4.05E5 0.833 3.85E5 4.96E5 

Qt , St-1 0.994 3.90E4 8.40E4 0.988 2.40E4 3.90E4 

Qt ,Qt-1 0.78 2.40E5 3.97E5 0.837 3.85E5 4.98E5 

Qt , Qt-1 , St-1 0.993 3.30E4 7.60E4 0.987 2.50E4 4.10E4 

Qt,Qt-1,Qt-2 0.779 2.40E5 3.95E5 0.840 3.84E5 4.96E5 

Qt,Qt-1,Qt-2,St-1 0.993 3.30E4 7.70E4 0.987 2.50E4 4.10E4 

Table 7. Statistical analysis of the estimated values for the train and test period 

4.5. Implementation of the deterministic chaos model 

A visual assessment for the existence of chaotic behaviour in the suspended sediment time 

series was presented in Figure 9, although it was not conclusive evidence but just invoked 

the possibility of the existence of a low-dimensional chaos. Traditionally, several techniques 

are employed to show the existence of low-dimensional chaos and below the results of the 

determination of the dimensions of the phase-state diagram are given: 

1. Using the AMI method, the delay time, is estimated for the data as the intercept with 

the x-axis of the curves by plotting the values of the AMI evaluated by the TISEAN 

package (Hegger et al., 1999) against delay times progressively increased from 1 to 100. 

The value of delay time is calculated as the first (local) minimum in the variation of 

AMI against varying delay time from 1 to 100 day. The results are shown in Figure (9.a), 

signifying a well-defined first minimum at delay time of 94 day. The delay time is then 

used in the determination of the sufficient embedding dimension using the percentage 

of false nearest neighbours for the time series. Figure (9.b) shows the results of the false 

nearest neighbours method for embedding dimension m, by allowing it to vary from 1 

to 40 and hence its value is 28. 

2. The presence of chaotic signals in the data is further confirmed by the correlation 

dimension method. Figure (10.a) shows the relationship between correlation function 

C(r) and radius r (i.e. lnC(r) versus ln(r)) for increasing m, whereas Figure (10.b) shows 

the relationship between the correlation dimension values D2(m) and the embedding 

dimension values m. It can be seen from Figure (10.b) that the value of correlation 

exponent increases with the embedding dimension up to a certain value and then 

saturates beyond it. The saturation of the correlation exponent is an indication of the 

existence of deterministic dynamics. The saturated correlation dimension is 3.5, 

(D2=3.5). The value of correlation dimension also suggests the possible presence of 

chaotic behaviour in the dataset. The nearest integer above the correlation dimension 

value (D2=4) is taken as the minimum dimension of the phase space. 
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3. Local prediction algorithm is used to predict suspended sediment time series. The 

procedure involves varying the value of the embedding dimension in a range, say 3-8, 

and estimating the CC and RMSE. The embedding function with the highest coefficient 

of correlation is selected as the solution. These are given in Table 8 for Mississippi River 

basin for the dataset with daily time interval, as well as a selection of other time steps. It 

shows that the best predictions are achieved when the embedding dimension is m=3 

produce the best results.  

 

Figure 9. Analysis of the Phase-Space Diagram of Suspended Sediment Data in the Mississippi River 

basin; (9.a): Average Mutual Information; (9.b) Percentage of false nearest neighbours  

m CC RMSE 

3 0.988 4.00E4 

4 0.988 4.10E4 

5 0.986 4.30E4 

6 0.985 4.60E4 

7 0.986 4.40E4 

8 0.987 4.20E4 

Table 8.  Local Prediction Using Different Embedding Dimension for the Mississippi River Dataset 

 

Figure 10. Correlation Dimension Method to Identify the Presence of Chaos Signal in the Dataset; 

(10.a): Convergence of logC(r) versus log(r); (10.b): saturation of correlation dimension D2(m) with 

embedding dimension m – this signifies chaotic signals in the Dataset 
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5. Inter-comparison of the models and discussion of results 

Table 9 summarises the performance and main features of each and all of the modelling 

strategies. The results presented so far confirms the experience that the traditional SRC 

model performs poorly and may only be used for rough-and-ready assessments. However, 

the results by the GEP model show that considerable improvements are likely by using it. 

This section also analyses the relative performance of the various modelling strategies. An 

overall visual comparison of all the results is presented in Figure 11, according to which 

GEP, ANN, MLR and local prediction models perform remarkably well and similar to one 

another. 

Model Performance Model Structure Outcome Comments 

SRC Poor Model 1 Eq. (3) For rough-and-ready estimates 

GEP Good Model 4 Eq. (4.e)  

ANN Good Model 4 → The model is bounded to software 

MLR Good Model 2 Eq. (6)  

Chaos Good Model 0 → Needs expertise to implement 

Table 9. Qualitative Overview of the Performances of Various Modelling Strategies 

 

Figure 11. Model Predictions for Suspended Sediment – Performances of GP, ANN, MLR, Chaos 

(closest to observed), and SRC (poor) 

Scatter diagrams are also a measure of performance. These are presented in Figures 12, 

which provides a quantitative basis that (i) SRC performs poorly and (ii) there is little to 

choose between the other models, although the performance of ANN stands out. 
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Figure 12. Scatter between Modelled and Observed Suspended Sediment Load 

The relative performances of GEP, ANN, MLR and local prediction models are not still 

visible from Figure 12 and therefore attention is focused on the differences between the GEP 

and ANN models with respect to their corresponding observed values. Figures 13 shows the 

respective results for both the GEP and ANN models and that of ANN is remarkable, as the 

differences are nearly zero. It may be reported that those of local prediction model and MLR 

are very close to that of GEP. 

 

Figure 13. Performances of the ANN and GEP Models – y-ordinates: observed – modelled values  

Due to the importance of the volume of transported sediment, the total predicted values are 

also compared with that of the observed values for the testing period and the results are 
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presented in Table 10. The table show that the traditional SRC model is in error by as much 

as nearly 50% but the other models perform well, among which the error in the performance 

of ANN is the lowest. It is also noted that, despite the good performance of ANN models, it 

is not transferrable, like the GEP models. The implementation of both ANN and 

deterministic chaos models require considerable expertise. 

Model 
Actual Val. 

(ton/year)

Estimation Val. 

(ton/year)
Dif. Val. (%) 

SRC 1.65E8 3.06E8 +46 % 

GEP 1.65E8 1.65E8 - 0.4 % 

ANN 1.65E8 1.64E8 - 0.3 % 

MLR 1.65E8 1.66E8 +0.6 % 

Chaos 1.65E8 1.66E8 +0.7 % 

Table 10. Total Volume of Suspended Sediment Predicted by each of the Models at Gauging Station for 

the Mississippi River basin 

The chapter presents the performance of the GEP model, as a variation of evolutionary 

programming, to forecast suspended sediment load of the Mississippi River, the USA. GEP 

is just a modelling strategy, where any other relevant strategy is just as valid if its 

performance is satisfactory. The overall results show that the information contained in the 

observed data can be treated by the following modelling strategies: 

1. Evolutionary computing: this produced a formula to forecast the future values in terms 

of recorded values of flows and suspended sediment. The results show that the strategy 

can be successful in identifying a number of different formulae. 

2. Emulation of the working of the brain: this successfully fitted an inbuilt polynomial to 

the data. It performs better than the other tested models but is not readily transferrable 

as it resides in particular software applications. 

3. Regression analysis: this produced a regression equation, according to which the future 

values would regress towards average recorded values, in spite of the presence of noise. 

4. Deterministic chaos: this produced future values of suspended sediment load by 

identifying an attractor towards which the system performance would converge even 

when the internal system behaves erratically. 

The only common feature in the above modelling strategies is their use of optimisation 

techniques. Otherwise, they are greatly different from one another but remarkably, they 

produce models fit for purpose and can explain the data. Undoubtedly, the data can be 

explained by many more sets of equations or by other possible strategies. This emphasises 

that models are just tools and the modelling task is to test the performance of the various 

models to add confidence to the results. Yet the poor performance of the traditional SRC 

underlines the fact that a good performance cannot be taken for granted. 

A review of the data (in Section 3) shows that the overall contribution of the datapoints in 

the test period is average; its individual characteristics in terms of kurtosis shows that the 

annual hydrographs are less peaked and more flat but at the same time the suspended 

sediment load during the year was significantly high. Thus, the minimum values during this 
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year were significantly above the average but persistent and though less dynamic. However, 

all the four modelling strategies coped well with these data peculiarities. If the data during 

the test period have a more pronounced feature not very common during the training 

period, the various local modelling strategies are likely to perform poorly in their own 

unique way and one of the greatest tasks of research in modelling should be investigations 

to understand these unique features and not to sweep them under the carpet. 

A general view projected by the investigation in this chapter is that the performance of 

modelling techniques must not be the only basis of practical applications. Equal attention 

must also be paid to the quality of the data used. If the data suffers from inherent 

uncertainties, no good model will compensate for the inherent shortfalls. 

6. Conclusion 

This chapter presents an investigation of the performance of the Gene Expression 

Programming (GEP) models of suspended sediment load of the Mississippi River, the USA. 

The study employs the Mississippi River data spanning 26 years involving both flows and 

suspended sediment load, of which the first 25 years of the data is used for training and the 

remaining for the prediction of one year into the future. This investigation concurs with the 

past findings that the performance of sediment rating curve, an empirical technique used 

widely in practice, can lead to gross errors. This alone underlines the value of other 

modelling techniques capable of producing reliable results with less than 1% of errors. 

The chapter promotes a pluralist culture of modelling and although presents the GEP model as 

the focus, it also presents the application of other techniques to model the same data. The other 

models comprise: artificial neural networks, multi-linear regression analysis and deterministic 

chaos. The chapter outlines the modelling strategy underlying each of these techniques and the 

results show in spite of their differences they produce similar results inflicting less 1% of 

errors. The lowest errors are associated with the artificial neural networks for this set of data 

but each of these techniques should be considered as reliable. The volume of sediment load is 

an important management parameter and the error associated with each model was estimated 

for each model. The results show that the traditional SRC model suffers from gross errors by as 

much as 50% but the other tested models perform well, among which the error in the 

performance of ANN is the lowest. ANN is noted for its good performance but with some 

drawback that these models are not transferrable, like the GEP models. It is noted that the 

implementation of ANN requires an ANN-platform for further modelling and deterministic 

chaos models require considerable expertise. 
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7. Appendix 

Symbols 

SRC Sediment Rating Curve

MLR Multi Linear Regression
Qt Discharge Series 
St Sediment Series

MLR Xi Term of Various Model 
 ai Values Called Regression 

Chaos 

Τ Delay Time

Cm(r) Fraction of states  

H Heaviside Step

N Number of Points 

D2 Correlation Exponent 

Yj Vectors of Dimension 

M Dimensional phase Step 

A Jacobean Matrix 

x(t) different neighbors 

R Radius Spherical 

C(r) Correlation Function 

Appendix I 

Table 11 Defaults Values Employed in Implementing GEP and ANN Models 

GP ANN

Training parameters Values Training parameters Values 

Crossover rate 0.1 Goal Mean Square Error 

Mutation rate 0.044 Epochs 10 - 100 

Inversion 0.1 Training algorithm Trainlm 

IS Transposition 0.1  

RIS Transposition 0.1  

1-point Recombination 0.3  

2-point Recombination 0.3  

Gene Recombination 0.1  

Gene Transposition 0.1  

Population (Chromosome) size 30  

Head Size 7  

Number of Genes 3  

Linking Function Addition  

Random Numerical Constants Yes  

Number of generation 1000  

Arithmetic functions (4.a)-(4.f)  

Fitness Function RRSE: RRSE: Root Relative Squared Errors 

Table 11. Default Parameter Values Used by the Model 
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