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1. Introduction 

The Ebro River is located in north-eastern Spain. After crossing the Catalan coastal 

mountain system, the Ebro reaches the sea. Along the lower part of the river, about 100 km 

from the mouth, there is a system of three reservoirs: Mequinenza (1500 hm3), Ribarroja (210 

hm3) and Flix (11 hm3). These reservoirs regulate the hydrologic regime of the lower part of 

the river until it reaches the sea. The Mequinenza and Ribarroja reservoirs were finished in 

the late 1960s (in 1966 and 1969, respectively), while the Flix reservoir was completed in 

1945. About 5 km downstream from the Flix reservoir is the Ascó nuclear power plant, 

which began its activity in December 1984 [1]. 

Ascó Nuclear Power Station, located on the Ebro River in Spain (Figure 1), takes river water 

for cooling purposes. The temperature of discharged water must be less than 13 ºC, however 

five kilometers downstream a water temperature of nearly 14ºC was estimated and such an 

anomaly was reported to the nuclear center. A detailed analysis shows the relationship 

between water temperature variation and the presence of a cascade dam system upstream of 

the Ascó Nuclear Power Station. Water temperature decreases downstream in the outlets of 

cascade dam systems [1]. During the winter period there also exists thermal stratification 

within the river, whereby water temperatures near deep intake areas are considerably less 

than the ambient temperature. Such a situation impacts water taken for cooling purposes by 

Ascó Nuclear Power Station. 

Throughout the years, the human being has made use of fluvial ecosystems. Some actions 

have caused changes in the thermal regimes of rivers (eg.  [2 ,3]). 
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Reservoirs and the use of water for cooling are the most important sources of water 

temperature modifications caused by humans. The use of water for cooling, usually by 

power plants, causes the water to become warmer [4].  This is often called “thermal 

pollution”. 

Reservoirs can cause various effects, depending on various factors such as the climate, the 

size of the impoundment, the residence time, the stability of the thermal stratification and 

the depth of the outlet [5]. Due to thermal stratification occurs, the water from deep-release 

reservoirs is cooler in the summer and warmer in the winter than it would be without the 

reservoir [6,7]. Water diversions can also alter water temperature regimes because they 

reduce discharge, which causes water temperature range to increase throughout the year [8]. 

Irrigation is also known to decrease discharge and increase water temperature [9]. 

In order to preserve the ecological balance it is very important to have a continuous 

inspection of water quality in that portion of the river. Freshwater organisms are mostly 

ectotherms and are therefore largely influenced by water temperature. Some of the expected 

consequences of a water temperature increase are life-cycle changes [4, 10], and shifts in the 

distribution of species with the arrival of allochthonous species [11, 12] and the expansion of 

epidemic diseases [13] as a possible result. Also, aquatic flora and fauna depend on 

dissolved oxygen to survive and this water quality parameter is a function of water 

temperature as well. 

Water temperature variation analysis, in a river with a cascade dam, involves several 

hydrological and environmental aspects because of the dams impact on aquatic flora and 

fauna as shown by [14,15,16,1,17,18,19]. 

Because temperature is a water quality parameter that affects aquatic flora and fauna, it is 

important to have mathematical models which allow one to make estimations of water 

temperature behavior. These models are based on climatic data such as solar radiation, net 

radiation, relative humidity, air temperature, and wind speed. Accurate water temperature 

modeling may help diminish the environmental impact of increased water temperature on 

aquatic flora and fauna within the river. 

Genetic programming (GP) algorithms have been used to derive equations which estimate 

the ten minute average water temperature from known variables such as relative humidity, 

air temperature, wind speed, solar radiation, and net radiation  [20]. Only air temperature 

and relative humidity were associated with water temperature in some of the resulting 

equations, even though solar radiation is known to increase water temperature in rivers and 

ponds. 

A correlation analysis could prove the implicit participation of solar radiation as a variable 

in air temperature, even though an explicit solar radiation term does not appears in the 

equation. Solar radiation was assumed to be independent with respect to water temperature 

resulting from neglecting the lag time between a change in the solar radiation value and the 

corresponding change in water temperature, [1] estimated this lag time to be nearly 160 

minutes. By inputting data to both the genetic programming algorithm and multiple linear 
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regression (MLR) in this study, it was possible to identify the relative significance of each 

climatic variable in estimating water temperature. 

Tests were made from data collected at the Ribarroja Station, which is located on the Ebro 

River in Spain (Figure 1). 

 

Figure 1. Location of reservoirs and climatic stations on the Ebro River in Spain (Val, 2003 and 

google.com.mx) 

2. Methods 

2.1. Genetic programming 

Evolutionary Computation (EC) are learning, search and optimization algorithms based on 

the theories of natural evolution and genetic. The steps of the basic structure of this kind of 

algorithms are shown in Figure. First, an initial population of potential solutions is 

randomly created (in the case of a Simple Genetic Algorithm (SGA), the initial population is 

composed of binary individuals). Then, the individuals of this population are evaluated 

considering the problem to be solved (environment) where a fitness value is assigned to 

each individual depending on how close individuals are to the optimum. A new generation 

is created by selecting the fitter solutions of previous generation and then, genetic operators 

such as crossover and mutation (Alter P(t) of Figure 2) are applied to selected individuals in 

order to create a new population (offsprings) which improve their fitness values in 

comparison to previous generation. This new population is evaluated and selection, 

crossover and mutation are again applied. This process continues until a termination 

criterion is reached (this is commonly established as the maximum number of generation). 
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Genetic Programming (GP) is a class of Evolutionary Algorithm (EA) [ 21,22,23] where 

individuals in the population are computer programs, usually expressed as syntax trees or 

as corresponding expressions in prefix notation (see Figure 3).  

 

Figure 2. Evolution-based algorithm. 

 

Figure 3. Genetic programming representation: syntax tree, LISP or prefix notation, mathematical 

function and MATLAB program 
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As seen from Figure 3, individuals are created based on a function and terminal set 

according to the problem to be solved. A root node is generally a function selected 

randomly from the function set. Then, functions and terminals are chosen in order to form 

the syntax tree that represents an individual. It is important to set a maximum depth or 

maximum number of nodes, thus the size of the individuals can be control and avoid 

bloating. Bloat is the rapid growth of programs produced by genetic programming or 

variable coding heuristics. 

The fitness value of the population is usually calculated by running each individual with the 

problem input data, or testing data, and see how close the output of the program 

(individual) is to some desired (reference) output specified by the user.  

Each generation, fitter individuals are evolved by means of crossover and mutation. 

Crossover is a sexual genetic operator that takes two parent-individuals, randomly selects a 

node in each parent and exchanges the associated sub-branch starting from the selected 

node between the parents producing two new individuals. Due to GP uses variables 

individuals representation, the selected nodes for crossing over two individuals are different 

in each parent. Note that if the parents to crossover are identical, the new two offsprings are 

generally different to the parents because the node selected for crossing over is different in 

each paren. In contrast to Genetic Algorithms, when two identical parents are crossing over, 

the offsprings are similar to their parents because the crossing point is the same for both 

parents and they have the same length. 

Mutation is a asexual genetic operator that takes an individual, randomly selects a node and 

replaces the associated branch for a new branch generated based on the primitive set 

(functions and terminals sets). 

The application of evolutionary computing algorithms has expanded in the last few years to 

several engineering applications, particularly in regards to hydraulics and hydrological 

engineering. Examples include: studies of hydroinformatics by  [24,25]; studies in rainfall 

runoff modeling by [26-31] . The unit hydrograph for a typical urban basin was obtained by 

means of genetic programming  in [32]. 

A study of Chezy’s roughness coefficient by [33], who also uses an evolutionary polynomial 

regression in [34,35]. 

A deep percolation model  using genetic programming was obtained by [36].  Models 

related to sediments were obtained with genetic programming by [37].  

Evapotranspiration phenomena has been predicted by means of genetic programming [38]. 

The flood routing problem was analyzed by means of genetic programming by [39]  and the 

soil moisture too  [40]. 

In this work, a genetic programming algorithm operating in the MATLAB environment [41] 

developed at the Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS), 

Universidad Nacional Autónoma de México (UNAM) was applied and compared with a 

traditional curve adjustment technique, in an attempt to get another useful application of these 
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optimization procedures. Here, a stochastic universal selection method was used [42] (Baker, 

1987); crossover operator was used with a probability of 90% (see Table 1). It is important to 

mention that two different mutation operators were used. The first one with a probability of 

5% randomly selects a branch and then it exchanges this selected branch by a new generated 

one. The second mutation operator works by selecting constant values and with a probability 

of 5%, these constants are mutated by adding a random value of a defined range. 

This climatic data modeling problem is expressed as a symbolic regression, a common 

application of genetic programming, where function set consists of arithmetic and 

trigonometric functions and terminals set consists of climatological variables which are 

described in next section. 

2.2. Input data  

Water temperature (Tw), solar radiation (rs), net radiation (rn), relative humidity (hr), air 

temperature (Ta), and wind speed (Vv) data measured at the Ribarroja Station from January 

to June of 1998 were utilized in this study. The ten minute water temperature average was 

calculated using all of these variables. Later, the averaged air temperature and relative 

humidity (in decimals) were filtered to take into account a seven day relay. Data filtering 

was done with the following equation: 
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          (1) 

Where : 

Vi is the original independent variable 

tf
Vi  is the filtered independent variable and 

k is the size or widow filter (in this case k=6). 

Recorded solar radiation at minute ti has its influence on water temperature at instant ti+160  

[1]  and such a gap needs to be taken into account for all considered data. For example, the 

first data point of the dependent variable, ten minute average water temperature at instant 

ti+160, was coupled with the first data point of the independent variable, such as solar 

radiation at instant ti. For the independent variables, net radiation (rn) and wind speed (vw) 

values of ti+160 were used, while air temperature and relative humidity values were 

considered using both seven day filtering and values corresponding to instant ti+160 . 

2.3. Objective function 

The objective function was to minimize the mean square error between the calculated and 

measured data using the following equation: 

 21 ˆmin ( )
n

Z Tw Tw
n

= −                                      (2) 
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Where: 

Z is the function to minimize 

Tw is the average of measured temperature each ten minute interval in ºC 

T̂w  is the calculated temperature with the genetic programming algorithm in ºC, and n is 

the data number. 

2.4. Parameter setting 

Parameters used in the genetic programming algorithm are shown in Table 1. 

MaxNumNodes corresponds to the maximum number of nodes an individual can have; 

meanwhile MaxNodesMut represents the maximum number of nodes a new created branch 

can have for mutation. Terminal set represents the independent variables and Tw 

corresponds to the dependent variable to be modeled.  

 

Parameter Value Description

Pcross 0.9 Probability of crossover 

Pmut 0.05 Probability of mutation 

Pmut_R 0.05 Probability of mutating a node containing a constant 

MaxNodesMut 8 Maximum number of nodes for mutation 

Nind 200 Number of individuals in the population 

MaxNumNodes 30 Maximum number of nodes for each individual 

MaxGen 5000 Maximum number of generations (iterations) 

Function_Set           +,-,*, /,cos Function set  

Terminal Set   rs, rn, hr, Ta, Vv     Climatological variables 

Table 1. Parameter settings 

The function cosine (cos) was included in the function set due to preliminary tests, where a 

reduction in mean quadratic error was obtained, included this cosine function. This fact is 

related to one of the two properties that GP individuals must satisfy: sufficiency. This 

property says that the set of terminals and the set of functions should be defined in order to 

express a solution to the study problem [23]. The second property, closure, specifies that each 

of the functions in the function set can be able to accept, as its argument, any value and data 

type that may possibly be returned by any function and any value or data type that can be 

possibly assumed by any terminal [23]. In this approach, a protected division was 

implemented in order to avoid a division by zero. In this situation occurs, a high value is 

returned.  

By including the cosine function, associated equation also presented a good reproduction of 

the periodic behavior of water temperature over time. 
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2.5. Multiple linear regressions 

Multiple linear regressions (MLR) relate a dependent variable, y, with two or more 

independents variables, x1, x2, x3,…, xn, by means of an equation expressed as: 

 1 1 2 2 3 3 n ny a x a x a x a x= + + + +           (3) 

Coefficients a1,a2,a3,…an, are weighting factors which allow one to see the relative importance 

of each variable xi as y is approached. Indirectly the coefficients can indicate if there is a 

strong correlation or lack of correlation between xi and y. 

This method is often applied for several hydrology problems such as: forecasting equations 

for standardized runoff in a region of a country with standardized teleconnection indices, 

when El Niño or La Niña phenomenon occur  [43] (González et al., 2000), or as an auxiliary 

method in estimating intensity-duration-frequency curves. In this research, regressions were 

made using the Microsoft Excel data analysis tool.  

3. Results and discussion 

Measured climatic data of the above variables, corresponding from January to June of 1998, 

were fed into both the symbolic regression genetic programming model and the multiple 

linear regression model in order to estimate water temperature. The models were then 

applied using data from January to June of 1999 in order to approach water temperature 

averages. Comparisons for the1998 and 1999 results were then made. 

The genetic programming algorithm (equation 4) determined the next mathematical model 

which approaches the water temperature (average of each ten minutes). 

 
( cos(cos(( cos ) * 0.6904149))

cos(cos(1.17748531* cosh )) 1.87808843) * 0.67508628
w a a a

a r

T T T T

T

= + + +

+ + +

  (4) 

Using equation (4), the individual with the best performance reported an objective function 

value of 0.7922. 

Meanwhile, the multiple linear regression model is expressed as follows:  

 w s n a v rT 0.00022505r 0.00036289r 0.66464617T 0.02807297V 1.24438982h 3.87792166= + + − − +     (5) 

Where: 

Tw corresponds to the average water temperature each ten minute interval at instant t+160 in 

ºC 

Ta is the average air temperature each ten minute interval, with seven days filtering, 

corresponding to instant t+160, in ºC 

hr represents the average relative humidity each ten minutes interval, with seven days 

filtering, corresponding to instant t+160  in decimals 
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rs is the average solar radiation each ten minutes interval, at instant t, in W/m2 

 rn corresponds to the average net radiation each ten minutes interval, corresponding to 

instant t+160, in W/m2 

and finally, 

vv represents the average wind speed each ten minutes interval, corresponding to instant 

t+160, in m/s. 

The objective function value using equation 5 was 0.8724. 

Figure 4 represents both measured and calculated water temperature variation versus time 

using both equations (4) and (5). Measured and calculated water temperature values also 

appear in Figure 5 with equations (4) and (5) in comparison with the identity function. 

Figure 4 indicate similar results for both genetic programming and multiple linear 

regression models in comparison with measured data.  

In Figures 5  the  measured data  were compared against the identity function  and the best 

correlation between  these values was found using genetic programming (r=0.9697). 

 

 

 

 

 
 

 

 
 

Figure 4. Time variation of measured and calculated water temperature data, Ribarroja Station. January 

to June, 1998 
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Figure 5. Comparison between genetic programming and multiple linear regression models against 

measured data and the identity function. Ribarroja Station. January to June, 1998 

Water temperature approach with multiple linear regression and genetic programming 

algorithm from January to June 1999 

Equations (4) and (5) were applied to measured data from 1999 at the Ribarroja Station in 

order to arrive at the average water temperature. Measured water temperature data and the 

obtained residuals using both models are shown in Figure 6. 

According to Figure 6 the differences between measured and calculated water temperature  

shown were up to 5.5 °C  (underestimation)  and about 0.5 °C (overestimation) while 

differences with equation 5 reported an underestimation near to 4.5°C and  the 

overestimation of almost 2°C, so the range of variation in water temperature reported by 

both equations is almost the same. 

In order to get better results in future works must be analyzed the data standardization as a 

preprocessing to get new mathematical linear and nonlinear models [44], The variables 

could be standardized by subtracting the mean and dividing by the standard deviation: 

 
w

w w

T

T T
Z

σ

−

=       (6) 
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wT  mean of Tw, with the same units than Tw (the arithmetic average can be used) and 

wTσ  standard deviation of Tw, with the same units than Tw 

Another possibility to analyze  is the splitting of the considered function by taking into 

account the different times of year that causes a variation in water temperature behavior. 

 

 
 

Figure 6. Residuals and measured water temperature data for the year 1999 at the Ribarroja Station in 

Spain 

4. Conclusions 

Water temperature adjustment curves, in a gauged station on the Ebro River in Spain, were 

obtained by means of two procedures: a genetic programming algorithm (equation 4) and a 

multiple linear regression (equation 5), using data from 1998. The multiple linear regression 

method yielded a function containing the five considered variables (solar radiation, net 

radiation, wind speed, air temperature and relative humidity) with each variable weighted. 

The genetic programming algorithm yielded a function where water temperature was 

obtained only as a function of air temperature and relative humidity. The others variables 

were eliminated by the evolution algorithm due to the lack of correlation between water 

temperature and the remaining variables although solar radiation is implied inside the air 

temperature term.  
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Comparing measured data with calculated data, for the year 1998, led to only minor errors 

in estimating the average water temperature using the genetic programming algorithm. 

When equations (4) and (5) were applied to another year, 1999, minor mean quadratic error 

in estimating water temperature was obtained using the multiple linear regression equation 

(5). The mean quadratic error associated with the multiple linear regression equation (5) for 

1999 was 1.375 ºC; whereas with the genetic programming equation (4) was 2.248 ºC. This 

error can be considered acceptable if one takes in account the average temperature from 

January to June 1998 was 12.54 ºC, whereas the average temperature in 1999 for the same 

period was 11.62 ºC. The residuals obtained with equations (4) and (5) using data for the 

year 1999 had average values of 1.04 ºC and 0.43 ºC, respectively and with this criteria, 

multiple linear regression model can be considered better than the GP. However, reviewing 

the standard deviations, both models had almost the same value (1.09 ºC and 1.08 ºC, 

respectively). 

The described procedures are then useful because equations similar to (4) or (5) can estimate 

important water quality characteristics, such as water temperature, using previously 

measured climatic data, predicted climatic data, and hydrological parameters for a given 

time period. 

Engineer’s criteria and common sense must be considered before to apply any model to 

simulate physical variables. 

Some standardization procedures to the involved data are suggested in order to improve the 

results from new models that can be obtained. 

The methods here applied are undoubtedly  useful in several areas of knowledge, and can 

led us to new approaches  to physical phenomena by considering measured  field data. 

Future work is focuses on the use of NARMAX (Non-linear Autorregressive Moving 

Average with eXogenous inputs) model combined with genetic programming in order to 

model the water temperature providing more accurate equations. 
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