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1. Introduction 

One challenge posed by financial markets is to correctly forecast the volatility of financial 
securities, which is a crucial variable in trading and risk management of derivative 
securities. Dynamic hedging is very sensitive to volatility forecast and good hedges require 
accurate estimate of volatility. Implied volatilities, generated from option markets, can be 
particularly useful in such contents as they are forward-looking measures of the market's 
expected volatility during the remaining life of an option [1, 2]. Since there is no explicit 
formula available to compute directly the implied volatility, the latter can be obtained by 
inverting the option pricing model. On the contrary, the genetic programming offers explicit 
formulas which can compute directly the implied volatility. This volatility forecasting 
method should be free of strong assumptions regarding underlying price dynamics and 
more flexible than parametric methods. This paper proposes a non parametric approach 
based on genetic programming to improve the accuracy of the implied volatility forecast 
and consequently the dynamic hedging. 

Genetic Programming [3] is an optimization technique which extends the basic genetic 
algorithms [4] to process non-linear problem structure. In genetic programming, solutions 
are represented as tree structures that can vary in size and shape, rather than fixed length 
character strings as in genetic algorithms. This means that genetic programming can be used 
to perform optimization at a structural level. In the standard genetic programming, the 
entire population of function-trees is evaluated against the entire training data set, so the 
number of function-tree evaluations carried out per generation is directly proportional to 
both the population size and the size of the training set. Genetic programming can 
encounter the problem of managing training sets which are too large to fit into the memory 
of computers, and then the realization of predictors. In machine learning, the practiced 
solution to learn large data set is the application of resampling techniques, such as, bagging 
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[5], boosting [6] and arcing [7]. However, these techniques require that the entire data sets 
be stored in the main memory. When applied to large data sets, this approach could be 
impractical. In this paper, we proposed to split data into smaller subsets. First, the genetic 
programming is run separately on all training sub-samples. Such approach is called static 
training-subset selection method [8]; it might provide local solutions not adaptive to the 
entire enlarged data set. Alternatively, a dynamic training approach is developed. It allows 
genetic programming to learn simultaneously on all training sub-samples and it implies a 
new parameter added to the basic genetic programming algorithm which is the number of 
generations to change sample. This approach lightens the training task for the genetic 
programming and favors the discovery of solutions that are more robust across different 
learning data samples and seem to have better generalization ability.  Comparison between 
generated models using static and dynamic selection methods reveals that, the dynamic 
approach improves the forecasting performance of the generated models using genetic 
programming. The best forecasting implied volatility models are selected according to total 
MSE criterion. They are used to compute hedge factors and implement dynamic hedging 
strategies. According to the average hedging errors, the genetic programming presented 
accurate hedging performance compared to that of Black-Scholes model.  

The rest of the paper is organized as follows: section 2 provides background information 
regarding related works in forecasting volatility and dynamic hedging, section 3 describes 
research design and methodology used in this paper, section 4 reports experimental results 
and finally section 5 concludes. 

2. Related works 

Traditional parametric methods have limited success in estimating and forecasting volatility 
as they are dependent on restrictive assumptions and difficult to estimate. Several machine 
learning techniques have been recently used to overcome these difficulties such as artificial 
neural networks and evolutionary computation algorithms. In particular, genetic 
programming has been successfully applied to forecast financial time series [9,10].  

This paper makes an initial attempt to test whether the hedger can benefit more by using 
generated genetic programming implied volatilities instead of Black-Scholes implied 
volatilities in conducting dynamic hedging strategies.  

Changes in asset prices is not the only risk faced by market participants, instantaneous 
changes in market implied volatility can also bring a hedging portfolio significantly out of 
balance. Extensive research during the last two decades has demonstrated that the volatility 
of stocks is not constant over time [11]. The Autoregressive Conditional Heteroskedasticiy 
(ARCH ) and the Generalized ARCH (GARCH) models are introduced [12,13] to describe 
the evolution of the asset price’s volatility in discrete time. Econometric tests of these models 
clearly reject the hypothesis of constant volatility and find evidence of volatility clustering 
over time. In the financial literature, stochastic volatility models have been proposed to 
model these effects in a continuous-time setting   [14-17]. Although these models improve 
the benchmark Black-Scholes model, they are complex because they require strong 
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assumptions and computational effort to estimate parameters and stochastic process. As 
mentioned in [18], traditional financial engineering methods based on parametric models 
such as the GARCH model family, seem to have difficulty to improve the accuracy in 
volatility forecasting due to their rigid as well as linear structure. Using its basic and flexible 
tree-structured representation, genetic programming is capable of solving non-linear 
problems. In the context of forecasting volatility, most of research papers have focused on 
forecasting historical volatility based on past returns in different markets. Using historical 
returns of Nikkei 225 and S&P500 indices, Chen and Yeh [19] have applied a recursive 
genetic programming approach to estimate volatility by simultaneously detecting and 
adapting to structural changes. Results have shown that the recursive genetic programming 
is a promising tool for the study of structural changes. Using high frequency foreign 
exchange USD-CHF and USD-JPY time series, Zumbach et al. [20] have compared the 
genetic programming forecasting accuracy to that of historical volatilities, the GARCH (1,1), 
FIGARCH and HARCH models. According to the root-mean squared errors, the generated 
genetic programming volatility models did consistently outperform the benchmarks. 
Similarly, Neely and Weller [21] have tested the forecasting performance of genetic 
programming for USD-DEM and USD-YEN daily exchange rates against that of GARCH 
(1,1) model and a related RiskMetrics volatility forecast over different time horizons, using 
various accuracy criteria. While the genetic programming rules did not usually match the 

GARCH (1,1) or RiskMetrics models' MSE or 2R , its performance on those measures was 
generally close. But, the genetic programming did consistently outperform the GARCH 
model on mean absolute error (MAE) and model error bias at all horizons. Overall, on some 
dimensions the genetic programming has produced significantly superior results. Applying 
a combination of theory and techniques such as wavelet transform, time series data mining, 
Markov chain based discrete stochastic optimization, and evolutionary algorithms genetic 
algorithms and genetic programming, Ma et al. [22,23] have proposed a systematic approach 
to address specifically non linearity problems in the forecast of financial indices using 
intraday data of S&P100 and S&P500 indices. As a result, accuracy of forecasting has 
reached an average of over 75% surpassing other publicly available results on the forecast of 
any financial index. Abdelmalek et al. [8] have extended the studies mentioned earlier by 
forecasting the implied volatility of Black-Scholes from the S&P500 index call options 
instead of historical volatility using a static training of genetic programming. The 
performance of generated genetic programming volatility forecasting models is compared 
between time series samples and moneyness-time to maturity classes. Using Total and out-
of-sample mean squared errors (MSE) as forecasting performance measures, the time series 
model seems to be more accurate in forecasting implied volatility than moneyness-time to 
maturity models.  

Option contracts prices are affected by new information and changes in expectations as 
much as they are by changes in the value of the underlying index. If traders have perfect 
foresight on forward volatility, then dynamic hedging would be essentially riskless. In 
practice, continuous hedging is impossible, but the convexity of option contract allows for 
adjustments in the exposure to higher-order sensitivities of the model, such as gamma, vega, 
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etc. Most of the existing literature on hedging a target contract using other exchange-traded 
options focuses on static strategies, motivated at least in part by the desire to avoid the high 
costs of frequent trading. The goal of static hedging is to construct a buy-and-hold portfolio 
of exchange traded claims that perfectly replicates the payoff of a given over-the-counter 
product [24,25]. The static hedging strategy does not require any rebalancing and therefore, 
it does not incur significant transaction costs. Unfortunately, the odds of coming up with a 
perfect static hedge for a given over-the-counter claim are small, given the limited number 
of exchange listed option contracts with sufficient trading volume. In other words, the static 
hedge can only be efficient if traded options are available with sufficiently similar maturity 
and moneyness as the over-the-counter product that has to be hedged. Under a stochastic 
volatility, a perfect hedge can in principle be constructed with a dynamically rebalanced 
portfolio consisting of the underlying and one additional option. In practice, the dynamic 
replication strategy for European options will only be perfect if all of the assumptions 
underlying the Black-Scholes formula hold. For general contingent claims on a stock, under 
market frictions, the delta might still be used as first-order approximation to set up a riskless 
portfolio. However, if the volatility of the underlying stock varies stochastically, then the 
delta hedging method might fail severely. A simple method to limit the volatility risk is to 
consider the volatility sensitivity vega of the contract. The portfolio will have to be 
rebalanced frequently to ensure delta-vega neutrality. With transaction costs, frequent 
rebalancing might result in considerable losses. In practice, investors can rebalance their 
portfolios only at discrete intervals of time to reduce transactions costs.  

Non parametric hedging strategies as an alternative to the existing parametric model based- 
strategies, have been proposed [26,27]. Those studies estimated pricing formulas by 
nonparametric or semi-parametric statistical methods such as neural networks and kernel 
regression, and they measured their performance in terms of delta-hedging. Few researches 
have focused on the dynamic hedging using genetic programming, however. Chen et al. [28] 
have applied genetic programming to price and hedge S&P500 index options. By 
distinguishing the case in-the-money from the case out-of-the-money, the performance of 
genetic programming is compared with the Black-Scholes model in terms of hedging accuracy. 
Based on the post-sample performance, it is found that in approximately 20% of the 97 test 
paths, genetic programming has lower tracking error than the Black-Scholes formula. 

Based on the literature survey, one can conclude that the genetic programming could be 
used to efficiently forecast volatility and implement accurate dynamic hedging strategies, 
which opens up an alternative path besides other data-based approaches.  

3. Research design and methodology 

Accurate volatility forecasting is an essential element in conducting good dynamic hedging 
strategies. The first thrust of this paper deals with generation of implied volatility from 
option markets using static and dynamic training of genetic programming, respectively. 
While the static training [8] is characterized by training the genetic programming 
independently on a single Sub-sample, the dynamic training allows the genetic 



 
Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 145 

programming to train on the entire data sub samples simultaneously rather than just a 
single subset by changing the training Sub-sample during the run process. This permits to 
improve the robustness of genetic programming to generate general models adaptive to all 
training samples. The second thrust of this paper is to study the accuracy of the generated 
genetic programming implied volatility models in terms of dynamic hedging. Since the true 
volatility is unobservable, it is impossible to assess the accuracy of any particular model; 
forecasts can only be related to realized volatility. In this paper, we assume that the implied 
volatility is a reasonable proxy for realized volatility, to generate forecasting implied 
volatility models using genetic programming and then to analyze the implications of this 
predictability for hedging purposes.  

Figure 1 illustrates the operational procedure to implement the proposed approach. 

 
Figure 1. Description of the proposed approach’s implementation 

The operational procedure consists of the following steps: The first step is devoted for the 
data division schemes. The second step deals with the implementation of genetic 
programming1 (GP), the application of training subset selection methods and the selection of 
the best forecasting implied volatility models. The last step is dedicated to dynamic hedging 
results.  

3.1. Data division schemes 

Data used in this study consist of daily prices for the European-style S&P 500 index calls and 
puts options traded on the Chicago Board of Options Exchange from 02 January to 29 
August 2003. The data base include the time of the quote, the expiration date, the exercise 
price and the daily bid and ask quotes for call and put options. Similar information for the 
underlying S&P 500 index is also available on a daily basis. S&P500 index options are among 
the most actively traded financial derivatives in the world. The minimum tick for series 
trading below 3 is 1/16 and for all other series 1/8. Strike price intervals are 5 points, and 25 
points for far months. The expiration months are three near term months followed by three 
additional months from the March quarterly cycle (March, June, September, and December). 
Following a standard practice, we used the average of an option’s bid and ask price as a 
stand-in for the market value of the option. The risk free interest rate is approximated by 
using 3 month US Treasury bill rates. It is assumed that there are no transaction costs and no 
dividend. 
                                                                 
1 GP system is built around the Evolving Object library, which is an ANSI-C++ evolutionary computation Framework 
(EO library). 
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To reduce the likelihood of errors, data screening procedures are used [29,30]. We apply 
four exclusion filters to construct the final option sample. First, as implied volatilities of 
short-term options are very sensitive to small errors in the option price and may convey 
liquidity-related biases, options with time to maturity less than 10 days are excluded. 
Second, options with low quotes are eliminated to mitigate the impact of price discreteness 
on option valuation. Third, deep-in-the-money and deep-out-of-the money option prices are 
also excluded due to the lack of trading volume. Finally, option prices not satisfying the 

arbitrage restriction [31], rC S Ke   , are not included. 

The final sample contains 6670 daily option quotes, with at-the-money (ATM), in-the-money 
(ITM) and out-of-the money (OTM) options respectively taking up 37%, 34% and 29% of the 
total sample. 

In this paper, two data division schemes are used. The full sample is sorted first, by time 
series (TS) and second by moneyness-time to maturity (MTM). For time series, data are 
divided into 10 successive samples (S1, S2…S10), each contains 667 daily observations. The 
first nine samples are used as training sub-samples. For moneyness-time to maturity, data 
are divided into nine classes with respect to moneyness and time to maturity criteria. 
According to moneyness criterion: A call option is said out-of-the money (OTM) if

/ 0.98S K  ; at-the-money (ATM) if / 0.98,1.03S K     ; and in-the-money (ITM) if
/ 1.03S K  . According to time to maturity criterion: A call option is Short Term (ST) if

60   days; Medium Term (MT) if 60,180      days; and Long Term (LT) if 180   days. 
Each class Ci is divided on training set CiL and test set CiT, which produces respectively nine 
training and nine test MTM sub-classes. Figure 2 illustrates the two division schemes. 

 
Figure 2. Data division schemes  

3.2. Implied volatility forecasting using genetic programming: 

This subsection describes the design of genetic programming and the experiments 
accomplished using the genetic programming method to forecast implied volatility. In the 
first experiment, the genetic programming is trained using static training-subset selection 



 
Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 147 

method; in the second one, we used dynamic training-subset selection methods. We  
describe training and test samples used in these experiments. 

3.2.1. The design of genetic programming: 

Our genetic programming software is referred to as symbolic regression written in C++ 
language. It is designed to find a function that relates a set of inputs to an output without 
making any assumptions about the structure of that function. Symbolic regression was one 
of the earliest applications of genetic programming [3], and has continued to be widely 
studied [32-35]. The following pseudo code describes the genetic programming's algorithm 
structure used in this paper. 
 

Initialize population 

While (termination condition not satisfied) do 

Begin 

Evaluate the performance of each individual according to the fitness criterion 

Until the offspring population is fully populated do  

 - Select individuals in the population using the selection algorithm 

 - Perform crossover and mutation operations on the selected individuals 

 - Insert new individuals in the offspring population 

      Replace the existing population by the new population 

End while 

Report the best solution found 

End 

Algorithm 1 Pseudo code of genetic programming 

The genetic programming’s algorithm structure consists of the following steps: nodes 
definition, initialization, fitness evaluation, selection, genetic operators (crossover and 
mutation) and termination condition. 

Nodes Definition: The nodes in the tree structure of genetic programming can be classified 
into terminal (leaf) nodes and function (non-terminal) nodes. The terminal and function sets 
used are described in Table 1. 

The terminal set includes the inputs variables, notably, the option price divided by strike 

price (
C

K
for calls and

P

K
for puts), the index price divided by strike price

S

K
and time to 

maturity . The function set includes unary and binary nodes. Unary nodes consist of 
mathematical functions, notably, cosinus function (cos), sinus function (sin), log function 

(ln), exponential function (exp), square root function ( ) and the normal cumulative 
distribution function ( ). Binary nodes consist of the four basic mathematical operators, 
notably, addition (+), subtraction (-), multiplication ( ) and division (%). The basic division 
operation is protected against division by zero and the log and square root functions are 
protected against negative arguments.  
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Expression Definition

Terminal Set C/K Call price / Strike price 

S/K Index price / Strike price 

τ Time to maturity 

Function Set + (plus) Addition 

- (minus) Subtraction 

* (multiply) Multiplication 

0
0 (divide) Protected division: x 0

0 y = 1 if y=0;   x 0
0 y =  x 0

0 y otherwise 

ln Protected natural log:    ln lnx x  

Exp Exponential function:  exp xx e  

Sqrt Protected square root: x x  

Ncdf Normal cumulative distribution function   

Table 1. Terminal set and function set 

Individuals are encoded as LISP S-expressions which can also be depicted as a parse tree. 
The search space for genetic programming is the space of all possible parse trees that can be 
recursively created from the terminal and function sets. 

 
Figure 3. Example of a tree structure for GP and the corresponding functions 

Initialization: The generated genetic programming volatility models are performed using a 
ramped half and half as initialization method [3]. This method involves generating an equal 
number of trees using a maximum initial depth that ranges from 2 to 6, as specified in Table 
2. For each level of depth, 50% of the initial trees are generated via the full method and the 
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other 50% are generated via the grow method. In the full method, the initial trees have the 
property that every path from root to endpoint is of maximum depth. In the grow method, 
initial trees can be of various depths, subject to the constraint that they do not exceed the 
maximum depth. 

Fitness function: The fitness function assigned to a particular individual in the population 
must reflect how closely the output of an individual program comes to the target function. 

In this paper, the Black-Scholes implied volatility BS
t  is used as target output. It is defined 

as the standard deviation which equates the Black-Scholes price BSC 2 to the market option 

price *
tC [36]: 

 
 

    *

! , 0,

, , , , ,

BS
t

BS
BS t t t

K T

C S K K T C K T



 






      (1) 

The generated genetic programming trees provide at each time t the forecast value ˆ
t , and 

the fitness function used to measure the accuracy of forecast is the mean squared error 

(MSE) between the target ( BS
t ) and forecasted ( ˆ

t ) output volatility, computed as follows:   

  
2

1

1 ˆ
N

BS
t t

t

MSE
N

 


    (2) 

Where, N is the number of data sample.  

Selection: Based on the fitness criterion, the selection of the individuals for reproduction is 
done with the tournament selection algorithm. A group of individuals is selected from the 
population with a uniform random probability distribution. The fitness values of each 
member of this group are compared and the actual best is selected. The size of the group is 
given by the tournament size which is equal to 4, as indicated in Table 2.  

Genetic operators: Crossover and mutation are the two basic operators which are applied to 
the selected individuals in order to generate new individuals for the next generation. As 
described in Figure 4, the subtree crossover creates new offspring trees from two selected 
parents by exchanging their sub-trees. As indicated in Table 2, the crossover operator is 
used to generate about 60% of the individuals in the population. The maximum tree size 
(measured by depth) allowed after the crossover is 17. This is a popular number used to 
limit the size of tree [3]. It is large enough to accommodate complicated formulas and works 
in practice. 
                                                                 

2    
 2

1 2 1 2 1

ln 0.5
, ,r

BS

S
r

K
C SN d Ke N d d d d

 
 

 


 
  

      . 
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Figure 4. Example of subtree crossover 

The mutation operator randomly changes a tree by randomly altering nodes or sub-trees to 
create a new offspring. Often multiple types of mutation are beneficially used 
simultaneously [37,38]. In this paper, three mutation operators are used simultaneously, 
they are described below: 

Branch (or subtree) mutation operator randomly selects an internal node in the tree, and 
then it replaces the subtree rooted at that node with a new randomly-generated subtree 
[3].  

 

 
Figure 5. Example of subtree mutation 
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Figure 6. Example of point mutation 

Point mutation operator consists of replacing a single node in a tree with another randomly-
generated node of the same arity [39].  

Expansion mutation operator randomly selects a terminal node in the tree, and then replaces 
it with a new randomly-generated subtree.  

 
Figure 7. Example of expansion mutation 

As indicated in Table 2, Branch mutation is applied with a rate of 20%; Point and Expansion 
mutations are applied with a rate of 10%, respectively. 

Replacement: The method of replacing parents for the next generation is comma replacement 
strategy [40], which selects the best offspring to replace the parents. It assumes that 
offspring size is higher than parents' size. If µ is the population size and λ is the number of 
the new individuals (which can be larger than µ), the population is constructed using the 
best µ out of the λ new individuals.  

Termination criterion: The stopping criterion is the maximum number of generations. It is fixed 
at 400 and 1000 for static and dynamic training- subset selection, respectively. In the dynamic 
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training- subset selection approach, the maximum number of generations is increased to allow 
the genetic programming to train on the maximum of samples simultaneously. The number of 
generations to change sample varied between 20 and 100 generations. 

The implementation of genetic programming involves a series of trial and error experiments 
to determine the optimal set of genetic parameters which is listed in Table 2. By varying 
genetic parameters, each program is run ten times with ten different random seeds. The 
choice of the best genetic program is made according to the mean and median of Mean 
Squared Errors (MSE) for training and testing sets. 

Population size: 
Offspring size: 
Maximum number of generations for static method: 
Maximum number of generations for dynamic method: 
Generations' number to change sample  
Maximum depth of new individual: 
Maximum depth of the tree: 
Tournament size: 
Crossover probability: 
Mutation probability: 

Branch mutation: 
Point mutation: 
Expansion mutation: 

100 
200 
400  
1000  
20-100 
6 
17 
4 
60% 
40% 
20% 
10% 
10% 

Table 2. Summary of genetic programming parameters 

3.2.2. Dynamic training-subset selection method 

As data are divided in several sub-samples, the genetic programming is trained, first, 
independently on each sub-sample relative to each data division scheme (algorithm 1). This 
approach is called static training-subset selection method [8]. Second, the genetic 
programming is trained simultaneously on the entire data sub-samples relative to each data 
division scheme, rather than just a single subset by changing the training sub-sample during 
the run process. This approach is called dynamic training-subset selection method. The main 
goal of this method is to make genetic programming adaptive to all training samples and 
able to generate general models and solutions that are more robust across different learning 
data samples. In the context of evolutionary algorithms, there are at least three approaches 
for defining the frequency of resampling [41]. The first approach called “individual-wise” 
consists of extracting a new sample of data instances from the training set for each 
individual of the population. As a result, different individuals will probably be evaluated on 
different data samples, which cast some doubts on the fairness of the selection procedure of 
the evolutionary algorithm. The second approach called “run-wise” consists of extracting a 
single fixed sample of data instances from the training set used to evaluate the fitness of all 
individuals throughout the evolutionary run, which will probably reduce significantly the 
robustness and predictive accuracy of the evolutionary algorithm. The third approach called 
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“generation-wise” consists of extracting a single fixed sample of data instances from the 
training set at each generation, and all individuals of that generation will have their fitness 
evaluated on that data sample. This method avoids the disadvantages of the two previous 
approaches, and as such seems more effective. In particular, an individual will only survive 
for several generations if it has a good predictive accuracy across different data samples. 
The dynamic approach proposed in this study differs from the three previous approaches as 
it doesn’t extract a fixed sample of data instances from the training set, but selects it from the 
whole sub-samples data which are already built up and use it to evaluate the fitness of all 
individuals when the generations’ number to change sample is reached. In this paper, we 
proposed four dynamic training-subset selection methods: Random Subset Selection method 
(RSS), Sequential Subset Selection method (SSS), Adaptive-Sequential Subset Selection method 
(ASSS) and Adaptive-Random Subset Selection method (ARSS). The RSS and SSS allow the 
genetic programming to learn on all training samples in turn (SSS) or randomly (RSS). 
However, with these methods, there is no certainty that genetic programming will focus on the 
samples which are difficult to learn. Then, the ASSS and the ARSS, which are variants of the 

adaptive subset selection (ASS), are introduced to focus the genetic programming’s attention onto 
the difficult samples i.e. having the greatest MSE and then to improve the learning algorithm.  

Dynamic subset selection is easily added to the basic GP algorithm with no additional 
computational cost according to the static subset selection. 

Let S be the set of training samples Si (i=1…k), where k is the total number of samples. A 
selection probability P (Si) is allocated to each sample Si from S. The training sample Si is 
changed each g generations (g is the number of generations to change sample) according to 
this selection probability and the dynamic training-subset selection method used. Once a 
new training sample is selected, the best individuals are used as population for the next 
training samples. This procedure is repeated until the maximum number of generations is 
reached. This permits genetic programming to adapt its generating process to changing data 
in response to feedback from the fitness function which is the mean squared error computed 
as in static approach. By the end of the evolution, only individuals with the desirable 
characteristics that are well adapted to the environmental changes will survive.  

a. Random training-Subset Selection method (RSS):  

It selects randomly the training samples with replacement. At each g generations, all the 
samples from S have the same probability to be selected as the current training sample: P (Si) 
=1/k, 1≤ i ≤ k. This method differs from that proposed by Gathercole and Ross [42] as 
random selection concerns training samples which are already constructed according to data 
division scheme, rather than data instances. 

As selection of training samples is random, the performance of the current population 
changes with the training sample used for evolving the genetic program. Figure 8 illustrates 
an example of the best fitness (MSE) curve along evolution using RSS method. With the 
sample change, the MSE may increase, but it is improved during the following generations, 
the time that the population adapts itself to the new environment. 
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Figure 8 shows that some training samples could be duplicated, but some others could be 
eliminated.  

 
Figure 8. Example of fitness curve of the best individuals generated by genetic programming using RSS 
method for time series samples 

b. Sequential training-Subset Selection method (SSS)  

It selects all the training samples in the order. If, at generation g-1, the current training 
sample is Si, then at generation g: P (Sj) = 1, with j= i+1 if i<k, or j=1 if i=k. 

 
Figure 9. Example of curve fitness of the best individuals generated by genetic programming using SSS 
method for moneyness-time to maturity classes 

As illustrated in Figure 9, all the learning subsets are used during the evolution in an 
iterative way.  

c. Adaptive training-Subset Selection method (ASS):  

Instead of selecting a training subset data in a random or sequential way, one can use an 
adaptive approach to dynamically select difficult training subsets data which are frequently 
misclassified. This approach is inspired from the dynamic subset selection method proposed 
by Gathercole and Ross [42] which is based on the idea of dynamically selecting instances, 
not training samples, which are difficult and/or have not been selected for several 
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generations. Selection is made according to a weight computed proportionally to the 
sample's average fitness. Each g generations, the weights are updated as follows: 

     
 

1 1
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t j
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  (3) 

Where, M is the size of Si ( j iX S ), g is the number of generations to change sample, and 

 jf X  is the MSE of the individual jX . 

At each g generations, training samples are re-ordered, so that the most difficult training 
samples, which have higher weights, will be moved to the beginning of the ordered training 
list, and the easiest training samples, which have smaller weights, will be moved to the end 
of the ordered training list. 

1. Adaptive-Sequential training-Subset Selection method (ASSS):  

It uses the following procedure (step 1 to step 3): 

Step 1. Let the first generation t be set to 0. Each training sample is assigned an equal 
weight, i.e., W(Si) = 1 for 1≤ i ≤ k. 

Step 2. The probability P (Si) that a training sample Si is selected to be included in the 
training set and evolve genetic programming is determined using the Roulette wheel 
selection scheme. 

ܲሺ ௜ܵሻ = ሺݓ ௜ܵሻ∑ݓሺ ௜ܵሻ 
Where, the summation is over all training samples. 

Moreover, the probability P (Si) is positively related to the fitness of the parse tree generated 
relative to the corresponding training sample. 

ܲሺ ௜ܵሻ = ݂ሺ ௜ܵሻ∑݂ሺ ௜ܵሻ 
Where, ݂ሺ ௜ܵሻ is the average fitness of individuals relative to the training sample.  

Compute a fitness function which is the mean squared error for each individual in the 

training sample and then the average fitness. Update the weights:
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Step 3. t=t+g. If t<T (T is the total number of generations), then go to step 2. 

As illustrated in Figure 10, selection of training samples is made in the order for the first t 
generations using the SSS method. Some training samples could be duplicated to improve 
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the genetic programming learning. Later, samples are selected for the next run according to 
the adaptive approach based on the re-ordering procedure.  

 
Figure 10. Example of curve fitness of the best individuals generated by genetic programming using 
ASSS method for time series samples 

2. Adaptive-Random training-Subset Selection method (ARSS):  

The ARSS method uses the same procedure as the ASSS method, except that the initial 
weights are generated randomly in the start of running, rather than initialized with a 
constant: For t=0,   , 0,1 ,1 .i i iW S P P i k     

  Then, for the few first generations, samples 
are selected using RSS method. After, the selection of samples is made using the adaptive 
approach based on the re-ordering procedure.  

 
Figure 11. Example of curve fitness of the best individuals generated by genetic programming using 
ARSS method for moneyness-time to maturity classes 

3.2.2. Training and test samples 

Different forecasting genetic programming volatility models are estimated from the training 
set and judged upon their performance on the test set. Table 3 summarizes the training and 
test data samples used for static and dynamic training-subset selection methods, 
respectively. 
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In static training-subset selection approach, first, the genetic program is trained separately 
on each of the first nine TS sub-samples (S1,…, S9) using ten different seeds and is tested on 
the subset data from the immediately following date (S2,…, S10). Second, using the same 
genetic parameters and random seeds applied for TS data, the genetic programming is 
trained separately on each of the first nine MTM sub-classes (C1L,…, C9L) and is tested on the 
second nine MTM sub-classes (C1T,…, C9T). 
 
 

Subset Selection Learning data sample Test data sample

Static Subset 
Selection 

Si   TS samples (S1, …, S9)      
(1 subset for a run) 

The successive TS sample Sj, j=i+1 

CiL   MTM training samples  
(C1L, …, C9L)    
(1 subset for a run) 

The corresponding MTM test samples 
CiT 

Dynamic Subset 
Selection 
(RSS/SSS/ASSS/ 
ARSS) 
 

TS samples S1, …, S9                  
(9 subsets for a run) 

The last subset  in TS samples set (S10) 

MTM samples C1L, …, C9L        
(9 subsets for a run) 

The nine MTM test  samples  
(C1T + C2T …+ C9T)  

TS samples + MTM samples 
(S1, …, S9 ; C1L, …, C9L  )            
(18 subsets for a run) 

The last TS sample with the nine MTM 
test  samples (S10  + C1T + C2T …+ C9T) 

Table 3. Definition of training and test data samples for static and dynamic training-subset selection 
methods 

In dynamic training-subset selection approach, first, the genetic program is trained on the 
first nine TS sub-samples simultaneously (S1,…, S9) using ten different seeds and it is tested 
only on the tenth sub-sample data (S10). Second, the genetic programming is trained on the 
first nine MTM sub-classes simultaneously (C1L,…, C9L) and it is tested on the second nine 
MTM sub-classes regrouped in one test sample data (C1T + C2T …+ C9T). Third, the genetic 
programming is trained on both the nine TS sub-samples and the nine MTM sub-classes 
simultaneously (S1, …, S9 ; C1L, …, C9L ) and it is tested on one test sample data composed of 
the TS and MTM test data (S10  + C1T + C2T …+ C9T).   

Based on the training and test MSE, the best generated genetic programming volatility 
models relative to static and dynamic training-subset selection methods respectively are 
selected. These models are then compared with each other according to the MSE total and 
the best ones are used to implement the dynamic hedging strategies as described in the 
following section. 

3.3. Dynamic hedging 

To assess the accuracy of selected generated genetic programming volatility models in 
hedging with respect to Black-Scholes model, three dynamic hedging strategies are 
employed, notably, delta-neutral, delta-gamma neutral and delta-vega neutral strategies. 
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For delta hedging, at date zero, a delta hedge portfolio consisting of a short position in one 
call (or put) option and a long (short) position in the underlying index is formed. At any 
time t, the value of the delta hedge portfolio  t  is given by: 

  ( ) ( ) ( ) ( ) ( )VP t V t t S t t      (4) 

Where,  P t ,  V t ,  S t ,  V t and  t denote the values of the portfolio, hedging option 
(call or put), underlying, delta hedge factor and bond (money market account) respectively.  

The portfolio is assumed self-financed, so the initial value of the hedge portfolio at the 
beginning of the hedge horizon is zero: 

   (0) (0) (0) (0) (0) 0VV S           (5) 

    (0) ( (0) (0) (0))VV S        (6) 

A dynamic trading strategy is performed in underlying and bond to hedge the option during 
the hedge horizon. The portfolio rebalancing takes place at intervals of length t during the 
hedge horizon 0,   , o T  , where T is the maturity of the option. At each rebalancing 
time it , the hedge factor ( )v it is recomputed and the money market account is adjusted:  

  1 1( ) ( ) ( )( ( ) ( ))r t
i i i V i V it e t S t t t           (7) 

The delta hedge error is defined as the absolute value of the delta hedge portfolio at the end 
of the hedge horizon of the option,  P  . 

For delta-gamma hedging, a new position in a traded option is required. Then, the delta-
gamma hedge portfolio is formed with: 

     1( ) ( ) ( ) ( ) ( ) ( ) ( )P t V t x t S t y t V t B t       (8) 

Where,  1V t is the value of an additional option which depends on the same underlying, 
with the same maturity but different strike price than the hedging option  V t .  x t and
 y t  are the proportions of the underlying and the additional option respectively. They are 

chosen such that the portfolio  t  is both delta and gamma neutral: 
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Where, the values of  V t  and  V t  are the delta and gamma factors for the option  V t ; 
the values  

1V t  and  
1V t  are the delta and gamma factors for the option  1V t . 
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At the beginning of the hedge horizon, the value of the hedge portfolio is zero: 

   
1(0) (0) (0) (0) (0) (0) (0) 0P V x S y V B      (11) 

     
1  (0) ( (0) (0) (0) (0) (0))B V x S y V      (12) 

At each rebalancing time it , both delta and gamma hedge factors are recomputed and the 
money market account is adjusted:  

   
1 1 1 1( ) ( ) ( ( ) ( )) ( ) ( ( ) ( )) ( )r t

i i i i i i i iB t e B t x t x t S t y t y t V t
         (13) 

The delta-gamma hedge error is defined as the absolute value of the delta-gamma hedge 
portfolio at the end of the hedge horizon of the option,  P  . 

For delta-vega hedging, a new position in a traded option is required as in the delta-gamma 
hedging. The proportions of the underlying  x t  and the additional option  y t  are chosen 
such that the portfolio  t  is both delta and vega neutral: 
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Where, ( )V t  and 
1
( )V t  are the vega factors for the options  V t  and  1V t respectively. 

As in delta-gamma hedging, at each rebalancing time it , both delta and vega hedge factors 
are recomputed and the money market account is adjusted. The delta-vega hedge error is 
defined as the absolute value of the delta-vega hedge portfolio at the end of the hedge 
horizon of the option,  P  . 

35 option contracts are used as hedging options and 35 other contracts which depend on the 
same underlying, with the same maturity but different strike prices are used as additional 
options. Contracts used to implement the hedging strategies are divided according to 
moneyness and time to maturity criteria, which produces nine classes.  

The delta, gamma and vega hedge factors are computed using the Black-Scholes formula by 
taking the derivative of the option value with respect to index price, the derivative of delta 
with respect to index price and the derivative of the option value with respect to volatility 
respectively. For the genetic programming models, the hedge ratios are computed using the 
same formulas replacing the Black-Scholes implied volatilities with the generated genetic 
programming volatilities. Two rebalancing frequencies are considered: 1-day and 7 days 
revision.    

The average hedging error is used as performance measure. For a particular moneyness- 
time to maturity class, the tracking error is given by:  
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Where, n is the number of options corresponding to a particular moneyness-time to 
maturity class and  i   is the present value of the absolute hedge error of the portfolio

 P  over the observation path N (as a function of rebalancing frequency), divided by the 
initial option price  0V .  

4. Result analysis and empirical findings 

4.1. Selection of the best genetic programming-implied volatility forecasting 

models 

Selection of the best generated genetic programming volatility model, relative to each 
training set, for TS, MTM, and both TS and MTM classifications, is made according to the 
training and test MSE. For static training-subset selection method, nine generated genetic 
programming volatility models are selected for TS (M1S1…M9S9) and similarly nine 
generated genetic programming volatility models are selected for MTM classification 
(M1C1…M9C9). The performance of these models is compared according to the MSE Total, 
computed using the same formula as the basic MSE for the enlarged data sample. 

Table 4 reports the MSE total and the standard deviation (in parentheses) of the generated 
genetic programming volatility models, using static training-subset selection method, 
relative to the TS samples and the MTM classes.  

 

TS Models MSE Total MTM Models MSE Total 

M1S1 0,002723 (0,004278) M1C1 2,566 (20,606) 

M2S2 0,005068 (0,006213) M2C2 0,006921 (0,032209) 

M3S3 0,003382 (0,004993) M3C3 0,030349 (0,076196) 

M4S4 0,001444 (0,002727) M4C4 0,001710 (0,004624) 

M5S5 0,002012 (0,003502) M5C5 1,427142 (33,365115) 

M6S6 0,001996 (0,003443) M6C6 0,002357 (0,004096) 

M7S7 0,001901 (0,003317) M7C7 0,261867 (0,303256) 

M8S8 0,002454 (0,004005) M8C8 0,004318 (0,008479) 

M9S9 0,002419 (0,004095) M9C9 0,002940 (0,010490) 

Table 4. Performance of the generated genetic programming volatility models using static training-
subset selection method, according to MSE total for the TS samples and the MTM classes  
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Table 4 shows that, the generated genetic programming volatility models M4S4, M4C4 and 
M6C6 present the smallest MSE on the enlarged sample for TS and MTM samples 
respectively. Comparison between these models reveals that the TS model M4S4 seems to be 
more performing than MTM models M4C4 and M6C6 for the enlarged sample. 
Furthermore, results show that the performance of TS models is more uniform than that of 
MTM models. MTM models are not able to fit appropriately the entire data sample as well 
as the TS models as they have large Total MSE. Indeed, the MSE total exceed 1 with some 
MTM classes, however it does not reach 0.006 for all TS samples. Figure 12 describes the 
evolution's pattern of the squared errors given by TS models and MTM models for all 
observations in the enlarged data sample. Some extreme MSE values for MTM data are not 
shown in this figure. 

It appears throughout Figure 12 that, the TS models are adaptive not only to training 
samples, but also to the enlarged sample. In contrast, the MTM models such as M1C1 are 
adaptive to training classes, but not all to the enlarged sample. A first plausible explanation 
of these unsatisfied results is an insufficient search intensity inducing difficulty to obtain 
general model suitable for the entire benchmark input data. To enhance exploration 
intensity during learning and thus improve the genetic programming performance, we 
introduced to the evolution procedure the dynamic subset selection, which aims to obtain a 
general model that can be adaptive to both TS and MTM classes simultaneously.   

 
Figure 12. Evolution of the squared errors for total sample of the best generated GP volatility models, 
using static training-subset selection method, relative to TS samples(a) and MTM classes (b). 

For dynamic training-subset selection methods (RSS, SSS, ASSS and ARSS), four generated 
genetic programming volatility models are selected for TS classification (MSR, MSS, MSAS 
and MSAR). Similarly, four generated genetic programming volatility models are selected 
for MTM classification (MCR, MCS, MCAS and MCAR) and four generated genetic 
programming volatility models are selected for global classification, both TS and MTM 
classes (MGR, MGS, MGAS and MGAR). Table 5 reports the best generated genetic 
programming volatility models, using dynamic training-subset selection, relative to TS 
samples, MTM classes and both TS and MTM data. 

(a) MSE pattern for TS samples (b) MSE pattern for MTM classes 



 
Genetic Programming – New Approaches and Successful Applications 162 

TS 

Models 
MSE Total 

MTM 

Models
MSE Total 

Global 

Models
MSE Total 

MSR 0.002367 (0.003934) MCR 0.002427 (0.003777) MGR 0.002034 (0.003501) 

MSS 0.002076 (0.004044) MCS 0.007315 (0.025811) MGS 0.002492 (0.003013) 

MSAS 0.002594 (0.003796) MCAS 0.002831 (0.004662) MGAS 0.001999 (0.003587) 

MSAR 0.002232 (0.003782) MCAR 0.001424 (0.003527) MGAR 0.001599 (0.003590) 

Table 5. Performance of the generated genetic programming volatility models, using dynamic training-
subset selection method, according to MSE total for the TS samples, the MTM classes and both TS and 
MTM samples 

Based on the MSE total as performance criterion, the generated genetic programming 
volatility models MSS, MCAR and MGAR are selected. They seem to be more accurate in 
forecasting implied volatility than the other models because they have the smallest MSE in 
enlarged sample. However, the MTM model MCAR and the global model MGAR 
outperform the TS model MSS. Figure 13 describes the evolution's pattern of the squared 
errors for these generated volatility models. 

Figure 13 shows that almost all models relative to each data's group are performing on the 
enlarged sample and present forecasting errors which are small and very closed. Forecasting 
errors are higher for the MTM classes than for the TS samples and both TS and MTM 
samples. Comparison between models generated using static training-subset selection 
method (Figure 12) and dynamic training-subset selection methods (Figure 13) respectively, 
reveals that the amplitude of forecasting errors relative to TS and MTM classes respectively 
is lower for the models generated using dynamic training-subset selection methods than for 
the models generated using static training-subset selection method. Actually, the quality of 
the generated genetic programming forecasting models has been improved with the 
dynamic training, in particular for MTM classes.  

 
Figure 13. Evolution of the squared errors for total sample of the best generated GP volatility models, 
using dynamic training-subset selection methods, relative to TS samples (a), MTM classes (b) and both 
TS and MTM samples (c). 

(a) MSE pattern for  
TS samples 

(b) MSE pattern 
for  MTM classes 

(c) MSE pattern for 
TS+MTM 
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The best generated genetic programming volatility models selected, relative to dynamic 
training-subset selection method, are compared to the best generated genetic programming 
volatility model, relative to static training-subset selection method. Results are reported in 
Table 6. 

Models MSE total

M4S4 0,001444 (0,002727) 

MCAR 0.001424 (0.003527) 

MGAR 0.001599 (0.003590)

Table 6. Comparison between best models generated by static and dynamic selection methods for call 
options 

Comparison between models reveals that the best models generated respectively by static 
(M4S4) and dynamic selection methods (MCAR and MGAR) present total MSE small and 
very close. While the generated genetic programming volatility models M4S4 and MCAR 
have total MSE smaller than the MGAR model, the latest seems to be more accurate in 
forecasting implied volatility than the other models. This can be explained by the fact that, on 
one hand, the difference between forecasting errors is small, and on the other hand, the MGAR 
model is more general than MCAR and M4S4 models because it is adaptive to all TS and MTM 
classes simultaneously. In fact, the MGAR model, generated using ARSS method, is trained on 
all TS and MTM classes simultaneously. Whereas, the MCAR model, generated using ARSS 
method, is trained only on MTM classes simultaneously; and the M4S4 model, generated using 
static training-subset selection method, is trained separately on each subset of TS. 

As the adaptive-random training subset selection method is considered the best one to 
generate implied volatility model for call options, it is applied to put options. The decoding 
of volatility forecasting formulas generated for call and put options as well as their 
forecasting errors are reported in Table 7.  

A detailed examination of the formulas in Table 7 shows that the implied volatilities 
generated by genetic programming are function of all the inputs used, namely the option 

price divided by strike price (
C

K
 for calls and

P

K
for puts), the index price divided by strike 

price 
S

K
 and time to maturity . The implied volatilities generated for calls and puts cannot 

be negative since they are computed using the square root and the normal cumulative 
distribution functions as the root nodes. Furthermore, the performance of models is uniform 
as they present near MSE on the enlarged sample. 

4.2. Dynamic hedging results: 

The performance of the best genetic programming forecasting models is compared to the 
Black-Scholes model in delta, gamma and vega hedging strategies. Table 8 reports the 
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average hedging errors for call options using Black-Scholes (BS) and genetic programming 
(GP) models, at the 1-day and 7-days rebalancing frequencies. Values in bold correspond to 
the GP hedging errors which are less than the BS ones. 
 

Option LISP Expression Formula MSE 

Total 

Call sqrt((X0/(multiply(X,((
multiply(X1,plus(X1,X2
))*X1)*X1))*X1))) 6 5
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Table 7. Performance of the best generated genetic programming volatility models for call and put 

options and their decoding formulas 0 1 2, ,
C P S

X or X X
K K K

 
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 
 

Results in Table 8 show that the delta hedging performance improves for out-of-the money 
call options at longer maturities, for at-the-money call options at medium maturities and for 
in-the money call options at shorter maturities, regardless of the model used at daily hedge 
revision frequency. The best delta hedging performance is achieved using in-the-money 
short term call options for all MTM classes, regardless of the option model used. 

The delta-gamma hedging performance improves for all moneyness classes of call options at 
longer maturities, regardless of the model used at daily hedge frequency (except in-the-
money call options using the genetic programming model). The best delta-gamma hedging 
performance is achieved, for BS model, using at-the-money long term call options for all 
MTM classes. However, the best delta-gamma hedging performance is achieved, for genetic 
programming model, using in-the-money short term call options for all MTM classes. 

The delta-vega hedging performance improves for out-of-the money and in-the-money call 
options at longer maturities and for at-the-money call options at shorter maturities, 
regarding BS model at daily hedge revision frequency. However, the delta-vega hedging 
performance improves for out-of-the money call options at shorter maturities, for at-the-
money call options at medium maturities and for in-the money call options at longer 
maturities, regarding genetic programming model at daily hedge revision frequency. The 
best delta-vega hedging performance is achieved, for BS model, using out-of-the-money 
long term call options for all moneyness and time to maturity classes. However, the best 
delta-gamma hedging performance is achieved, for genetic programming model, using at-
the-money medium term call options for all MTM classes. 

The percentage of cases where the hedging error of the genetic programming model is less 
than the BS hedging error is around 59%. In particular, the performance of genetic 
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programming model is better than the BS model on in-the-money call options class. Further, 
the total of hedging errors relative to genetic programming model is about 21 percent 
slightly lower than 19 percent relative to BS model. Table 9 displays the average hedge 
errors for put options using BS and genetic programming models, at the 1-day and 7-days 
rebalancing frequencies. Values in bold correspond to the genetic programming hedging 
errors which are less than the BS ones. 
 

    Rebalancing Frequency  

    1-day  7- days  

S/K Hedging 

strategy 

Model <60 60-180 >=180 <60 60-180 >=180 

<0.98 Delta hedging BS 0,013119 0,001279 0,000678 0,057546 0,010187 0,005607 

  GP 0,009669 0,001081 0,000662 0,053777 0,009585 0,005594 

 Gamma hedging BS 0,000596 0,000732 0,000061 0,003026 0,007357 0,000429 

  GP 0,000892 0,002040 0,000075 0,003855 0,001359 0,000153 

 Vega hedging BS 0,000575 0,000050 0,000039 0,000525 0,000226 0,000099 

  GP 0,000473 0,002035 0,004518 0,000617 0,004642 0,040071 

0.98-1.03 Delta hedging BS 0,002508 0,000717 0,000730 0,019623 0,005416 0,002283 

  GP 0,002506 0,0007 0,001725 0,020 0,0054 0,0022 

 Gamma hedging BS 0,000069 0,000018 0,000006 0,000329 0,000169 0,000027 

  GP 0,000377 0,000040 0,000029 0,000727 0,000155 0,000059 

 Vega hedging BS 0,000066 0,000373 0,003294 0,000527 0,023500 0,031375 

  GP 0,000281 0,000013 0,000207 0,001102 0,000147 0,000134 

>=1.03 Delta hedging BS 0,000185 0,000906 0,001004 0,001602 0,006340 0,006401 

  GP 0,000184 0,000905 0,001 0,000840 0,005789 0,0064 

 Gamma hedging BS 0,000323 0,000047 0,000028 0,001546 0,000386 0,000157 

  GP 0,000028 0,000057 0,000036 0,000227 0,000429 0,000175 

 Vega hedging BS 0,000362 0,000060 0,000052 0,001757 0,002015 0,000247 

  GP 0,000067 0,000057 0,00005 0,000831 0,000864 0,000186 

Table 8. Average hedge errors of dynamic hedging strategies relative to BS and GP models for call 
options 

Results in Table 9 show that the delta-gamma hedging performance improves for all 
moneyness classes of put options (except in-the-money put options) at longer maturities, 
regarding BS model at daily hedge frequency. However, the delta-gamma hedging 
performance improves for in-the money put options and at-the-money put options at 
medium maturities and for out-of-the money put options at longer maturities, regarding 
genetic programming model at daily hedge revision frequency. The best delta-gamma 
hedging performance is achieved, for BS model, using at-the-money long term put options 
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for all MTM classes. However, the best delta-gamma hedging performance is achieved, for 
genetic programming model, using out-of-the-money long term put options for all MTM 
classes. 

    Rebalancing Frequency  

   1-day  7- days  

S/K Hedging strategy Model <60 60-180 >=180 <60 60-180 >=180 

<0.98 Delta hedging BS 0,007259 0,002212 0,001189 0,015453 0,013715 0,007740 

 GP 0,064397 0,002270 0,001256 0,016872 0,013933 0,007815 

 Gamma hedging BS 0,000107 0,000043 0,000705 0,000383 0,000253 0,013169 

 GP 0,000177 0,000351 0,000676 0,000990 0,000324 0,009201 

 Vega hedging BS 0,000051 0,000715 0,000612 0,000174 0,002995 0,008527 

 GP 0,002800 0,000345 0,000625 0,018351 0,000184 0,008979 

0.98-1.03 Delta hedging BS 0,007331 0,002267 0,001196 0,170619 0,009875 0,004265 

 GP 0,0073 0,002219 0,001185 0,170316 0,009715 0,004260 

 Gamma hedging BS 0,003750 0,000049 0,000027 0,032725 0,000119 0,000119 

 GP 0,003491 0,000031 0,000024 0,029792 0,000113 0,000103 

 Vega hedging BS 0,035183 0,000052 0,000044 0,037082 0,000329 0,000043 

 GP 0,004343 0,000038 0,000043 0,037045 0,000190 0,000041 

>=1.03 Delta hedging BS 0,007680 0,004469 0,000555 0,037186 0,017322 0,011739 

 GP 0,006641 0,004404 0,0005 0,037184 0,017076 0,011733 

 Gamma hedging BS 0,000262 0,000204 0,000079 0,001196 0,001319 0,000369 

 GP 0,000548 0,000287 0,000166 0,002034 0,001323 0,001059 

 Vega hedging BS 0,000232 0,000108 0,000025 0,000488 0,000644 0,000270 

 GP 0,000312 0,000080 0,00002 0,001047 0,001186 0,000244 

Table 9. Average hedge errors of dynamic hedging strategies relative to BS and GP models for put 
options 

The delta-vega hedging performance improves for BS using at-the-money and out-of-the-
money put options at longer maturities and in-the-money put options at shorter maturities,  
at daily hedge revision frequency. However, the delta-vega hedging performance improves for 
all moneyness classes of put options (except in-the-money put options) at longer maturities, 
regarding genetic programming model at daily hedge frequency. The best delta-vega hedging 
performance is achieved, for BS model, using out-of-the-money long term put options for all 
MTM classes. However, the best delta-vega hedging performance is achieved, for genetic 
programming model, using at-the-money long term put options for all MTM classes. 

The percentage of cases where the hedging error of the genetic programming model is less 
than the BS hedging error is around 57%. In particular, the performance of genetic 
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programming model is better than the BS model on at-the-money put options class. But, the 
total of hedging errors relative to genetic programming model is about 50 percent slightly 
higher than 46 percent relative to BS model. 

In summary, the genetic programming model is more accurate in all hedging strategies than 
the BS model, for in-the-money call options and at-the-money put options. The performance 
of genetic programming is pronounced essentially in terms of delta hedging for call and put 
options. The percentage of cases where the delta hedging error of the genetic programming 
model is less than the BS delta hedging error is 100% for out-of-the money and in-the-money 
call options as well as for at-the-money and out-of-the-money put options. The percentage 
of cases where the delta-vega hedging error of the genetic programming model is less than 
the BS delta-vega hedging error is 100% for in-the-money call options as well as for at-the-
money put options. The percentage of cases where the delta-gamma hedging error of the 
genetic programming model is less than the BS delta-gamma hedging error is 100% for at-
the-money put options.  

Furthermore, results exhibit that as the rebalancing frequency changes from 1-day to 7-days 
revision, as the hedging errors increase and vice versa. The option value is a nonlinear 
function of the underlying, therefore, hedging is instantaneous and hedging with discrete 
rebalancing gives rise to error. Frequent rebalancing can be impractical due to transactions 
costs. In the literature, consequences of discrete time hedging have been considered usually 
in conjunction with the existence of transaction costs, that’s why hedgers would like to trade 
at least frequently as possible. Pioneered by Leland [43], asymptotic approaches are used as 
well [44-46]. For most MTM classes, delta-gamma and delta-vega hedging strategies are 
shown to perform better in dynamic hedging when compared with delta hedging strategy, 
regardless of the model used. The delta-gamma strategy enables the performance of a 
discrete rebalanced hedging to be improved. The delta-vega strategy corrects partly for the 
risk of a randomly changing volatility. 

5. Conclusion  

This paper is concerned with improving the dynamic hedging accuracy using generated 
genetic programming implied volatilities. Firstly, genetic programming is used to predict 
implied volatility from index option prices. Dynamic training-subset selection methods are 
applied to improve the robustness of genetic programming to generate general forecasting 
implied volatility models relative to static training-subset selection method. Secondly, the 
implied volatilities derived are used in dynamic hedging strategies and the performance of 
genetic programming is compared to that of Black-Scholes in terms of delta, gamma and 
vega hedging.  

Results show that the dynamic training of genetic programming yields better results than 
those obtained from static training with fixed samples, especially when applied on time 
series and moneyness-time to maturity samples simultaneously. Based on the MSE total as 
performance criterion, three generated genetic programming volatility models are selected 
M4S4, MCAR and MGAR. However, the MGAR seems to be more accurate in forecasting 
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implied volatility than MCAR and M4S4 models because it is more general and adaptive to 
all time series and moneyness-time to maturity classes simultaneously. 

The main conclusion concerns the importance of implied volatility forecasting in conducting 
hedging strategies. Genetic programming forecasting volatility makes hedge performances 
higher than those obtained in the Black-Scholes world. The best genetic programming 
hedging performance is achieved for in-the-money call options and at-the-money put 
options in all hedging strategies. The percentage of cases where the hedging error of the 
genetic programming model is less than the Black-Scholes hedging error is around 59% for 
calls and 57% for puts. The performance of genetic programming is pronounced essentially 
in terms of delta hedging for call and put options. The percentage of cases where the delta 
hedging error of the genetic programming model is less than the Black-Scholes delta hedging 
error is 100% for out-of-the money and in-the-money call options as well as for at-the-money 
and out-of-the-money put options. The percentage of cases where the delta-vega hedging error 
of the genetic programming model is less than the Black-Scholes delta-vega hedging error is 
100% for in-the-money call options as well as for at-the-money put options. The percentage of 
cases where the delta-gamma hedging error of the genetic programming model is less than the 
Black-Scholes delta-gamma hedging error is 100% for at-the-money put options. 

Finally, improving the accuracy of implied volatility forecasting using genetic programming 
can lead to well hedged options portfolios relative to the conventional parametric models. 

Our results suggest some interesting issues for further investigation. First, the genetic 
programming can be used to hedge options contracts using implied volatility of other 
models than Black-Scholes model, notably stochastic volatility models and models with 
jump, as a proxy for genetic programming volatility forecasting. Further, the hedge factors 
can be computed numerically not analytically. Second, this work can be reexamined using 
data from individual stock options, American style index options, options on futures, 
currency and commodity options. Third, as the genetic programming can incorporate 
known analytical approximations in the solution method, parametric models such as 
GARCH models can be used as a parameter in the genetic programming to build the 
forecasting volatility model and the hedging strategies. Finally, the genetic programming 
can be extended to allow for dynamic parameter choices including the form and the rates of 
genetic operators, the form and pressure of selection mechanism, the form of replacement 
strategy and the size of population. This dynamic genetic programming method can 
improve the performance without extra calculation costs. We believe these extensions are of 
interest for application and will be object of our future works. 
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