
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 7

© 2012 Abdelmalek et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dynamic Hedging Using Generated

Genetic Programming Implied Volatility Models

Fathi Abid, Wafa Abdelmalek and Sana Ben Hamida

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/48148

1. Introduction

One challenge posed by financial markets is to correctly forecast the volatility of financial
securities, which is a crucial variable in trading and risk management of derivative
securities. Dynamic hedging is very sensitive to volatility forecast and good hedges require
accurate estimate of volatility. Implied volatilities, generated from option markets, can be
particularly useful in such contents as they are forward-looking measures of the market's
expected volatility during the remaining life of an option [1, 2]. Since there is no explicit
formula available to compute directly the implied volatility, the latter can be obtained by
inverting the option pricing model. On the contrary, the genetic programming offers explicit
formulas which can compute directly the implied volatility. This volatility forecasting
method should be free of strong assumptions regarding underlying price dynamics and
more flexible than parametric methods. This paper proposes a non parametric approach
based on genetic programming to improve the accuracy of the implied volatility forecast
and consequently the dynamic hedging.

Genetic Programming [3] is an optimization technique which extends the basic genetic
algorithms [4] to process non-linear problem structure. In genetic programming, solutions
are represented as tree structures that can vary in size and shape, rather than fixed length
character strings as in genetic algorithms. This means that genetic programming can be used
to perform optimization at a structural level. In the standard genetic programming, the
entire population of function-trees is evaluated against the entire training data set, so the
number of function-tree evaluations carried out per generation is directly proportional to
both the population size and the size of the training set. Genetic programming can
encounter the problem of managing training sets which are too large to fit into the memory
of computers, and then the realization of predictors. In machine learning, the practiced
solution to learn large data set is the application of resampling techniques, such as, bagging

Genetic Programming – New Approaches and Successful Applications 142

[5], boosting [6] and arcing [7]. However, these techniques require that the entire data sets
be stored in the main memory. When applied to large data sets, this approach could be
impractical. In this paper, we proposed to split data into smaller subsets. First, the genetic
programming is run separately on all training sub-samples. Such approach is called static
training-subset selection method [8]; it might provide local solutions not adaptive to the
entire enlarged data set. Alternatively, a dynamic training approach is developed. It allows
genetic programming to learn simultaneously on all training sub-samples and it implies a
new parameter added to the basic genetic programming algorithm which is the number of
generations to change sample. This approach lightens the training task for the genetic
programming and favors the discovery of solutions that are more robust across different
learning data samples and seem to have better generalization ability. Comparison between
generated models using static and dynamic selection methods reveals that, the dynamic
approach improves the forecasting performance of the generated models using genetic
programming. The best forecasting implied volatility models are selected according to total
MSE criterion. They are used to compute hedge factors and implement dynamic hedging
strategies. According to the average hedging errors, the genetic programming presented
accurate hedging performance compared to that of Black-Scholes model.

The rest of the paper is organized as follows: section 2 provides background information
regarding related works in forecasting volatility and dynamic hedging, section 3 describes
research design and methodology used in this paper, section 4 reports experimental results
and finally section 5 concludes.

2. Related works

Traditional parametric methods have limited success in estimating and forecasting volatility
as they are dependent on restrictive assumptions and difficult to estimate. Several machine
learning techniques have been recently used to overcome these difficulties such as artificial
neural networks and evolutionary computation algorithms. In particular, genetic
programming has been successfully applied to forecast financial time series [9,10].

This paper makes an initial attempt to test whether the hedger can benefit more by using
generated genetic programming implied volatilities instead of Black-Scholes implied
volatilities in conducting dynamic hedging strategies.

Changes in asset prices is not the only risk faced by market participants, instantaneous
changes in market implied volatility can also bring a hedging portfolio significantly out of
balance. Extensive research during the last two decades has demonstrated that the volatility
of stocks is not constant over time [11]. The Autoregressive Conditional Heteroskedasticiy
(ARCH) and the Generalized ARCH (GARCH) models are introduced [12,13] to describe
the evolution of the asset price’s volatility in discrete time. Econometric tests of these models
clearly reject the hypothesis of constant volatility and find evidence of volatility clustering
over time. In the financial literature, stochastic volatility models have been proposed to
model these effects in a continuous-time setting [14-17]. Although these models improve
the benchmark Black-Scholes model, they are complex because they require strong

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 143

assumptions and computational effort to estimate parameters and stochastic process. As
mentioned in [18], traditional financial engineering methods based on parametric models
such as the GARCH model family, seem to have difficulty to improve the accuracy in
volatility forecasting due to their rigid as well as linear structure. Using its basic and flexible
tree-structured representation, genetic programming is capable of solving non-linear
problems. In the context of forecasting volatility, most of research papers have focused on
forecasting historical volatility based on past returns in different markets. Using historical
returns of Nikkei 225 and S&P500 indices, Chen and Yeh [19] have applied a recursive
genetic programming approach to estimate volatility by simultaneously detecting and
adapting to structural changes. Results have shown that the recursive genetic programming
is a promising tool for the study of structural changes. Using high frequency foreign
exchange USD-CHF and USD-JPY time series, Zumbach et al. [20] have compared the
genetic programming forecasting accuracy to that of historical volatilities, the GARCH (1,1),
FIGARCH and HARCH models. According to the root-mean squared errors, the generated
genetic programming volatility models did consistently outperform the benchmarks.
Similarly, Neely and Weller [21] have tested the forecasting performance of genetic
programming for USD-DEM and USD-YEN daily exchange rates against that of GARCH
(1,1) model and a related RiskMetrics volatility forecast over different time horizons, using
various accuracy criteria. While the genetic programming rules did not usually match the

GARCH (1,1) or RiskMetrics models' MSE or 2R , its performance on those measures was
generally close. But, the genetic programming did consistently outperform the GARCH
model on mean absolute error (MAE) and model error bias at all horizons. Overall, on some
dimensions the genetic programming has produced significantly superior results. Applying
a combination of theory and techniques such as wavelet transform, time series data mining,
Markov chain based discrete stochastic optimization, and evolutionary algorithms genetic
algorithms and genetic programming, Ma et al. [22,23] have proposed a systematic approach
to address specifically non linearity problems in the forecast of financial indices using
intraday data of S&P100 and S&P500 indices. As a result, accuracy of forecasting has
reached an average of over 75% surpassing other publicly available results on the forecast of
any financial index. Abdelmalek et al. [8] have extended the studies mentioned earlier by
forecasting the implied volatility of Black-Scholes from the S&P500 index call options
instead of historical volatility using a static training of genetic programming. The
performance of generated genetic programming volatility forecasting models is compared
between time series samples and moneyness-time to maturity classes. Using Total and out-
of-sample mean squared errors (MSE) as forecasting performance measures, the time series
model seems to be more accurate in forecasting implied volatility than moneyness-time to
maturity models.

Option contracts prices are affected by new information and changes in expectations as
much as they are by changes in the value of the underlying index. If traders have perfect
foresight on forward volatility, then dynamic hedging would be essentially riskless. In
practice, continuous hedging is impossible, but the convexity of option contract allows for
adjustments in the exposure to higher-order sensitivities of the model, such as gamma, vega,

Genetic Programming – New Approaches and Successful Applications 144

etc. Most of the existing literature on hedging a target contract using other exchange-traded
options focuses on static strategies, motivated at least in part by the desire to avoid the high
costs of frequent trading. The goal of static hedging is to construct a buy-and-hold portfolio
of exchange traded claims that perfectly replicates the payoff of a given over-the-counter
product [24,25]. The static hedging strategy does not require any rebalancing and therefore,
it does not incur significant transaction costs. Unfortunately, the odds of coming up with a
perfect static hedge for a given over-the-counter claim are small, given the limited number
of exchange listed option contracts with sufficient trading volume. In other words, the static
hedge can only be efficient if traded options are available with sufficiently similar maturity
and moneyness as the over-the-counter product that has to be hedged. Under a stochastic
volatility, a perfect hedge can in principle be constructed with a dynamically rebalanced
portfolio consisting of the underlying and one additional option. In practice, the dynamic
replication strategy for European options will only be perfect if all of the assumptions
underlying the Black-Scholes formula hold. For general contingent claims on a stock, under
market frictions, the delta might still be used as first-order approximation to set up a riskless
portfolio. However, if the volatility of the underlying stock varies stochastically, then the
delta hedging method might fail severely. A simple method to limit the volatility risk is to
consider the volatility sensitivity vega of the contract. The portfolio will have to be
rebalanced frequently to ensure delta-vega neutrality. With transaction costs, frequent
rebalancing might result in considerable losses. In practice, investors can rebalance their
portfolios only at discrete intervals of time to reduce transactions costs.

Non parametric hedging strategies as an alternative to the existing parametric model based-
strategies, have been proposed [26,27]. Those studies estimated pricing formulas by
nonparametric or semi-parametric statistical methods such as neural networks and kernel
regression, and they measured their performance in terms of delta-hedging. Few researches
have focused on the dynamic hedging using genetic programming, however. Chen et al. [28]
have applied genetic programming to price and hedge S&P500 index options. By
distinguishing the case in-the-money from the case out-of-the-money, the performance of
genetic programming is compared with the Black-Scholes model in terms of hedging accuracy.
Based on the post-sample performance, it is found that in approximately 20% of the 97 test
paths, genetic programming has lower tracking error than the Black-Scholes formula.

Based on the literature survey, one can conclude that the genetic programming could be
used to efficiently forecast volatility and implement accurate dynamic hedging strategies,
which opens up an alternative path besides other data-based approaches.

3. Research design and methodology

Accurate volatility forecasting is an essential element in conducting good dynamic hedging
strategies. The first thrust of this paper deals with generation of implied volatility from
option markets using static and dynamic training of genetic programming, respectively.
While the static training [8] is characterized by training the genetic programming
independently on a single Sub-sample, the dynamic training allows the genetic

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 145

programming to train on the entire data sub samples simultaneously rather than just a
single subset by changing the training Sub-sample during the run process. This permits to
improve the robustness of genetic programming to generate general models adaptive to all
training samples. The second thrust of this paper is to study the accuracy of the generated
genetic programming implied volatility models in terms of dynamic hedging. Since the true
volatility is unobservable, it is impossible to assess the accuracy of any particular model;
forecasts can only be related to realized volatility. In this paper, we assume that the implied
volatility is a reasonable proxy for realized volatility, to generate forecasting implied
volatility models using genetic programming and then to analyze the implications of this
predictability for hedging purposes.

Figure 1 illustrates the operational procedure to implement the proposed approach.

Figure 1. Description of the proposed approach’s implementation

The operational procedure consists of the following steps: The first step is devoted for the
data division schemes. The second step deals with the implementation of genetic
programming1 (GP), the application of training subset selection methods and the selection of
the best forecasting implied volatility models. The last step is dedicated to dynamic hedging
results.

3.1. Data division schemes

Data used in this study consist of daily prices for the European-style S&P 500 index calls and
puts options traded on the Chicago Board of Options Exchange from 02 January to 29
August 2003. The data base include the time of the quote, the expiration date, the exercise
price and the daily bid and ask quotes for call and put options. Similar information for the
underlying S&P 500 index is also available on a daily basis. S&P500 index options are among
the most actively traded financial derivatives in the world. The minimum tick for series
trading below 3 is 1/16 and for all other series 1/8. Strike price intervals are 5 points, and 25
points for far months. The expiration months are three near term months followed by three
additional months from the March quarterly cycle (March, June, September, and December).
Following a standard practice, we used the average of an option’s bid and ask price as a
stand-in for the market value of the option. The risk free interest rate is approximated by
using 3 month US Treasury bill rates. It is assumed that there are no transaction costs and no
dividend.

1 GP system is built around the Evolving Object library, which is an ANSI-C++ evolutionary computation Framework
(EO library).

Genetic Programming – New Approaches and Successful Applications 146

To reduce the likelihood of errors, data screening procedures are used [29,30]. We apply
four exclusion filters to construct the final option sample. First, as implied volatilities of
short-term options are very sensitive to small errors in the option price and may convey
liquidity-related biases, options with time to maturity less than 10 days are excluded.
Second, options with low quotes are eliminated to mitigate the impact of price discreteness
on option valuation. Third, deep-in-the-money and deep-out-of-the money option prices are
also excluded due to the lack of trading volume. Finally, option prices not satisfying the

arbitrage restriction [31], rC S Ke   , are not included.

The final sample contains 6670 daily option quotes, with at-the-money (ATM), in-the-money
(ITM) and out-of-the money (OTM) options respectively taking up 37%, 34% and 29% of the
total sample.

In this paper, two data division schemes are used. The full sample is sorted first, by time
series (TS) and second by moneyness-time to maturity (MTM). For time series, data are
divided into 10 successive samples (S1, S2…S10), each contains 667 daily observations. The
first nine samples are used as training sub-samples. For moneyness-time to maturity, data
are divided into nine classes with respect to moneyness and time to maturity criteria.
According to moneyness criterion: A call option is said out-of-the money (OTM) if

/ 0.98S K  ; at-the-money (ATM) if / 0.98,1.03S K     ; and in-the-money (ITM) if
/ 1.03S K  . According to time to maturity criterion: A call option is Short Term (ST) if

60  days; Medium Term (MT) if 60,180     days; and Long Term (LT) if 180  days.
Each class Ci is divided on training set CiL and test set CiT, which produces respectively nine
training and nine test MTM sub-classes. Figure 2 illustrates the two division schemes.

Figure 2. Data division schemes

3.2. Implied volatility forecasting using genetic programming:

This subsection describes the design of genetic programming and the experiments
accomplished using the genetic programming method to forecast implied volatility. In the
first experiment, the genetic programming is trained using static training-subset selection

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 147

method; in the second one, we used dynamic training-subset selection methods. We
describe training and test samples used in these experiments.

3.2.1. The design of genetic programming:

Our genetic programming software is referred to as symbolic regression written in C++
language. It is designed to find a function that relates a set of inputs to an output without
making any assumptions about the structure of that function. Symbolic regression was one
of the earliest applications of genetic programming [3], and has continued to be widely
studied [32-35]. The following pseudo code describes the genetic programming's algorithm
structure used in this paper.

Initialize population

While (termination condition not satisfied) do

Begin

Evaluate the performance of each individual according to the fitness criterion

Until the offspring population is fully populated do

 - Select individuals in the population using the selection algorithm

 - Perform crossover and mutation operations on the selected individuals

 - Insert new individuals in the offspring population

 Replace the existing population by the new population

End while

Report the best solution found

End

Algorithm 1 Pseudo code of genetic programming

The genetic programming’s algorithm structure consists of the following steps: nodes
definition, initialization, fitness evaluation, selection, genetic operators (crossover and
mutation) and termination condition.

Nodes Definition: The nodes in the tree structure of genetic programming can be classified
into terminal (leaf) nodes and function (non-terminal) nodes. The terminal and function sets
used are described in Table 1.

The terminal set includes the inputs variables, notably, the option price divided by strike

price (
C

K
for calls and

P

K
for puts), the index price divided by strike price

S

K
and time to

maturity . The function set includes unary and binary nodes. Unary nodes consist of
mathematical functions, notably, cosinus function (cos), sinus function (sin), log function

(ln), exponential function (exp), square root function () and the normal cumulative
distribution function (). Binary nodes consist of the four basic mathematical operators,
notably, addition (+), subtraction (-), multiplication () and division (%). The basic division
operation is protected against division by zero and the log and square root functions are
protected against negative arguments.

Genetic Programming – New Approaches and Successful Applications 148

Expression Definition

Terminal Set C/K Call price / Strike price

S/K Index price / Strike price

τ Time to maturity

Function Set + (plus) Addition

- (minus) Subtraction

* (multiply) Multiplication

0
0 (divide) Protected division: x 0

0 y = 1 if y=0; x 0
0 y = x 0

0 y otherwise

ln Protected natural log:    ln lnx x

Exp Exponential function:  exp xx e

Sqrt Protected square root: x x

Ncdf Normal cumulative distribution function 

Table 1. Terminal set and function set

Individuals are encoded as LISP S-expressions which can also be depicted as a parse tree.
The search space for genetic programming is the space of all possible parse trees that can be
recursively created from the terminal and function sets.

Figure 3. Example of a tree structure for GP and the corresponding functions

Initialization: The generated genetic programming volatility models are performed using a
ramped half and half as initialization method [3]. This method involves generating an equal
number of trees using a maximum initial depth that ranges from 2 to 6, as specified in Table
2. For each level of depth, 50% of the initial trees are generated via the full method and the

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 149

other 50% are generated via the grow method. In the full method, the initial trees have the
property that every path from root to endpoint is of maximum depth. In the grow method,
initial trees can be of various depths, subject to the constraint that they do not exceed the
maximum depth.

Fitness function: The fitness function assigned to a particular individual in the population
must reflect how closely the output of an individual program comes to the target function.

In this paper, the Black-Scholes implied volatility BS
t is used as target output. It is defined

as the standard deviation which equates the Black-Scholes price BSC 2 to the market option

price *
tC [36]:

 

    *

! , 0,

, , , , ,

BS
t

BS
BS t t t

K T

C S K K T C K T



 






 (1)

The generated genetic programming trees provide at each time t the forecast value ˆ
t , and

the fitness function used to measure the accuracy of forecast is the mean squared error

(MSE) between the target (BS
t) and forecasted (ˆ

t) output volatility, computed as follows:

  
2

1

1 ˆ
N

BS
t t

t

MSE
N

 


  (2)

Where, N is the number of data sample.

Selection: Based on the fitness criterion, the selection of the individuals for reproduction is
done with the tournament selection algorithm. A group of individuals is selected from the
population with a uniform random probability distribution. The fitness values of each
member of this group are compared and the actual best is selected. The size of the group is
given by the tournament size which is equal to 4, as indicated in Table 2.

Genetic operators: Crossover and mutation are the two basic operators which are applied to
the selected individuals in order to generate new individuals for the next generation. As
described in Figure 4, the subtree crossover creates new offspring trees from two selected
parents by exchanging their sub-trees. As indicated in Table 2, the crossover operator is
used to generate about 60% of the individuals in the population. The maximum tree size
(measured by depth) allowed after the crossover is 17. This is a popular number used to
limit the size of tree [3]. It is large enough to accommodate complicated formulas and works
in practice.

2    
 2

1 2 1 2 1

ln 0.5
, ,r

BS

S
r

K
C SN d Ke N d d d d

 
 

 


 
  

      .

Genetic Programming – New Approaches and Successful Applications 150

Figure 4. Example of subtree crossover

The mutation operator randomly changes a tree by randomly altering nodes or sub-trees to
create a new offspring. Often multiple types of mutation are beneficially used
simultaneously [37,38]. In this paper, three mutation operators are used simultaneously,
they are described below:

Branch (or subtree) mutation operator randomly selects an internal node in the tree, and
then it replaces the subtree rooted at that node with a new randomly-generated subtree
[3].

Figure 5. Example of subtree mutation

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 151

Figure 6. Example of point mutation

Point mutation operator consists of replacing a single node in a tree with another randomly-
generated node of the same arity [39].

Expansion mutation operator randomly selects a terminal node in the tree, and then replaces
it with a new randomly-generated subtree.

Figure 7. Example of expansion mutation

As indicated in Table 2, Branch mutation is applied with a rate of 20%; Point and Expansion
mutations are applied with a rate of 10%, respectively.

Replacement: The method of replacing parents for the next generation is comma replacement
strategy [40], which selects the best offspring to replace the parents. It assumes that
offspring size is higher than parents' size. If µ is the population size and λ is the number of
the new individuals (which can be larger than µ), the population is constructed using the
best µ out of the λ new individuals.

Termination criterion: The stopping criterion is the maximum number of generations. It is fixed
at 400 and 1000 for static and dynamic training- subset selection, respectively. In the dynamic

Genetic Programming – New Approaches and Successful Applications 152

training- subset selection approach, the maximum number of generations is increased to allow
the genetic programming to train on the maximum of samples simultaneously. The number of
generations to change sample varied between 20 and 100 generations.

The implementation of genetic programming involves a series of trial and error experiments
to determine the optimal set of genetic parameters which is listed in Table 2. By varying
genetic parameters, each program is run ten times with ten different random seeds. The
choice of the best genetic program is made according to the mean and median of Mean
Squared Errors (MSE) for training and testing sets.

Population size:
Offspring size:
Maximum number of generations for static method:
Maximum number of generations for dynamic method:
Generations' number to change sample
Maximum depth of new individual:
Maximum depth of the tree:
Tournament size:
Crossover probability:
Mutation probability:

Branch mutation:
Point mutation:
Expansion mutation:

100
200
400
1000
20-100
6
17
4
60%
40%
20%
10%
10%

Table 2. Summary of genetic programming parameters

3.2.2. Dynamic training-subset selection method

As data are divided in several sub-samples, the genetic programming is trained, first,
independently on each sub-sample relative to each data division scheme (algorithm 1). This
approach is called static training-subset selection method [8]. Second, the genetic
programming is trained simultaneously on the entire data sub-samples relative to each data
division scheme, rather than just a single subset by changing the training sub-sample during
the run process. This approach is called dynamic training-subset selection method. The main
goal of this method is to make genetic programming adaptive to all training samples and
able to generate general models and solutions that are more robust across different learning
data samples. In the context of evolutionary algorithms, there are at least three approaches
for defining the frequency of resampling [41]. The first approach called “individual-wise”
consists of extracting a new sample of data instances from the training set for each
individual of the population. As a result, different individuals will probably be evaluated on
different data samples, which cast some doubts on the fairness of the selection procedure of
the evolutionary algorithm. The second approach called “run-wise” consists of extracting a
single fixed sample of data instances from the training set used to evaluate the fitness of all
individuals throughout the evolutionary run, which will probably reduce significantly the
robustness and predictive accuracy of the evolutionary algorithm. The third approach called

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 153

“generation-wise” consists of extracting a single fixed sample of data instances from the
training set at each generation, and all individuals of that generation will have their fitness
evaluated on that data sample. This method avoids the disadvantages of the two previous
approaches, and as such seems more effective. In particular, an individual will only survive
for several generations if it has a good predictive accuracy across different data samples.
The dynamic approach proposed in this study differs from the three previous approaches as
it doesn’t extract a fixed sample of data instances from the training set, but selects it from the
whole sub-samples data which are already built up and use it to evaluate the fitness of all
individuals when the generations’ number to change sample is reached. In this paper, we
proposed four dynamic training-subset selection methods: Random Subset Selection method
(RSS), Sequential Subset Selection method (SSS), Adaptive-Sequential Subset Selection method
(ASSS) and Adaptive-Random Subset Selection method (ARSS). The RSS and SSS allow the
genetic programming to learn on all training samples in turn (SSS) or randomly (RSS).
However, with these methods, there is no certainty that genetic programming will focus on the
samples which are difficult to learn. Then, the ASSS and the ARSS, which are variants of the

adaptive subset selection (ASS), are introduced to focus the genetic programming’s attention onto
the difficult samples i.e. having the greatest MSE and then to improve the learning algorithm.

Dynamic subset selection is easily added to the basic GP algorithm with no additional
computational cost according to the static subset selection.

Let S be the set of training samples Si (i=1…k), where k is the total number of samples. A
selection probability P (Si) is allocated to each sample Si from S. The training sample Si is
changed each g generations (g is the number of generations to change sample) according to
this selection probability and the dynamic training-subset selection method used. Once a
new training sample is selected, the best individuals are used as population for the next
training samples. This procedure is repeated until the maximum number of generations is
reached. This permits genetic programming to adapt its generating process to changing data
in response to feedback from the fitness function which is the mean squared error computed
as in static approach. By the end of the evolution, only individuals with the desirable
characteristics that are well adapted to the environmental changes will survive.

a. Random training-Subset Selection method (RSS):

It selects randomly the training samples with replacement. At each g generations, all the
samples from S have the same probability to be selected as the current training sample: P (Si)
=1/k, 1≤ i ≤ k. This method differs from that proposed by Gathercole and Ross [42] as
random selection concerns training samples which are already constructed according to data
division scheme, rather than data instances.

As selection of training samples is random, the performance of the current population
changes with the training sample used for evolving the genetic program. Figure 8 illustrates
an example of the best fitness (MSE) curve along evolution using RSS method. With the
sample change, the MSE may increase, but it is improved during the following generations,
the time that the population adapts itself to the new environment.

Genetic Programming – New Approaches and Successful Applications 154

Figure 8 shows that some training samples could be duplicated, but some others could be
eliminated.

Figure 8. Example of fitness curve of the best individuals generated by genetic programming using RSS
method for time series samples

b. Sequential training-Subset Selection method (SSS)

It selects all the training samples in the order. If, at generation g-1, the current training
sample is Si, then at generation g: P (Sj) = 1, with j= i+1 if i<k, or j=1 if i=k.

Figure 9. Example of curve fitness of the best individuals generated by genetic programming using SSS
method for moneyness-time to maturity classes

As illustrated in Figure 9, all the learning subsets are used during the evolution in an
iterative way.

c. Adaptive training-Subset Selection method (ASS):

Instead of selecting a training subset data in a random or sequential way, one can use an
adaptive approach to dynamically select difficult training subsets data which are frequently
misclassified. This approach is inspired from the dynamic subset selection method proposed
by Gathercole and Ross [42] which is based on the idea of dynamically selecting instances,
not training samples, which are difficult and/or have not been selected for several

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 155

generations. Selection is made according to a weight computed proportionally to the
sample's average fitness. Each g generations, the weights are updated as follows:

  
 

1 1

*

g M

j
t j

i

f X

W S
M g

 


 (3)

Where, M is the size of Si (j iX S), g is the number of generations to change sample, and

 jf X is the MSE of the individual jX .

At each g generations, training samples are re-ordered, so that the most difficult training
samples, which have higher weights, will be moved to the beginning of the ordered training
list, and the easiest training samples, which have smaller weights, will be moved to the end
of the ordered training list.

1. Adaptive-Sequential training-Subset Selection method (ASSS):

It uses the following procedure (step 1 to step 3):

Step 1. Let the first generation t be set to 0. Each training sample is assigned an equal
weight, i.e., W(Si) = 1 for 1≤ i ≤ k.

Step 2. The probability P (Si) that a training sample Si is selected to be included in the
training set and evolve genetic programming is determined using the Roulette wheel
selection scheme.

ܲሺ ௜ܵሻ = ሺݓ ௜ܵሻ∑ݓሺ ௜ܵሻ
Where, the summation is over all training samples.

Moreover, the probability P (Si) is positively related to the fitness of the parse tree generated
relative to the corresponding training sample.

ܲሺ ௜ܵሻ = ݂ሺ ௜ܵሻ∑݂ሺ ௜ܵሻ
Where, ݂ሺ ௜ܵሻ is the average fitness of individuals relative to the training sample.

Compute a fitness function which is the mean squared error for each individual in the

training sample and then the average fitness. Update the weights:

 
 

1 1

*

g M

j
t j

i

f X

W S
M g

 


Step 3. t=t+g. If t<T (T is the total number of generations), then go to step 2.

As illustrated in Figure 10, selection of training samples is made in the order for the first t
generations using the SSS method. Some training samples could be duplicated to improve

Genetic Programming – New Approaches and Successful Applications 156

the genetic programming learning. Later, samples are selected for the next run according to
the adaptive approach based on the re-ordering procedure.

Figure 10. Example of curve fitness of the best individuals generated by genetic programming using
ASSS method for time series samples

2. Adaptive-Random training-Subset Selection method (ARSS):

The ARSS method uses the same procedure as the ASSS method, except that the initial
weights are generated randomly in the start of running, rather than initialized with a
constant: For t=0,   , 0,1 ,1 .i i iW S P P i k     

  Then, for the few first generations, samples
are selected using RSS method. After, the selection of samples is made using the adaptive
approach based on the re-ordering procedure.

Figure 11. Example of curve fitness of the best individuals generated by genetic programming using
ARSS method for moneyness-time to maturity classes

3.2.2. Training and test samples

Different forecasting genetic programming volatility models are estimated from the training
set and judged upon their performance on the test set. Table 3 summarizes the training and
test data samples used for static and dynamic training-subset selection methods,
respectively.

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 157

In static training-subset selection approach, first, the genetic program is trained separately
on each of the first nine TS sub-samples (S1,…, S9) using ten different seeds and is tested on
the subset data from the immediately following date (S2,…, S10). Second, using the same
genetic parameters and random seeds applied for TS data, the genetic programming is
trained separately on each of the first nine MTM sub-classes (C1L,…, C9L) and is tested on the
second nine MTM sub-classes (C1T,…, C9T).

Subset Selection Learning data sample Test data sample

Static Subset
Selection

Si  TS samples (S1, …, S9)
(1 subset for a run)

The successive TS sample Sj, j=i+1

CiL  MTM training samples
(C1L, …, C9L)
(1 subset for a run)

The corresponding MTM test samples
CiT

Dynamic Subset
Selection
(RSS/SSS/ASSS/
ARSS)

TS samples S1, …, S9
(9 subsets for a run)

The last subset in TS samples set (S10)

MTM samples C1L, …, C9L
(9 subsets for a run)

The nine MTM test samples
(C1T + C2T …+ C9T)

TS samples + MTM samples
(S1, …, S9 ; C1L, …, C9L)
(18 subsets for a run)

The last TS sample with the nine MTM
test samples (S10 + C1T + C2T …+ C9T)

Table 3. Definition of training and test data samples for static and dynamic training-subset selection
methods

In dynamic training-subset selection approach, first, the genetic program is trained on the
first nine TS sub-samples simultaneously (S1,…, S9) using ten different seeds and it is tested
only on the tenth sub-sample data (S10). Second, the genetic programming is trained on the
first nine MTM sub-classes simultaneously (C1L,…, C9L) and it is tested on the second nine
MTM sub-classes regrouped in one test sample data (C1T + C2T …+ C9T). Third, the genetic
programming is trained on both the nine TS sub-samples and the nine MTM sub-classes
simultaneously (S1, …, S9 ; C1L, …, C9L) and it is tested on one test sample data composed of
the TS and MTM test data (S10 + C1T + C2T …+ C9T).

Based on the training and test MSE, the best generated genetic programming volatility
models relative to static and dynamic training-subset selection methods respectively are
selected. These models are then compared with each other according to the MSE total and
the best ones are used to implement the dynamic hedging strategies as described in the
following section.

3.3. Dynamic hedging

To assess the accuracy of selected generated genetic programming volatility models in
hedging with respect to Black-Scholes model, three dynamic hedging strategies are
employed, notably, delta-neutral, delta-gamma neutral and delta-vega neutral strategies.

Genetic Programming – New Approaches and Successful Applications 158

For delta hedging, at date zero, a delta hedge portfolio consisting of a short position in one
call (or put) option and a long (short) position in the underlying index is formed. At any
time t, the value of the delta hedge portfolio  t is given by:

 () () () () ()VP t V t t S t t    (4)

Where,  P t ,  V t ,  S t ,  V t and  t denote the values of the portfolio, hedging option
(call or put), underlying, delta hedge factor and bond (money market account) respectively.

The portfolio is assumed self-financed, so the initial value of the hedge portfolio at the
beginning of the hedge horizon is zero:

 (0) (0) (0) (0) (0) 0VV S       (5)

 (0) ((0) (0) (0))VV S     (6)

A dynamic trading strategy is performed in underlying and bond to hedge the option during
the hedge horizon. The portfolio rebalancing takes place at intervals of length t during the
hedge horizon 0,   , o T  , where T is the maturity of the option. At each rebalancing
time it , the hedge factor ()v it is recomputed and the money market account is adjusted:

 1 1() () ()(() ())r t
i i i V i V it e t S t t t        (7)

The delta hedge error is defined as the absolute value of the delta hedge portfolio at the end
of the hedge horizon of the option,  P  .

For delta-gamma hedging, a new position in a traded option is required. Then, the delta-
gamma hedge portfolio is formed with:

 1() () () () () () ()P t V t x t S t y t V t B t    (8)

Where,  1V t is the value of an additional option which depends on the same underlying,
with the same maturity but different strike price than the hedging option  V t .  x t and
 y t are the proportions of the underlying and the additional option respectively. They are

chosen such that the portfolio  t is both delta and gamma neutral:

1

1neutral: () () () () 0

 neutral: () () () 0
V V

V V

Delta t x t y t t

Gamma t y t t

     
    

 (9)

 
 

1

1

()

() () () ()

V

V

V V

t
y t

t

x t t y t t

 

 

    

 (10)

Where, the values of  V t and  V t are the delta and gamma factors for the option  V t ;
the values  

1V t and  
1V t are the delta and gamma factors for the option  1V t .

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 159

At the beginning of the hedge horizon, the value of the hedge portfolio is zero:

1(0) (0) (0) (0) (0) (0) (0) 0P V x S y V B     (11)

1 (0) ((0) (0) (0) (0) (0))B V x S y V     (12)

At each rebalancing time it , both delta and gamma hedge factors are recomputed and the
money market account is adjusted:

1 1 1 1() () (() ()) () (() ()) ()r t

i i i i i i i iB t e B t x t x t S t y t y t V t
       (13)

The delta-gamma hedge error is defined as the absolute value of the delta-gamma hedge
portfolio at the end of the hedge horizon of the option,  P  .

For delta-vega hedging, a new position in a traded option is required as in the delta-gamma
hedging. The proportions of the underlying  x t and the additional option  y t are chosen
such that the portfolio  t is both delta and vega neutral:

1

1neutral: () () () () 0

ega neutral: () () () 0
V V

V V

Delta t x t y t t

V t y t t 
     
  

 (14)

 
 

1

1

()

() () () ()

V

V

V V

t
y t

t

x t t y t t




 


 
    

 (15)

Where, ()V t and
1
()V t are the vega factors for the options  V t and  1V t respectively.

As in delta-gamma hedging, at each rebalancing time it , both delta and vega hedge factors
are recomputed and the money market account is adjusted. The delta-vega hedge error is
defined as the absolute value of the delta-vega hedge portfolio at the end of the hedge
horizon of the option,  P  .

35 option contracts are used as hedging options and 35 other contracts which depend on the
same underlying, with the same maturity but different strike prices are used as additional
options. Contracts used to implement the hedging strategies are divided according to
moneyness and time to maturity criteria, which produces nine classes.

The delta, gamma and vega hedge factors are computed using the Black-Scholes formula by
taking the derivative of the option value with respect to index price, the derivative of delta
with respect to index price and the derivative of the option value with respect to volatility
respectively. For the genetic programming models, the hedge ratios are computed using the
same formulas replacing the Black-Scholes implied volatilities with the generated genetic
programming volatilities. Two rebalancing frequencies are considered: 1-day and 7 days
revision.

The average hedging error is used as performance measure. For a particular moneyness-
time to maturity class, the tracking error is given by:

Genetic Programming – New Approaches and Successful Applications 160

 

 
 

1

0

n

i
i

M

irT
i

n

P
e

N V

 











 


  
 


 (16)

Where, n is the number of options corresponding to a particular moneyness-time to
maturity class and  i  is the present value of the absolute hedge error of the portfolio

 P  over the observation path N (as a function of rebalancing frequency), divided by the
initial option price  0V .

4. Result analysis and empirical findings

4.1. Selection of the best genetic programming-implied volatility forecasting

models

Selection of the best generated genetic programming volatility model, relative to each
training set, for TS, MTM, and both TS and MTM classifications, is made according to the
training and test MSE. For static training-subset selection method, nine generated genetic
programming volatility models are selected for TS (M1S1…M9S9) and similarly nine
generated genetic programming volatility models are selected for MTM classification
(M1C1…M9C9). The performance of these models is compared according to the MSE Total,
computed using the same formula as the basic MSE for the enlarged data sample.

Table 4 reports the MSE total and the standard deviation (in parentheses) of the generated
genetic programming volatility models, using static training-subset selection method,
relative to the TS samples and the MTM classes.

TS Models MSE Total MTM Models MSE Total

M1S1 0,002723 (0,004278) M1C1 2,566 (20,606)

M2S2 0,005068 (0,006213) M2C2 0,006921 (0,032209)

M3S3 0,003382 (0,004993) M3C3 0,030349 (0,076196)

M4S4 0,001444 (0,002727) M4C4 0,001710 (0,004624)

M5S5 0,002012 (0,003502) M5C5 1,427142 (33,365115)

M6S6 0,001996 (0,003443) M6C6 0,002357 (0,004096)

M7S7 0,001901 (0,003317) M7C7 0,261867 (0,303256)

M8S8 0,002454 (0,004005) M8C8 0,004318 (0,008479)

M9S9 0,002419 (0,004095) M9C9 0,002940 (0,010490)

Table 4. Performance of the generated genetic programming volatility models using static training-
subset selection method, according to MSE total for the TS samples and the MTM classes

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 161

Table 4 shows that, the generated genetic programming volatility models M4S4, M4C4 and
M6C6 present the smallest MSE on the enlarged sample for TS and MTM samples
respectively. Comparison between these models reveals that the TS model M4S4 seems to be
more performing than MTM models M4C4 and M6C6 for the enlarged sample.
Furthermore, results show that the performance of TS models is more uniform than that of
MTM models. MTM models are not able to fit appropriately the entire data sample as well
as the TS models as they have large Total MSE. Indeed, the MSE total exceed 1 with some
MTM classes, however it does not reach 0.006 for all TS samples. Figure 12 describes the
evolution's pattern of the squared errors given by TS models and MTM models for all
observations in the enlarged data sample. Some extreme MSE values for MTM data are not
shown in this figure.

It appears throughout Figure 12 that, the TS models are adaptive not only to training
samples, but also to the enlarged sample. In contrast, the MTM models such as M1C1 are
adaptive to training classes, but not all to the enlarged sample. A first plausible explanation
of these unsatisfied results is an insufficient search intensity inducing difficulty to obtain
general model suitable for the entire benchmark input data. To enhance exploration
intensity during learning and thus improve the genetic programming performance, we
introduced to the evolution procedure the dynamic subset selection, which aims to obtain a
general model that can be adaptive to both TS and MTM classes simultaneously.

Figure 12. Evolution of the squared errors for total sample of the best generated GP volatility models,
using static training-subset selection method, relative to TS samples(a) and MTM classes (b).

For dynamic training-subset selection methods (RSS, SSS, ASSS and ARSS), four generated
genetic programming volatility models are selected for TS classification (MSR, MSS, MSAS
and MSAR). Similarly, four generated genetic programming volatility models are selected
for MTM classification (MCR, MCS, MCAS and MCAR) and four generated genetic
programming volatility models are selected for global classification, both TS and MTM
classes (MGR, MGS, MGAS and MGAR). Table 5 reports the best generated genetic
programming volatility models, using dynamic training-subset selection, relative to TS
samples, MTM classes and both TS and MTM data.

(a) MSE pattern for TS samples (b) MSE pattern for MTM classes

Genetic Programming – New Approaches and Successful Applications 162

TS

Models
MSE Total

MTM

Models
MSE Total

Global

Models
MSE Total

MSR 0.002367 (0.003934) MCR 0.002427 (0.003777) MGR 0.002034 (0.003501)

MSS 0.002076 (0.004044) MCS 0.007315 (0.025811) MGS 0.002492 (0.003013)

MSAS 0.002594 (0.003796) MCAS 0.002831 (0.004662) MGAS 0.001999 (0.003587)

MSAR 0.002232 (0.003782) MCAR 0.001424 (0.003527) MGAR 0.001599 (0.003590)

Table 5. Performance of the generated genetic programming volatility models, using dynamic training-
subset selection method, according to MSE total for the TS samples, the MTM classes and both TS and
MTM samples

Based on the MSE total as performance criterion, the generated genetic programming
volatility models MSS, MCAR and MGAR are selected. They seem to be more accurate in
forecasting implied volatility than the other models because they have the smallest MSE in
enlarged sample. However, the MTM model MCAR and the global model MGAR
outperform the TS model MSS. Figure 13 describes the evolution's pattern of the squared
errors for these generated volatility models.

Figure 13 shows that almost all models relative to each data's group are performing on the
enlarged sample and present forecasting errors which are small and very closed. Forecasting
errors are higher for the MTM classes than for the TS samples and both TS and MTM
samples. Comparison between models generated using static training-subset selection
method (Figure 12) and dynamic training-subset selection methods (Figure 13) respectively,
reveals that the amplitude of forecasting errors relative to TS and MTM classes respectively
is lower for the models generated using dynamic training-subset selection methods than for
the models generated using static training-subset selection method. Actually, the quality of
the generated genetic programming forecasting models has been improved with the
dynamic training, in particular for MTM classes.

Figure 13. Evolution of the squared errors for total sample of the best generated GP volatility models,
using dynamic training-subset selection methods, relative to TS samples (a), MTM classes (b) and both
TS and MTM samples (c).

(a) MSE pattern for
TS samples

(b) MSE pattern
for MTM classes

(c) MSE pattern for
TS+MTM

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 163

The best generated genetic programming volatility models selected, relative to dynamic
training-subset selection method, are compared to the best generated genetic programming
volatility model, relative to static training-subset selection method. Results are reported in
Table 6.

Models MSE total

M4S4 0,001444 (0,002727)

MCAR 0.001424 (0.003527)

MGAR 0.001599 (0.003590)

Table 6. Comparison between best models generated by static and dynamic selection methods for call
options

Comparison between models reveals that the best models generated respectively by static
(M4S4) and dynamic selection methods (MCAR and MGAR) present total MSE small and
very close. While the generated genetic programming volatility models M4S4 and MCAR
have total MSE smaller than the MGAR model, the latest seems to be more accurate in
forecasting implied volatility than the other models. This can be explained by the fact that, on
one hand, the difference between forecasting errors is small, and on the other hand, the MGAR
model is more general than MCAR and M4S4 models because it is adaptive to all TS and MTM
classes simultaneously. In fact, the MGAR model, generated using ARSS method, is trained on
all TS and MTM classes simultaneously. Whereas, the MCAR model, generated using ARSS
method, is trained only on MTM classes simultaneously; and the M4S4 model, generated using
static training-subset selection method, is trained separately on each subset of TS.

As the adaptive-random training subset selection method is considered the best one to
generate implied volatility model for call options, it is applied to put options. The decoding
of volatility forecasting formulas generated for call and put options as well as their
forecasting errors are reported in Table 7.

A detailed examination of the formulas in Table 7 shows that the implied volatilities
generated by genetic programming are function of all the inputs used, namely the option

price divided by strike price (
C

K
 for calls and

P

K
for puts), the index price divided by strike

price
S

K
 and time to maturity . The implied volatilities generated for calls and puts cannot

be negative since they are computed using the square root and the normal cumulative
distribution functions as the root nodes. Furthermore, the performance of models is uniform
as they present near MSE on the enlarged sample.

4.2. Dynamic hedging results:

The performance of the best genetic programming forecasting models is compared to the
Black-Scholes model in delta, gamma and vega hedging strategies. Table 8 reports the

Genetic Programming – New Approaches and Successful Applications 164

average hedging errors for call options using Black-Scholes (BS) and genetic programming
(GP) models, at the 1-day and 7-days rebalancing frequencies. Values in bold correspond to
the GP hedging errors which are less than the BS ones.

Option LISP Expression Formula MSE

Total

Call sqrt((X0/(multiply(X,((
multiply(X1,plus(X1,X2
))*X1)*X1))*X1))) 6 5

*
GP

C

K

S S

K K






   

   
   

0.001599

Put ncdf (sin ((cos (sin
(minus (minus (-(cos
(sin(X2))), ln(X0)),
ln(X0))))-exp(X1))))

  cos sin
sin cos sin exp

2 * ln
GP

S
P K
K




                                 

0.001539

Table 7. Performance of the best generated genetic programming volatility models for call and put

options and their decoding formulas 0 1 2, ,
C P S

X or X X
K K K

 
   

 

Results in Table 8 show that the delta hedging performance improves for out-of-the money
call options at longer maturities, for at-the-money call options at medium maturities and for
in-the money call options at shorter maturities, regardless of the model used at daily hedge
revision frequency. The best delta hedging performance is achieved using in-the-money
short term call options for all MTM classes, regardless of the option model used.

The delta-gamma hedging performance improves for all moneyness classes of call options at
longer maturities, regardless of the model used at daily hedge frequency (except in-the-
money call options using the genetic programming model). The best delta-gamma hedging
performance is achieved, for BS model, using at-the-money long term call options for all
MTM classes. However, the best delta-gamma hedging performance is achieved, for genetic
programming model, using in-the-money short term call options for all MTM classes.

The delta-vega hedging performance improves for out-of-the money and in-the-money call
options at longer maturities and for at-the-money call options at shorter maturities,
regarding BS model at daily hedge revision frequency. However, the delta-vega hedging
performance improves for out-of-the money call options at shorter maturities, for at-the-
money call options at medium maturities and for in-the money call options at longer
maturities, regarding genetic programming model at daily hedge revision frequency. The
best delta-vega hedging performance is achieved, for BS model, using out-of-the-money
long term call options for all moneyness and time to maturity classes. However, the best
delta-gamma hedging performance is achieved, for genetic programming model, using at-
the-money medium term call options for all MTM classes.

The percentage of cases where the hedging error of the genetic programming model is less
than the BS hedging error is around 59%. In particular, the performance of genetic

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 165

programming model is better than the BS model on in-the-money call options class. Further,
the total of hedging errors relative to genetic programming model is about 21 percent
slightly lower than 19 percent relative to BS model. Table 9 displays the average hedge
errors for put options using BS and genetic programming models, at the 1-day and 7-days
rebalancing frequencies. Values in bold correspond to the genetic programming hedging
errors which are less than the BS ones.

 Rebalancing Frequency

 1-day 7- days

S/K Hedging

strategy

Model <60 60-180 >=180 <60 60-180 >=180

<0.98 Delta hedging BS 0,013119 0,001279 0,000678 0,057546 0,010187 0,005607

 GP 0,009669 0,001081 0,000662 0,053777 0,009585 0,005594

 Gamma hedging BS 0,000596 0,000732 0,000061 0,003026 0,007357 0,000429

 GP 0,000892 0,002040 0,000075 0,003855 0,001359 0,000153

 Vega hedging BS 0,000575 0,000050 0,000039 0,000525 0,000226 0,000099

 GP 0,000473 0,002035 0,004518 0,000617 0,004642 0,040071

0.98-1.03 Delta hedging BS 0,002508 0,000717 0,000730 0,019623 0,005416 0,002283

 GP 0,002506 0,0007 0,001725 0,020 0,0054 0,0022

 Gamma hedging BS 0,000069 0,000018 0,000006 0,000329 0,000169 0,000027

 GP 0,000377 0,000040 0,000029 0,000727 0,000155 0,000059

 Vega hedging BS 0,000066 0,000373 0,003294 0,000527 0,023500 0,031375

 GP 0,000281 0,000013 0,000207 0,001102 0,000147 0,000134

>=1.03 Delta hedging BS 0,000185 0,000906 0,001004 0,001602 0,006340 0,006401

 GP 0,000184 0,000905 0,001 0,000840 0,005789 0,0064

 Gamma hedging BS 0,000323 0,000047 0,000028 0,001546 0,000386 0,000157

 GP 0,000028 0,000057 0,000036 0,000227 0,000429 0,000175

 Vega hedging BS 0,000362 0,000060 0,000052 0,001757 0,002015 0,000247

 GP 0,000067 0,000057 0,00005 0,000831 0,000864 0,000186

Table 8. Average hedge errors of dynamic hedging strategies relative to BS and GP models for call
options

Results in Table 9 show that the delta-gamma hedging performance improves for all
moneyness classes of put options (except in-the-money put options) at longer maturities,
regarding BS model at daily hedge frequency. However, the delta-gamma hedging
performance improves for in-the money put options and at-the-money put options at
medium maturities and for out-of-the money put options at longer maturities, regarding
genetic programming model at daily hedge revision frequency. The best delta-gamma
hedging performance is achieved, for BS model, using at-the-money long term put options

Genetic Programming – New Approaches and Successful Applications 166

for all MTM classes. However, the best delta-gamma hedging performance is achieved, for
genetic programming model, using out-of-the-money long term put options for all MTM
classes.

 Rebalancing Frequency

 1-day 7- days

S/K Hedging strategy Model <60 60-180 >=180 <60 60-180 >=180

<0.98 Delta hedging BS 0,007259 0,002212 0,001189 0,015453 0,013715 0,007740

 GP 0,064397 0,002270 0,001256 0,016872 0,013933 0,007815

 Gamma hedging BS 0,000107 0,000043 0,000705 0,000383 0,000253 0,013169

 GP 0,000177 0,000351 0,000676 0,000990 0,000324 0,009201

 Vega hedging BS 0,000051 0,000715 0,000612 0,000174 0,002995 0,008527

 GP 0,002800 0,000345 0,000625 0,018351 0,000184 0,008979

0.98-1.03 Delta hedging BS 0,007331 0,002267 0,001196 0,170619 0,009875 0,004265

 GP 0,0073 0,002219 0,001185 0,170316 0,009715 0,004260

 Gamma hedging BS 0,003750 0,000049 0,000027 0,032725 0,000119 0,000119

 GP 0,003491 0,000031 0,000024 0,029792 0,000113 0,000103

 Vega hedging BS 0,035183 0,000052 0,000044 0,037082 0,000329 0,000043

 GP 0,004343 0,000038 0,000043 0,037045 0,000190 0,000041

>=1.03 Delta hedging BS 0,007680 0,004469 0,000555 0,037186 0,017322 0,011739

 GP 0,006641 0,004404 0,0005 0,037184 0,017076 0,011733

 Gamma hedging BS 0,000262 0,000204 0,000079 0,001196 0,001319 0,000369

 GP 0,000548 0,000287 0,000166 0,002034 0,001323 0,001059

 Vega hedging BS 0,000232 0,000108 0,000025 0,000488 0,000644 0,000270

 GP 0,000312 0,000080 0,00002 0,001047 0,001186 0,000244

Table 9. Average hedge errors of dynamic hedging strategies relative to BS and GP models for put
options

The delta-vega hedging performance improves for BS using at-the-money and out-of-the-
money put options at longer maturities and in-the-money put options at shorter maturities,
at daily hedge revision frequency. However, the delta-vega hedging performance improves for
all moneyness classes of put options (except in-the-money put options) at longer maturities,
regarding genetic programming model at daily hedge frequency. The best delta-vega hedging
performance is achieved, for BS model, using out-of-the-money long term put options for all
MTM classes. However, the best delta-vega hedging performance is achieved, for genetic
programming model, using at-the-money long term put options for all MTM classes.

The percentage of cases where the hedging error of the genetic programming model is less
than the BS hedging error is around 57%. In particular, the performance of genetic

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 167

programming model is better than the BS model on at-the-money put options class. But, the
total of hedging errors relative to genetic programming model is about 50 percent slightly
higher than 46 percent relative to BS model.

In summary, the genetic programming model is more accurate in all hedging strategies than
the BS model, for in-the-money call options and at-the-money put options. The performance
of genetic programming is pronounced essentially in terms of delta hedging for call and put
options. The percentage of cases where the delta hedging error of the genetic programming
model is less than the BS delta hedging error is 100% for out-of-the money and in-the-money
call options as well as for at-the-money and out-of-the-money put options. The percentage
of cases where the delta-vega hedging error of the genetic programming model is less than
the BS delta-vega hedging error is 100% for in-the-money call options as well as for at-the-
money put options. The percentage of cases where the delta-gamma hedging error of the
genetic programming model is less than the BS delta-gamma hedging error is 100% for at-
the-money put options.

Furthermore, results exhibit that as the rebalancing frequency changes from 1-day to 7-days
revision, as the hedging errors increase and vice versa. The option value is a nonlinear
function of the underlying, therefore, hedging is instantaneous and hedging with discrete
rebalancing gives rise to error. Frequent rebalancing can be impractical due to transactions
costs. In the literature, consequences of discrete time hedging have been considered usually
in conjunction with the existence of transaction costs, that’s why hedgers would like to trade
at least frequently as possible. Pioneered by Leland [43], asymptotic approaches are used as
well [44-46]. For most MTM classes, delta-gamma and delta-vega hedging strategies are
shown to perform better in dynamic hedging when compared with delta hedging strategy,
regardless of the model used. The delta-gamma strategy enables the performance of a
discrete rebalanced hedging to be improved. The delta-vega strategy corrects partly for the
risk of a randomly changing volatility.

5. Conclusion

This paper is concerned with improving the dynamic hedging accuracy using generated
genetic programming implied volatilities. Firstly, genetic programming is used to predict
implied volatility from index option prices. Dynamic training-subset selection methods are
applied to improve the robustness of genetic programming to generate general forecasting
implied volatility models relative to static training-subset selection method. Secondly, the
implied volatilities derived are used in dynamic hedging strategies and the performance of
genetic programming is compared to that of Black-Scholes in terms of delta, gamma and
vega hedging.

Results show that the dynamic training of genetic programming yields better results than
those obtained from static training with fixed samples, especially when applied on time
series and moneyness-time to maturity samples simultaneously. Based on the MSE total as
performance criterion, three generated genetic programming volatility models are selected
M4S4, MCAR and MGAR. However, the MGAR seems to be more accurate in forecasting

Genetic Programming – New Approaches and Successful Applications 168

implied volatility than MCAR and M4S4 models because it is more general and adaptive to
all time series and moneyness-time to maturity classes simultaneously.

The main conclusion concerns the importance of implied volatility forecasting in conducting
hedging strategies. Genetic programming forecasting volatility makes hedge performances
higher than those obtained in the Black-Scholes world. The best genetic programming
hedging performance is achieved for in-the-money call options and at-the-money put
options in all hedging strategies. The percentage of cases where the hedging error of the
genetic programming model is less than the Black-Scholes hedging error is around 59% for
calls and 57% for puts. The performance of genetic programming is pronounced essentially
in terms of delta hedging for call and put options. The percentage of cases where the delta
hedging error of the genetic programming model is less than the Black-Scholes delta hedging
error is 100% for out-of-the money and in-the-money call options as well as for at-the-money
and out-of-the-money put options. The percentage of cases where the delta-vega hedging error
of the genetic programming model is less than the Black-Scholes delta-vega hedging error is
100% for in-the-money call options as well as for at-the-money put options. The percentage of
cases where the delta-gamma hedging error of the genetic programming model is less than the
Black-Scholes delta-gamma hedging error is 100% for at-the-money put options.

Finally, improving the accuracy of implied volatility forecasting using genetic programming
can lead to well hedged options portfolios relative to the conventional parametric models.

Our results suggest some interesting issues for further investigation. First, the genetic
programming can be used to hedge options contracts using implied volatility of other
models than Black-Scholes model, notably stochastic volatility models and models with
jump, as a proxy for genetic programming volatility forecasting. Further, the hedge factors
can be computed numerically not analytically. Second, this work can be reexamined using
data from individual stock options, American style index options, options on futures,
currency and commodity options. Third, as the genetic programming can incorporate
known analytical approximations in the solution method, parametric models such as
GARCH models can be used as a parameter in the genetic programming to build the
forecasting volatility model and the hedging strategies. Finally, the genetic programming
can be extended to allow for dynamic parameter choices including the form and the rates of
genetic operators, the form and pressure of selection mechanism, the form of replacement
strategy and the size of population. This dynamic genetic programming method can
improve the performance without extra calculation costs. We believe these extensions are of
interest for application and will be object of our future works.

Author details

Fathi Abid and Wafa Abdelmalek
Research Unit MODESFI, Faculty of Economics and Business, Sfax, Tunisia

Sana Ben Hamida
Research Laboratory SOIE (ISG Tunis), Paris West University, Nanterre, France

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 169

6. References

[1] Blair B.J, Poon S, Taylor S.J (2001) Forecasting S&P100 Volatility: The Incremental
Information Content of Implied Volatilities and High Frequency Index Returns. Journal
of Econometrics.105: 5-26.

[2] Busch T, Christensen B.J, Nielsen M.Ø (2007) The Role of Implied Volatility in
Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond
Markets. CREATES Research Paper 2007-9. Aarhus School of Business, University of
Copenhagen. pp.1-39.

[3] Koza J.R (1992) Genetic programming: on the Programming of Computers by means of
Natural Selection. Cambridge, Massachusetts: the MIT Press. 819 p.

[4] Holland J.H (1975) Adaptation in Natural and Artificial Systems. Ann Arbor: University
of Michigan Press.

[5] Breiman L (1996) Bagging Predictors. Machine Learning. 2:123-140.
[6] Freund Y, Schapire R (1996) Experiments with a New Boosting Algorithm. In

Proceedings of the 13th International Conference on Machine Learning. Morgan
Kauffman Publishers. pp. 148-156.

[7] Breiman L (1998) Arcing Classifiers. Annals of Statistics. 26: 801-849.
[8] Abdelmalek W, Ben Hamida S, Abid F (2009) Selecting the Best Forecasting-Implied

Volatility Model using Genetic programming. Journal of Applied Mathematics and
Decision Sciences (Special Issue: Intelligent Computational Methods for Financial
Engineering). Hindawi Publishing Corporation. Available: http://
www.hindawi.com/journals/jamds/2009/179230.html

[9] Tsang E, Yung P, Li J (2004) EDDIE-Automation, a Decision Support Tool for Financial
Forecasting. Decision Support Systems. 37: 559–565.Available:
http://sci2s.ugr.es/keel/pdf/specific/.../ science2_4.pdf

[10] Kaboudan M (2005) Extended Daily Exchange Rates Forecasts using Wavelet Temporal
Resolutions. New Mathematics and Natural Computing. 1: 79-107. Available:
http://www.mendeley.com/.../extended-daily-... - États-Unis

[11] Bollerslev T, Chou R.Y, Kroner K.F (1992) ARCH Modelling in Finance: a Review of the
Theory and Empirical Evidence. Journal of Econometrics. 52: 55-59.

[12] Engle R.F (1982) Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of U.K. Inflation. Econometrica. 50: 987-1008.

[13] Bollerslev T (1986) Generalized Autoregressive Conditional Heteroscedasticity. Journal
of Econometrics. 31: 307-327.

[14] Hull J, White A (1987) The Pricing of Options on Assets with Stochastic Volatilities.
Journal of Finance. 42: 218-300.

[15] Scott L (1987) Option Pricing When the Variance Changes Randomly: Theory,
Estimation and an Application. Journal of Financial and Quantitative Analysis. 22: 419-
438. Available: http:// www.globalriskguard.com/resources/.../der6.pdf

Genetic Programming – New Approaches and Successful Applications 170

[16] Wiggins J (1987) Option Values under Stochastic Volatility: Theory and Empirical
Evidence. Journal of Financial Economics. 19: 351-372.

[17] Heston S.L (1993) A Closed-Form Solution for Options with Stochastic Volatility.
Review of Financial Studies. 6: 327-344.

[18] Ma I, Wong T, Sankar T, Siu R (2004) Volatility Forecasts of the S&P100 by
Evolutionary Programming in a Modified Time Series Data Mining Framework. In:
Jamshidi M, editor. Proceedings of the World Automation Congress (WAC2004). 17:
567-572.

[19] Chen S.H, Yeh C.H (1997) Using Genetic programming to Model Volatility in Financial
Time Series. In: Koza J.R, Deb K, Dorigo M, Fogel D.B, Garzon M, Iba H, Riolo R.L,
editors. Genetic programming 1997, Proceedings of the Second Annual Conference.
Morgan Kaufmann Publishers. pp. 58-63.

[20] Zumbach G, Pictet O.V, Masutti O (2002) Genetic programming with Syntactic
Restrictions Applied to Financial Volatility Forecasting. In: Kontoghioghes E.J, Rustem
B, Siokos S, editors. Computational Methods in Decision-Making, Economics and
Finance. Kluwer Academic Publishers. pp. 557-581.

[21] Neely C.J, Weller P.A (2002) Using a Genetic Program to Predict Exchange Rate
Volatility. In: Chen S.H, editor. Genetic Algorithms and Genetic programming in
Computational Finance, Chapter 13. Kluwer Academic Publishers. pp. 263-279.

[22] Ma I, Wong T, Sanker T (2006) An Engineering Approach to Forecast Volatility of
Financial Indices. International Journal of Computational Intelligence. 3: 23-35.

[23] Ma I, Wong T, Sanker T (2007) Volatility Forecasting using Time Series Data Mining
and Evolutionary Computation Techniques. In Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation (GECCO 07). ACM New York
Press.

[24] Derman E, Ergener D, Kani I (1995) Static Options Replication. The Journal of
Derivatives. 2: 78-95.

[25] Carr P, Ellis K, Gupta V (1998) Static Hedging of Exotic Options. Journal of Finance. 53:
1165-1190.

[26] Hutchinson J.M, Lo A.W, Poggio T (1994) A NonParametric Approach to Pricing
and Hedging Derivative Securities via Learning Network. Journal of Finance. 49:
851-889.

[27] Aït-Sahalia Y, Lo A (1998) Nonparametric Estimation for State-Price Densities Implicit
in Financial Asset Prices. The Journal of Finance. 53: 499-547.

[28] Chen S.H, Lee W.C, Yeh C.H (1999) Hedging Derivative Securities with Genetic
Programming. International Journal of Intelligent Systems in Accounting, Finance and
Management. 4: 237-251.

[29] Harvey C.R, Whaley R.E (1991) S&P 100 Index Option Volatility. Journal of Finance. 46:
1551-1561.

[30] Harvey C.R, Whaley R.E (1992) Market Volatility Prediction and the Efficiency of the
S&P100 Index Option Market. Journal of Financial Economics. 31: 43-73.

Dynamic Hedging Using Generated Genetic Programming Implied Volatility Models 171

[31] Merton R.C (1973) Theory of Rational Option Pricing. Bell Journal of Economics and
Management Science. 4: 141-183.

[32] Cai W, Pacheco-Vega A, Sen M, Yang K.T (2006) Heat Transfer Correlations by
Symbolic Regression. International Journal of Heat and Mass Transfer. 49: 4352-
4359.

[33] Gustafson S, Burke E.K, Krasnogor N (2005) On Improving Genetic programming for
Symbolic Regression. In Proceedings of the IEEE Congress on Evolutionary
Computation. 1: 912-919.

[34] Keijzer M (2004) Scaled Symbolic Regression. Genetic programming and Evolvable
Machines. 5: 259-269.

[35] Lew T.L, Spencer A.B, Scarpa F, Worden K (2006) Identification of Response Surface
Models Using Genetic programming. Mechanical Systems and Signal Processing. 20:
1819-1831.

[36] Black F, Scholes M. (1973) The Pricing of Options and Corporate Liabilities. Journal of
Political Economy. 81: 637-659.

[37] Kraft D. H, Petry F. E, Buckles W. P, Sadasivan T (1994) The Use of Genetic
Programming to Build Queries for Information Retrieval. In Proceedings of the 1994
IEEE World Congress on Computational Intelligence. IEEE Press. pp. 468–473.

[38] Angeline P. J (1996) An Investigation into the Sensitivity of Genetic Programming to the
Frequency of Leaf Selection during Subtree Crossover. In: Koza J. R et al., editors.
Genetic Programming 1996: Proceedings of the First Annual Conference. MIT Press.
pp. 21–29. Available: www.natural-selection.com/Library/1996/gp96.zip.

[39] McKay B, Willis M.J, Barton G.W (1995) Using a Tree Structural Genetic Algorithm
to Perform Symbolic Regression. In First International Conference on Genetic
Algorithms in Engineering Systems: Innovations and Applications (GALESIA). 414:
487-492.

[40] Schwefel H.P (1995) Numerical Optimization of Computer Models. John Wiley & Sons,
New York.

[41] Cavaretta M.J, Chellapilla K. (1999) Data Mining Using Genetic Programming: The
Implications of Parsimony on Generalization Error. In Proceedings of the 1999 Congress
on Evolutionary Computation (CEC' 99). IEEE Press. pp. 1330-1337.

[42] Gathercole C, Ross P (1994) Dynamic Training Subset Selection for Supervised Learning
in Genetic Programming. Parallel Problem Solving from Nature III. 866 of LNCS: 312-
321.

[43] Leland H.E. (1985) Option Pricing and Replication with Transaction Costs. Journal of
Finance. 40: 1283-1301.

[44] Kabanov Y.M, Safarian M.M (1997) On Leland Strategy of Option Pricing with
Transaction Costs. Finance Stochastic. 1: 239-250.

[45] Ahn H, Dalay M, Grannan E, Swindle G (1998) Option Replication with Transactions
Costs: General Diffusion Limits. Ann. Appl. Prob. 8: 676-707.

Genetic Programming – New Approaches and Successful Applications 172

[46] Grandits P, Schachinger W (2001) Leland’s Approach to Option Pricing: The Evolution
of Discontinuity. Math Finance. 11: 347-355.

