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1. Introduction 

Mycoplasmas are the smallest and simplest self-replicating bacteria [1]. These 

microorganisms lack a peptidoglycan based rigid cell wall and thus are not susceptible to 

antibiotics, such as penicillin and its analogues, which are effective against most bacterial 

contaminants of cell cultures. The trivial name mycoplasma encompasses all species 

included in the class Mollicutes: i.e. the genera Mycoplasma, Acholeplasma, Spiroplasma, 

Anaeroplasma and Ureaplasma. Because mycoplasmas have an extremely small genome (0.58–

2.20 Mb compared with the 4.64 Mb of Escherichia coli), these organisms have limited 

metabolic options for replication and survival. The smallest genome of a self-replicating 

organism known at present is the genome of Mycoplasma genitalium (0.58 Mb; Ref. 2). 

Comparative genomic studies suggested that the genome of this organism still carries 

almost double the number of genes included in the minimal gene set essential for cellular 

function [3]. Owing to their limited biosynthetic capabilities, most mycoplasmas are 

parasites, exhibiting strict host and tissue specificities [4]. The aim of this review is to collate 

present knowledge on the strategies employed by mycoplasmas while interacting with 

tissue culture cells. Prominent among these strategies is the adherence of mycoplasmas to 

host cells, the invasion of mycoplasmas into host cells and the fusion of mycoplasmas with 

host cells. We shall discuss the intriguing questions of how a mycoplasma infecting tissue 

culture cells subvert and damage the host cells by mediating transformation of the cells, 

affecting the signal-transduction pathways and the metabolism of immune and non-

immune cells. We shall also present and discuss the common procedures for isolation, 

identification and eradication of a mycoplasma contamination of tissue cultures. 

2. Mycoplasmas contaminating cultured cells  

It is well established that stable cell cultures are frequently contaminated by mycoplasmas. 

In a study carried out in the USA at the Food and Drug Administration (FDA), over 20,000 
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cell cultures were examined during a period of 30 years, 15% of which were found to be 

contaminated [5]. Higher incidences of contamination have also been reported. Three 

different surveys in Japan showed an incidence of mycoplasma contamination of 60-80%, 

and an incidence of 65% was reported in Argentina [5]. At least 20 distinct Mycoplasma or 

Acholeplasma species have been isolated from contaminated cell lines. Ninety-five percent of 

the contaminants were identified as either M. orale, M. arginini, M. hyorinis, M. fermentans or 

A. laidlawii [5]. although the frequency of isolation of a particular species varies with the 

particular study. 

In general, primary cell cultures are less frequently contaminated than continuous cell lines. 

However, since many viral vaccines (such as those for measles, mumps, rubella, polio and 

rabies) are produced in primary cell cultures, many countries require such cultures to be 

screened carefully for mycoplasma contamination before approval can be given for release 

of the vaccine (or other biological products intended for human use) to the market-place.  

All cell types, including virus-infected, transformed, or neoplastic cell cultures grown in 

monolayers and/or in suspension, derived from all host-types examined, are subject to 

contamination. Mammalian and avian cell lines were the most commonly contaminated 

although, on occasions, cell cultures derived from reptiles, fish, insects or plants were also 

contaminated. Most studies have examined fibroblast cell cultures, but epithelial, 

endothelial, lymphocytic and hybridoma cell-culture lines have also been found to be 

contaminated. Frequently, the number of mycoplasmas far exceeds (often by 1000-fold) the 

number of tissue-culture cells in an infected cell culture. The information available on the 

contamination of cultures of differentiated cell lines is limited, and more data are needed 

before a proper assessment can be made. Mycoplasma contamination of vaccines presents a 

potential health hazard; consequently, identifying the source(s) of contamination is a key 

concern. The probable source of most mycoplasma contaminants in primary cell culture is 

the original tissue used to develop the primary cell culture lot. Whereas lung, kidney, or 

liver tend to be mycoplasma-free, the foreskin, the lower female-urogenital tract, or tumor 

tissues, are subject to mycoplasma colonization, and generally show a higher rate of 

contamination [5]. Nonetheless, contamination from exogenous sources also occurs during 

cell propagation and continuous cell cultures are the most frequently contaminated. The 

main source of contamination is, in many cases, infection by previously-contaminated cell 

cultures that have been maintained and processed in the same laboratory [5]. Mycoplasmas 

are spread by using laboratory equipment, media, or reagents that have been contaminated 

by previous use in processing mycoplasma-infected cell cultures. New cell-culture 

acquisitions should be quarantined, tested and guaranteed mycoplasma-free before 

introduction into the tissue-culture laboratory. Common experimental stock materials, such 

as virus pools, or monoclonal antibody preparations, can also be a key source of 

mycoplasma contamination. As there is no legal requirement for suppliers to provide 

mycoplasma-free products, bovine serum should be considered as a possible source of 

contamination. Mycoplasma contaminants of bovine serum are primarily bovine species, 

with A. laidlawii and M. arginini being isolated most frequently [5]. 
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3. Mode of interaction with host cells  

3.1. Adherence to host cells 

Most mycoplasmas are typical extracellular microorganisms able to adhere to the surface of 

tissue culture cells. Many mycoplasmas exhibit the typical polymorphism of mycoplasmas, 

with the most common filamentous, flask shapes or ovoid structures (Figure 1, Ref. 6). The 

adherence of mycoplasmas to host cells is an initial and essential step in tissue colonization 

[4]. The lack of a cell wall has forced mycoplasmas to develop sophisticated molecular 

mechanisms to enable their prolonged adhesion. Adherence is associated with adhesins as 

well as host cell receptors that mediate interaction of the bacteria with the host cells [7]. 

 

Figure 1. Transmission electron microscopy of M. hyorhinis (A) and of a melanoma cell culture infected 

by M. hyorhinis (B). Flask shaped bacteria in close proximity to melanoma cells are indicated by arrows. 

A polar, tapered cell extension at one of the poles containing an electron-dense core in the 

cytoplasma was described in some mycoplasmas (Figure 2). This structure, termed the tip 

organelle, functions mainly as an attachment and motility organelle. A variety of surface 

proteins that participate in the adhesion process are densely clustered at the tip organelle 

[4]. The role of host cell surface sialoglycoconjugates as receptors for mycoplasmas has been 

suggested [8]. The carbohydrate moiety of the glycoprotein, which serves as a receptor for 

M. pneumoniae on human erythrocytes, has been identified as having a terminal NeuAc(α2–

3)Gal(β1–4)GlcNAc sequence [9]. Nevertheless, neuraminidase treatment has frequently 

failed to abolish the ability of various eukaryotic cells to bind M. pneumoniae [10]. A sialic 

acid-free glycoprotein, isolated from cultured human lung fibroblasts, which serves as a 

receptor for M. pneumoniae, has been isolated by Geary et al. [11]. Sulfated glycolipids 

containing terminal Gal(3SO4)β1 residues were also found to function as receptors [12]. 

Clearly, there is more than one type of receptor for the various adhering mycoplasmas.  
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Figure 2. A, scanning electron microscopy of filamentous M. pneumoniae. B, transmission electron 

microscopy of flask-shaped M. pneumoniae (M) attached by the terminal tip organelle (arrow) to ciliated 

mucosal cells. Magnification: A, x10,000; B, x36,000. 

The attachment of mycoplasmas to the surface of host cells may interfere with membrane 

receptors or alter transport mechanisms of the host cell. The disruption of the K+ channels of 

ciliated bronchial epithelial cells by M. hyopneumoniae that resulted in ciliostasis has been 

described [13]. The host cell membrane is also vulnerable to toxic materials released by the 

adhering mycoplasmas. Although toxins have not been associated with mycoplasmas, the 

production of cytotoxic metabolites and the activity of cytolytic enzymes are well 

established. Oxidative damage to the host cell membrane by peroxide and superoxide 

radicals excreted by the adhering mycoplasmas appears to be experimentally well-

substantiated [14]. The intimate contact of the mycoplasma with the host cell membrane 

may also result in the hydrolysis of host cell phospholipids catalyzed by the potent 

membrane-bound phospholipases present in many mycoplasma species [15]. This could 

trigger specific signal cascades [16] or release cytolytic lysophospholipids capable of 

disrupting the integrity of the host cell membrane [17, 18].  

3.2. Invasion of host cells 

It is generally accepted that mycoplasmas remain attached to the surface of host cells [1]. 

However, some mycoplasmas have evolved mechanisms for entering host cells that are 

not naturally phagocytic. The intracellular location is obviously a privileged niche, well 

protected from the action of many antibiotics. Mycoplasma invasion of host cells was 

intensively studied with M. penetrans, isolated from the urogenital tract of acquired 

immunodeficiency syndrome (AIDS) patients [19, 20]. It was shown that this 

microorganism has invasive properties and localizes in the cytoplasm and perinuclear 

regions [21, 22, 23]. Mycoplasmal invasion of host cells is a complex process that involves 

a variety of mycoplasmal and host cell factors. It is likely that surface molecules (proteins 

and lipids) that facilitate the adhesion process of mycoplasmas will have an effect on the 
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invasion. Nevertheless, adherence to the surface of host cells is not sufficient to trigger 

events that lead to invasion. The signals generated by the interaction of host cells with 

invasive mycoplasmas have yet to be investigated. It has been shown that bacterial 

invasion is based on the ability of several bacteria to bind sulfated polysaccharides or 

fibronectin [24]. It was suggested that these compounds form a molecular bridge between 

the bacteria and eukaryotic surface proteins [25] that enables invasion. Fibronectin 

binding activity was detected in M. penetrans. This organism, which contains a 65-kDa 

fibronectin binding protein, binds selectively immobilized fibronectin [23]. The finding 

that M. fermentans binds plasminogen (Plg) and in the presence of urokinase-type Plg 

activated (uPA) internalization was apparent (26, 27), indicates that the ability of M. 

fermentans to invade host cell stems from its potential to bind and activate Plg to plasmin, 

a protease with broad substrate specificity. Plg and uPA are two proteins that play an 

important role in the invasion of several human malignant tumors [28], therefore it is not 

surprising that the same system stimulates M. fermentans invasion. Other mycoplasmas 

known to be surface parasites such as M. pneumoniae [29], M. genitalium [30], M. 

gallisepticum [31], and M. hyorhinis [6] were also found under certain circumstances to 

reside within host cells. 

In studying bacterial invasion, it is essential to differentiate between microorganisms 

adhering to a host cell and those which have penetrated the cell. The light microscopic and 

electron microscopic observations of mycoplasmas engulfed in membrane vesicles lead to 

conflicting interpretations. It is not clear whether mycoplasmas are intra, or are they at the 

bottom of crypts formed by the invagination of the cell membrane [32]. A more 

sophisticated ultrastructural study was based on a combined immunochemistry and 

electron microscopy approach. Staining surface polysaccharides of the host cell with 

ruthenium red allows a better differentiation between intracellular and extracellular 

mycoplasmas [33]. Currently, the gentamicin resistance assay is the most common assay to 

differentiate intracellular from extracellular bacteria [7, 34]. In this assay, the extracellular 

bacteria are killed by gentamicin, but the intracellular bacteria are shielded from the 

antibiotic because of the limited penetration of the gentamicin into eukaryotic cells. The 

gentamicin procedure was successfully adapted to mycoplasma systems [21, 31]. Usually the 

number of intracellular bacteria is determined by washing the host cells free of the 

antibiotic, lysing them with mild detergents to release the bacteria and counting the colonies 

[35]. Because mycoplasmas are as susceptible to detergent lysis as the host cells, dilutions of 

the mycoplasma-infected host cells should be plated directly onto solid mycoplasma media 

without lysing them beforehand. Each mycoplasma colony represents one infected host cell 

rather than a single intracellular mycoplasma [34].  

Immunofluorescent staining of internalized bacteria and of those remaining on the cell 

surface, combined with confocal laser scanning microscopy, has demonstrated that several 

mycoplasmas penetrate eukaryotic cells (Figure 3; Refs. 22, 36) This nondestructive, high-

resolution method allowed infected host cells to be optically sectioned after fixation and 

immunofluorescent labeling. Imaging single infected HeLa cells revealed that invasion is 

both time and temperature dependent. Penetration of melanoma cells by M. hyorhinis has 
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been observed as early as 30 min after infection [6], whereas invasion of cultured HEp-2 

cells by M. penetrans has been shown to begin after 2 h of infection [36]. 

The intracellular fate of invading bacteria can vary greatly. Most invasive bacteria appear to 

be able to survive intracellularly for extended periods of time, at least if they have reached a 

suitable host cell [37]. Other engulfed bacteria are degraded intracellularly via phagosome-

lysosome fusion. The invasive bacteria either remain and multiply within the endosomes 

after invasion or are released via exocytosis and/or the lysis of the endosomes which may 

allow multiplication within the cytoplasm. Most ultrastructural studies performed with 

engulfed mycoplasmas revealed mycoplasmas within membrane-bound vesicles [30, 33, 38]. 

Persistence of M. penetrans within NIH/3T3 cells, Vero cells, human endothelial cells, HeLa 

cells, WI-38 cells, and HEp-2 cells has been observed over a 48–96 h postinfection [19, 23]. M. 

gallisepticum remains viable within HeLa cells during 24–48 h of intracellular residence [31]. 

The observation of vesicles stuffed with M. penetrans in various host cells was taken as an 

indication that M. penetrans is able to divide within intracellular vesicles of the host cells 

[19]. Nonetheless, the intracellular multiplication of mycoplasmas remains to be 

convincingly demonstrated. 

  

Figure 3. Confocal micrographs demonstrating binding and internalization of M. hyorhinis (green 

fluorescence) by melanoma cells. A, Control of uninfected melanoma cells; B, Formaldehyde fixed 

melanoma cells infected with mycoplasma (bacteria on the melanoma cell surface); C, Native melanoma 

cells infected by mycoplasma (bacteria internalized by cells). 

Almost all invasive bacteria that come into contact with the host cell surface trigger 

cytoskeletal rearrangements that facilitate bacterial internalization [35, 39]. Involvement of 

the host cell cytoskeleton in internalization is considered to be the result of a host cell signal 

transduction cascade induced by the invasive bacterium. As in many signal transduction 

processes initiated by bacteria, kinases and/or phosphatases are usually involved [39]. The 

invading mycoplasmas generate uptake signals that trigger the assembly of highly 

organized cytoskeletal structures in the host cells [23]. Yet, the nature of these signals and 

the mechanisms used to transduce them are not fully understood. Specific activation of 

protein kinases occurs during the internalization of most of the bacteria taken up by 

microtubule-dependent mechanisms [16]. It has been shown that invasion of HeLa cells by 

M. penetrans is associated with tyrosine phosphorylation of a 145-kDa host cell protein [21]. 

Tyrosine phosphorylation activates phospholipase C to generate two second messengers: 

phosphatidylinositol metabolites and diacylglycerol (DAG). Changes in host cell lipid 

turnover occur as a result of M. penetrans binding and/or invasion of Molt-3 lymphocytes 
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[40]. These changes include the accumulation of DAG and the release of unsaturated fatty 

acids, predominantly long-chain polyunsaturated ones such as docosahexanoic acid (C22:6, 

40]. Nonetheless, metabolites of phosphatidylinositol were not detected. These observations 

support the hypothesis that M. penetrans stimulates host phospholipases to cleave 

membrane phospholipids, thereby initiating the signal transduction cascade. Because in 

HeLa cells, which are invaded by M. penetrans, DAG is generated, it is likely that the protein 

kinase C is activated in the host cells. Indeed, transient protein kinase C activation was 

demonstrated in invaded HeLa cells by several methods, including translocation to the 

plasma membrane and enzymatic activity [22]. However, activation was weak and transient, 

peaking at 20 min postinfection. How any of these different signal transduction events lead 

to specific microtubule activity resulting in mycoplasmal internalization is unknown. The 

role of these signals in the penetration, survival, and proliferation of mycoplasmas within 

host cells, as well as the involvement of the lipid intermediates in the pathobiological 

alterations taking place in the host cells, merit further investigation.  

3.3 Fusion with host cells 

The lack of a rigid cell wall allows direct and intimate contact of the mycoplasma membrane 

with the cytoplasmic membrane of the eukaryotic cell. Under appropriate conditions, such 

contact may lead to cell fusion. Fusion of mycoplasmas with eukaryotic host cells has been 

first observed in electron microscopic studies [41]. The development of energy transfer and 

fluorescence methods has enabled investigation of the fusion process on a quantitative basis 

in an experimental cell culture-mycoplasma system and has also allowed the identification 

of fusogenic mycoplasmas. In all the fusogenic Mycoplasma species tested, fusogenicity is 

dependent on the unesterified cholesterol content of the cell membrane [42]. Fusogenic 

activity can be found only among mycoplasmas requiring unesterified cholesterol for 

growth, whereas species, which do not require cholesterol, are nonfusogenic. Among the 

Mycoplasma species, the human mycoplasma, M. fermentans, is highly fusogenic, capable of 

fusing with a variety of cells [2]. It is widely accepted that the reorganization of the 

membrane structure that occurs during fusion requires that the lipid bilayer is broken up 

and that other inverted configurations, such as reversed nonbilayer aggregates, are being 

formed [43, 44, 45]. It has been shown that the polar lipid fraction of M. fermentans is capable 

of enhancing the fusion of small, unilamellar phosphatidylcholine-cholesterol (1:1 molar 

ratio) vesicles with Molt-3 lymphocytes in a dose-dependent manner, suggesting that a lipid 

component acts as a fusogen [17, 46]. In an attempt to identify the fusogen, detailed lipid 

analyses of M. fermentans membranes were performed [17, 47, 48], revealing that the polar 

lipid fraction of this organism contains unusual choline-containing ether 

phosphoglycolipids, 1-O-alkyl/alkenyl-2-O-acyl-glycero-3-phosphocholine and its lyso-form 

1-O-alkyl/alkenyl-glycero-3-phosphocholine [49]. The ether lipids, mainly the lyso-

derivative has a marked effect on the fusion of M. fermentans with host eukaryotic cells [50]. 

Very little is known about the role of membrane proteins in the fusion process. The 

observation that fusion of M. fermentans with Molt-3 cells was inhibited by pretreatment of 

intact M. fermentans with proteolytic enzymes [51] implies that this organism possesses a 
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proteinase-sensitive receptor(s) responsible for binding and/or the establishment of tight 

contact with the cell surface of the host cell involved in fusion. During the fusion process, 

mycoplasma components may be delivered into the host cell and affect the normal functions 

of the cell. A whole array of hydrolytic enzymes has been identified in mycoplasmas [1, 15, 

52]. Most remarkable are the mycoplasmal nucleases [1] that may degrade host cell DNA. It 

has recently been shown that M. fermentans contains a potent phosphoprotein phosphatase 

[52]. The delivery of an active phosphoprotein phosphatase into the eukaryotic cell upon 

fusion may interfere with the normal signal transduction cascade of the host cell.  

4. Effects of mycoplasmas on cell cultures 

Effects on cell function and metabolism have long been recognized as common in 

mycoplasma contaminated cell cultures. The nature of the effects depends on the 

contaminating species and strain of mycoplasma, and on the type of cell infected. 

Frequently, the effects are due to nutrient deprivation, such as the depletion of amino acids, 

sugars, fatty acids, cholesterol or nucleic-acid precursors [5], the depletion of choline [4] or 

the activity of mycoplasmal endonucleases [53], mycoplasmal arginine deiminase [54] or 

mycoplasmal thymidine phosphorylase [55]. Some mycoplasmas have been shown to 

produce severe cytopathic effects (CPE) characterized by stunted, abnormal growth and 

rounded, degenerated cells, apparently due to the promotion or inhibition of apoptosis [56]. 

The promotion of apoptosis may be due to direct effects of mycoplasma components. Thus, 

M. bovis infection sensitizes some host cells to apoptosis through participation of 

mycoplasmal endonucleases [53]. Choline deficiency induced by M. fermentans enhances rat 

astrocyte apoptosis [4]. Some mycoplasmas promote host cell death via induction of pro-

apoptotic genes [57, 58]. Pro-apoptotic and anti-apoptotic mycoplasmas appear to alter 

apoptosis regulatory genes differently [59].  

4.1. Competition for precursors 

Genomic analyses of mycoplasmas have revealed the limited biosynthetic capabilities of 

these microorganisms [60, 61]. Mycoplasmas apparently lost almost all the genes involved in 

the biosynthesis of amino acids, fatty acids, cofactors, and vitamins and therefore depend on 

the host microenvironment to supply the full spectrum of biochemical precursors required 

for the biosynthesis of macromolecules [1]. Competition for these biosynthetic precursors by 

mycoplasmas may disrupt host cell integrity and alter host cell function. Nonfermenting 

Mycoplasma spp. utilize the arginine dihydrolase pathway for generating ATP [62] and 

rapidly deplete the host's arginine reserves affecting protein synthesis, growth and host cell 

divisions. The effect on the cellular genome may be expressed in chromosomal breakage, 

multiple translocation events, reduction in chromosome number and the appearance of new 

and/or additional chromosome variants [63]. Since histones are arginine rich, it was 

suggested that mycoplasmas may exert their effects on cellular genomes by depleting 

arginine and thus inhibiting histone synthesis [62]. However, as fermenting mycoplasmas 

also induce chromosomal aberrations, other mechanisms, including competition for nucleic 
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acid precursors, or degradation of host-cell DNA by mycoplasma nucleases, may be 

involved. M. fermentans infection of cell cultures has been shown to result in a choline-

deficient environment and in the induction of apoptosis [64]. Choline is an essential dietary 

component that ensures the structural integrity and signaling functions of the cell 

membranes; it is the major source of methyl groups in the diet, and it directly affects lipid 

transport and metabolism and the cholinergic neurotransmission and transmembrane 

signaling of cells of the nervous system [65].  

4.2. Cytopathic effects 

Mycoplasmal attachment to eukaryotic cells may sometimes lead to a pronounced 

cytopathic effect. Attachment permits the mycoplasma contaminant to release noxious 

enzymatic and cytolytic metabolites directly onto the tissue cell membrane. Some 

mycoplasmas selectively colonize defined areas of the cell culture. This results in 

microcolony formation producing microlesions and small foci of necrosis, e.g., M. pulmonis, 

or form plaques, e.g., M. gallisepticum, in an agar overlay system [5]. Microcolonization 

suggests that mycoplasma-specific receptors are localized in defined areas of the cell 

monolayer. However, other fermenting mycoplasmas, e.g., M. hyorhinis, attach to every cell 

and destroy the entire monolayer, producing a generalized cytopathic effect. With HeLa 

cells infected by the invasive M. penetrans, the most pronounced effect was the vacuolation 

of the host cells [22]. The vacuoles appeared to be empty, differing from the described 

membrane-bound vesicles containing clusters of bacteria [19]. The number and size of the 

vacuoles depended on duration of infection. Because vacuolation is not obtained with M. 

penetrans cell fractions [22], it is unlikely that a necrotizing cytotoxin is involved in the 

generation of the cellular lesions. A possible mechanism that leads to vacuolation may be 

associated with the accumulation of organic peroxides upon invasion of HeLa cells by M. 

penetrans. Indeed, when HeLa cells were grown with the antioxidant α-tocopherol, the level 

of accumulated organic peroxides was extremely low, and vacuolation was almost 

completely abolished [22].  

Being unable to synthesize nucleotides, mycoplasmas developed potent nucleases, either 

soluble ones secreted into the extracellular medium or membrane-bound nucleases [1, 66, 

67] apparently as a means of producing nucleic acid precursors required for metabolism. It 

has been shown that, occasionally, secreted mycoplasmal nucleases are taken up by the host 

cells [68]. Thus, it was suggested that the cytotoxicity of M. penetrans is mediated at least in 

part by a secreted mycoplasmal endonuclease that is cleaving DNA and/or RNA of the host 

cells [66], and the endonuclease activity of M. bovis was implicated in the increased 

sensitivity of lymphocytic cell lines to various inducers of apoptosis [69].  

4.3. Transformation of cells mediated by mycoplasmas 

Cell culture contamination may go undetected because mycoplasma infections do not 

produce the overt turbid growth that is commonly associated with bacterial and fungal 

contamination. Mycoplasma growth can grow in close interaction with mammalian cells, 
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often silently for a long period of time. However, prolonged interactions with mycoplasmas 

with seemingly low virulence could, through a gradual and progressive course, induce 

chromosomal instability as well as malignant transformation, promoting tumorous growth 

of mammalian cells [70, 71]. Mycoplasmal-induced malignant transformation is a multistage 

process [70] associated with increased or decreased expression of many genes, especially 

cancer-related genes [72]. Over expression of H-ras and c-myc oncogenes were found to be 

closely associated with both the initial reversible and the subsequent irreversible states of 

the mycoplasma-mediated transformation of cells [71]. In some cases, mycoplasmas have 

been shown to induce the production of proteins that play essential roles in the 

development of malignancy. Examples are the mycoplasmal-promoted production in 

diverse types of cultured cells of bone morphogenetic protein 2 (BMP2) that enhances tumor 

growth by increasing cell proliferation [73]; mycoplasma-induced diminished activation of 

the tumor suppression protein p53, and enhanced fibroblast transformation by the 

oncogenic H-ras [74] ; promotion of cancer cell motility and migration by P37, the major 

immunogen of M. hyorhinis, through activation of the matrix metalloproteinase-2 [75]. 

4.4. Modulation of immune and non-immune cell metabolism 

The effects of mycoplasmas on the immune system are well established and include effects 

on differentiation and activation of innate immunity cells (macrophages, dentritic cells, 

neutrophils, NK) and on adaptive immunity cells (T and B cells). Mycoplasma and 

mycoplasmal components are potent macrophage activators, and stimulate the release of 

various proinflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin-

1(IL-1), IL-6, NO [4, 76]. In turn, some cytokines participate in lymphocyte differentiation 

and maturation [4]. M. fermentans induces a partial differentiation of the human monocytic 

cell line THP-1 [77]. Mycoplasma-contaminated exosome fractions of dentritic cells are 

mitogens for naive B lymphocytes and promote immunoglobulin secretion [78].  

Mycoplasmas and mycoplasmal components interact with diverse non-immune cells [56, 57, 

58, 79], with some information available on the cellular proteins affected by them. M. 

salivarium and M. fermentans induce the cell surface expression of intercellular adhesion 

molecule 1 (ICAM-1) in human gingival fibroblasts [80]. Hyperammonia toxicity in 

irradiated hepatoma cells has been shown to be due to contamination by mycoplasma 

containing arginine deiminase, that converts arginine to citrulline and ammonia [54]. M. 

pneumoniae induces the expression of the major airway protein mucin (MUC5AC) in 

cultured airway epithelial cells isolated from asthmatic subjects, but not in cells isolated 

from normal subjects; the preferential expression of MUC5AC in cells isolated from 

asthmatic subjects suggests that asthmatic epithelial cells may be primed to respond to the 

mycoplasma [81], thus pointing to the importance of identifying consequences of 

mycoplasma contamination that may be observed only in certain specific types of cultured 

cells. Catabolic mycoplasmal enzymes may interfere with chemotherapy. This is illustrated 

by the finding that the antiviral and cytostatic activity of pyrimidine nucleoside analogues 

(used as chemotherapeutic agents) is markedly decreased in M. hyorhinis contaminated cells, 

due to the mycoplasmal thymidine phosphorylase that degrades pyrimidine nucleoside 
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analogues [55]. Contamination of human cultured neuroblastoma SH-SY5Y and melanoma 

cell lines by M. hyorhinis results in increased levels of calpastatin (the endogenous inhibitor 

of the ubiquitous Ca2+-dependent protease calpain). The calpastatin upregulation resides in 

the M. hyorhinis lipoprotein fraction (LPP), via the IκB/NF-κB transcription pathway [79]. 

LPPs of several other mycoplasma species have also been found to upregulate calpastatin 

[J.D. Kornspan, T. vaisid, S. Rottem and N.S. Kosower, unpublished data]. Amyloid-β-

peptide and Ca2+ (these are central to the pathogenesis of Alzheimer’s Disease) activate 

calpain and are toxic to neuroblastoma cultured cells. The increased calpastatin levels in the 

mycoplasma-infected cells attenuate the calpain-related amyloid-β-peptide and Ca2+-

toxicity. Calpain and calpastatin are widely distributed in biological systems, with the ratio 

of calpastatin to calpain varying among cells. The calpain-calpastatin system has been 

implicated in a variety of cellular physiological and pathological processes [82]. Since 

calpastatin level is important in the control of calpain activity, mycoplasmas may play a role 

in a variety of metabolic and signal transduction pathways in some types of cultured cells. 

The mycoplasma-induced elevation of calpastatin provides an example of mycoplasmal 

effects on intracellular proteins in non-immune cells, resulting in important alterations in 

the host cell functions. 

4.5. Effect on virus infection  

Mycoplasmas may alter the progress of viral infections in cell cultures [83, 84]. As 

mycoplasmas may also cause virus-like CPE, many investigators have mistaken cytolytic 

mycoplasmas for viruses. Like viruses, mycoplasmas are filterable, hemadsorbant, 

hemagglutinant, resistant to certain antibiotics, able to induce chromosomal aberrations, and 

sensitive to detergents, ether and chloroform; thus the first established mycoplasma 

pathogens of humans (M. pneumoniae), animals (M. mycoides) or plants (Spiroplasma spp.) 

were believed to be viruses. Some mycoplasmas have no detectable effect on viral growth. 

Others can decrease, or even increase, virus yields in infected cell culture [85]. The effect 

depends on the strain or species of mycoplasma, the virus, and the cell culture used. At least 

two mechanisms responsible for decreasing viral yields in vitro have been identified. The 

cytolytic, fermenting mycoplasmas suppress metabolism and growth, resulting in a decrease 

in viral yields. Arginine-utilizing mycoplasmas decrease the titers of arginine-requiring 

DNA viruses by depleting arginine from the medium [62]. Mycoplasmas may render cell 

cultures less sensitive to exogenously supplied interferon and thus to increase virus yields 

[86]. Mycoplasmas may also inhibit viral transformation of cell cultures by known oncogenic 

viruses [5, 87]. 

4.6. Signal transduction pathways 

Mycoplasmas and mycoplasmal membrane LPPs attach to certain Toll-like receptors (TLRs) 

of the host cell membrane. The main TLR involved appears to be TLR2, with participation of 

TLR6 as coreceptor. In some cases, TLR1 is also involved [88]. The interaction with the 

receptors triggers cascades of cellular signals within the cell, and the complex pathways 
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culminate in a variety of host cell responses. Mycoplasmas and mycoplasmal LPP are 

known to activate the transcription factors NF- B [74, 79] and AP-1 [1 4], via TLR- 

downstream cascades involving kinases (MAPKKKs-IKKs and MAPKKKs-MAPKKs- 

MAPKs). Known mycoplasma-affected target genes are mainly those responsible for 

proinflammatory proteins [4], and those involved in malignant cell transformation [72], with 

little information available on genes responsible for other proteins [53, 79, 80, 81]. 

5. Detecting mycoplasmas in cell cultures  

The ubiquitous nature of mycoplasma in man, animals and the environment increases the 

likelihood of the introduction of these organisms into cell cultures or a manufacturing 

process. Currently, the recommended test requirements for biologics are as follows: (1) The 

master- and working cell seed banks must be free of mycoplasmas. (2) The product-harvest 

concentrates must be free of mycoplasmas. (3) All products produced in cell cultures, a 

generic term used for all tissue cells grown in vitro, must be tested. This includes viral 

vaccines (such as poliovirus, adenovirus, measles, rubella, mumps and rabies), monoclonal 

antibodies, immunological modifiers and cell-culture-derived blood products, such as 

tissue-type plasminogen and erythropoietin. Guidelines for mycoplasma testing of cell 

cultures and biologics is addressed in several international pharmacopoeias e.g., United 

States Pharmacopoeia, (USP 33/NF 28 <63>and <1226>, Mycoplasma tests, 2010); European 

Pharmacopoeia (EP 2.6.7., Mycoplasmas, 7th ed.; 2012); Japanese Pharmacopoeia (JP); 

Section 21 of the Code of Federal Regulations (CFR), International Conference on 

Harmonisation (ICH), and FDA- Points to Consider (PTC) documents. Several different 

approaches are being used to detect mycoplasmas in contaminated tissue cultures including 

the culture procedures, a variety of nonspecific procedures and the polymerase chain 

reactions (PCR). 

5.1. Standard culture procedures 

The culture procedures require that the tested material will be inoculated onto solid and 

liquid growth media capable of growing a variety of mycoplasma including aerobic, 

microaerophilic and anaerobic strains. Broth cultures are incubated and sub passaged to 

plate agar. After the required incubation period, the agar plates are observed 

microscopically for the presence of mycoplasma colonies [5]. The variation inherent in the 

complex media usually used for in vitro culture of mycoplasmas is due to batch variation in 

compounds such as sera, or yeast extract. Such variation makes the development of defined 

media attractive. However, a key problem has been the supply of lipids in an available, but 

non-toxic form, hence, defined artificial media have been developed for only a few species 

[1]. Most mycoplasmas produce microscopic (100 - 400 µm in diameter) colonies with a 

characteristic 'fried-egg' appearance, growing embedded in the agar, although some (e.g. M. 

pulmonis) may not grow completely embedded, and some freshly-isolated pathogens (e.g. 

M. pneumoniae) produce a more granular, diffuse colony-type. Since they usually grow 

embedded, mycoplasma colonies can be distinguished from other bacteria by: (1) specific 
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colony shape; (2) being difficult to scrape from the agar surface. Mycoplasmas growing on 

agar can be identified more specifically by immunofluorescent procedures, using 

fluorophores conjugated to species-specific antibodies [4]. The traditional culture-based 

techniques are relatively sensitive, capable of detecting as few as 1-10 colony forming units 

of mycoplasmas and therefore are required by pharmacopoeias and regulatory authorities 

worldwide. Nonetheless, this procedure is time consuming requiring a minimum of 28 days 

to complete, costly and not sensitive to non-cultivable strains, therefore, the development of 

more accurate and faster techniques are needed to facilitate faster detection of a 

contaminating mycoplasma and more rapid corrective action. 

5.2. Polymerase chain reaction (PCR) 

PCR methodology has existed for decades, however conventional PCR and real-time PCR 

assays have only recently been considered for mycoplasma detection in cell cultures and 

biological products. These assays are often based on the amplification of conserved regions of 

the 16S rDNA [89, 90] or the spacer region between the 16S and 23S rDNA [91, 92]. The PCR 

approach is rapid (1-2 days), inexpensive, and independent of culture conditions. Specific 

oligonucleotide primers capable of amplifying the conserved regions and thus detecting DNA 

of multiple Mollicutes species while excluding other contaminating DNA are used in the PCR 

assays. In comparison to conventional PCR methods, real-time PCR assays are quicker, 

simpler, and more suitable for handling a large number of samples [93]. Nonetheless, some of 

the primers used are not entirely specific for Mollicutes [94, 95]. Thus, sequence homologies 

between Mollicutes spp. and Chlamydia spp. led to false-positive results in Chlamydial cell 

cultures tested for mycoplasma contamination with a commercial PCR kit [96].  

Throughout the last decade, new PCR assays for mycoplasma detection, which appeared to 

resolve these issues, were described, while being sufficiently simple and inexpensive for 

routine use. For example, a PCR assay which applied readily available techniques in DNA 

extraction together with a modified single-step PCR using a primer pair that was 

homologous to a broad spectrum of mycoplasma species was proposed [97]. A high 

sensitivity and specificity for mycoplasma detection in cell production cultures was made 

possible through the combination of three key techniques: 8-methoxypsoralen and UV light 

treatment to decontaminate PCR reagents of DNA; hot-start Taq DNA polymerase to reduce 

nonspecific priming events; and touchdown PCR to increase sensitivity while also reducing 

nonspecific priming events. Another proposed PCR assay for mycoplasma detection was a 

sensitive two-stage PCR procedure which detected 13 common mycoplasmal contaminants 

[92]. For primary amplification, the DNA regions encompassing the 16S and 23S rRNA 

genes of 13 species were targeted using general mycoplasma primers. The primary PCR 

products were then subjected to secondary nested PCR, using two different primer pair sets, 

designed via the multiple sequence alignment of nucleotide sequences obtained from the 13 

mycoplasmal species. The nested PCR, which generated DNA fragments of 165-353 bp, was 

found to be able to detect 1-2 copies of the target DNA, and evidenced no cross-reactivity 

with the genomic DNA of related microorganisms or of human cell lines, thereby 

confirming the sensitivity and specificity of the primers used.  
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Other studies showed that reverse transcription-PCR (RT-PCR) methods based on detection 

of the 16S rRNA, which is present in multiple (103–104) copies per bacterial cell [98, 99], are 

more sensitive than PCR detecting the 16S rDNA. Thus, a direct side-by-side comparison of 

RT-PCR and PCR targeting the 16S rRNA and the 16S rRNA gene, respectively, 

demonstrated that RT-PCR was able to provide up to a two-logarithm higher sensitivity of 

bacteria detection in comparison with the PCR-based assay [90, 100] and the sensitivity 

provided by RT-PCR is approaching the sensitivity of conventional microbiological culture 

methods [100]. Therefore, it was suggested that RT-PCR methods targeting the bacterial 16S 

or 23S rRNAs are having the real potential to provide the sensitivity of mycoplasma 

detection close to or even higher than that of conventional culture methods [101] .  

Recently, the MycoTOOL PCR test kit from Roche (Roche, Diagnostic GmbH, Penzberg, 

Germany) was approved by the European Medicines Agency (EMEA) for release testing of 

pharmaceutical products. It is the first commercially available Mycoplasma PCR test that 

can replace traditional Mycoplasma tests (culture method as well as indicator cell culture 

method) during pharmaceutical production. In June 2009 the FDA approved the PCR 

concept of this test for seven commercial products from Genentech. Earlier, Bayer Health 

Care received approval for a pharmaceutical product from the EMEA and Japan’s Ministry 

of Health, Labour and Welfare (MHLW) using the same PCR-based test concept. Guidelines 

describing acceptable protocols for specific PCR methods are provided by the EP and JP. 

The pharmacopoeias, PTC, and CFR protocols vary with their recommendations on how to 

conduct the PCR assays. 

5.3. Indirect non-specific procedures 

Some 'non-cultivable' mycoplasma strains cannot readily be grown on standard agar or 

broth-culture media [5], and cell-assisted culture is required for their isolation. Cell-culture 

systems are therefore a valuable ancillary tool for the isolation and detection of 

mycoplasmas and 'indicator cell culture' procedures using either VERO (African green 

monkey kidney), or NIH 3T3 cell cultures have been developed [102]. These cell lines are 

susceptible to infection by the majority of mycoplasmas and are therefore a reliable 

'indicator' system for detecting mycoplasma infection. These approaches are particularly 

useful for the identification and detection of mycoplasmas that adhere to host-cell surfaces. 

The indirect non-specific procedures require that the tested material will be inoculated 

directly onto tissue culture cover slips or flasks containing a monolayer of the indicator  

cells. The indicator cell culture inoculated with the tested material are than fixed and stained 

with DNA-binding fluorochromes using bisbenzimidazole (such as Hoechst or DAPI  

stains) [103].  

Identification of contaminating mycoplasma is by visual observation via fluorescent 

microscopy. Mycoplasmas are detected by their characteristic particulate or filamentous 

pattern of bright fluorescence on the cell surface (Figure 4) and, if contamination is heavy, in 

surrounding areas. These procedures are suitable for use with either non-specific DNA 

stains for detecting mycoplasmas, or in conjunction with mycoplasma-speciation methods, 
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such as by immunofluorescence procedures using species-specific polyclonal antisera, or 

monoclonal antibodies, conjugated with fluorescein or peroxidase [104]. A wide variety of 

luminol-dependent chemiluminescence and bioluminescent methods were described [5, 63].  

 

Figure 4. Mycoplasma contaminated eukaryotic cells stained with a fluorescent DNA stain. 

Biochemical identification methods have also been in use [5, 78]. Procedures based on the 

comparative utilization of uridine versus uracil in contaminated versus mycoplasma-free 

cell cultures have been suggested [105]. Other methods are based on the detection of 

enzyme activity present in mycoplasmas, but absent, or minimal in uninfected cell cultures. 

The enzymic activities measured include: arginine deiminase [62]; thymidine, uridine, 

adenosine or pyrimidine nucleoside phosphorylase [102]; hypoxanthine or uracil 

phosphoribosyl transferase activities [106]. Positive results are based on arbitrary values, 

making low levels of mycoplasma contamination difficult to detect. Detection kit that 

provide a new, sensitive and rapid biochemical method was recently presented (Cambrex, 

Bio Science, Caravaggio, Bergamo, Italy). The test is based on a bioluminescent assay which 

can be assessed within 20 min for daily determination of the mycoplasma status of cell 

cultures. The performance sensitivity and specificity of the kit was evaluated and compared 

to the PCR/ELISA detection kit (Roche, Diagnostic GmbH, Penzberg, Germany) and the 

standard culture method [5]. Recently, a simple and inexpensive assay monitoring 

mycoplasma contamination, based on degradation of the Gaussia luciferase reporter in cell 

cultures was described [107]. This assay has been shown to be more sensitive for detecting 

mycoplasma contamination in seven different cell lines as compared to a commercially 

available bioluminescent assay [107]  

6. Eliminating mycoplasmas from infected cultures 

Ever since mycoplasma contamination of cell cultures was first reported, attempts have been 

made to develop methods for the elimination of mycoplasmas, including the use of antibiotics 

such as tetracycline, kanamycin, novobiocin, tylosin, gentamycin, doxycycline, thiayline and 
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quinolones; surface-active agents; anti-mycoplasma antisera and prolonged heating treatments 

(40-42 °C) [63, 108]. Eliminating mycoplasmas by passage of a cell culture through nude mice 

[109] has been successful for some, but not all, mycoplasmas. An efficient procedure for 

eliminating mycoplasmas is based on the selective incorporation of 5-bromouracil (5-BrUra) 

into mycoplasmas, and the induction of breaks by light in the 5-BrUra-containing DNA [110]. 

The unusually high content of A+T makes the mycoplasma DNA an excellent candidate for the 

induction of breakage by the combined action of 5-BrUra, 33258-Hoechst and visible light 

[110]. Some of the elimination procedures may apply to some, but not all, mycoplasma species; 

some of them are laborious and/or time consuming. It was suggested, therefore, that whenever 

possible, the infected cell culture should be discarded and replaced with a mycoplasma-free 

culture [108]. When the cell culture is irreplaceable, the use of antibiotic mixtures, are the 

commonest approaches. One has to keep in mind that cell-culture contaminants that have been 

continuously exposed to antibiotics develop resistance to the drug, and antibiotic-resistant 

strains have been isolated for most Mycoplasma species tested. Treatment may also induce the 

selection of a subpopulation of cells and the treated cell culture may differ in its characteristics 

from the original culture.  

Among the antibiotics that were shown to have strong anti-mycoplasma properties are 

different inhibitors of protein synthesis mainly tetracyclines or macrolides as well as 

quinolones [111]. The target enzymes of quinolones are considered to be DNA gyrase and 

topoisomerase IV which are essential enzymes for controlling the topological state of DNA 

in DNA replication and transcription . Most recently the quinolone garenoxacin was found 

to be a most valuable quinolone in the elimination M. pneumoniae [112].  

The addition of antibiotics to the culture medium during a limited period of time (1-3 wk) is 

a simple, inexpensive, and very practical approach for decontaminating continuous cell 

lines. BM-cyclin (trade name of Roche, Mannheim, Germany), a combination of tiamulin 

and minocycline (both inhibiting protein synthesis), was introduced by Jung et al. [113] who 

show that three cycles of treatment of a contaminated cell culture with BM-cyclin I 

(containing the macrolide tiamulin) at a final concentration of 10 µg/ml for 3 days followed 

by BM-cyclin II (containing the tetracycline minocycline) at a concentration of 5 µg/ml for 4 

days completely eradicated mycoplasmal infection from cultured cells [113]. 

Uphoff and Drexler [111, 114] examined the effectiveness of several quinolones and BM-

cycline protocols. The contaminated cell cultures were exposed to one of the following five 

antibiotic regimens: mycoplasma removal agent (MRA, quinolone; a 1-wk treatment), 

enrofloxacin (quinolone; 1 wk), sparfloxacin (quinolone; 1 wk), ciprofloxacin (quinolone; 2 

wk), and BM-Cyclin (alternating tiamulin and minocycline; 3 wk). The mycoplasma 

infection was permanently eliminated by the various antibiotics in 66-85% of the cultures 

treated. Mycoplasma resistance was seen in 7-21%, and loss of the culture as a result of 

cytotoxically caused cell death occurred in 3-11% of the cultures treated [111, 114].  

Recently, MycoZap (trade name of Lonza, Verviers, Belgium) treatment has been introduced 

as a new therapeutic tool able to overcome the eukaryotic cytotoxicity of fluoroquinolones 

and BM-Cyclins [115]. MycoZap kit (Lonza, Verviers, Belgium) includes a combination of 
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patented antibiotic and antimetabolic agents. An evaluation of the MycoZap kit 

performance was recently presented by Mariotti et al., [116] who exposed mycoplasma 

contaminated cells to the MycoZap protocol and compared the results obtained to the 

eradication efficiency of enrofloxacin (Fluka, Bio-Chemika, Missouri, USA), MRA 

(Euroclone, Lugano, Switzerland), ciprofloxacin and the BM-Cyclin protocol. Treatment of 

contaminated cell cultures by MycoZap, MRA, ciprofloxacin, enrofloxacin and BM-cycline, 

eliminated mycoplasma infection by 46%, 29%, 43%, 40% and 57% respectively. The use of 

an eradication mixture based on a combination of the antibiotics BM-Cyclins, ciprofloxacin, 

enrofloxacin and MRA was able to clean 88.6% of the infected cultures, whereas the addition 

of MycoZap to the eradication mixture resulted in the eradication of mycoplasmas from 

100% of the contaminated cell cultures [116]. 

7. Conclusions 

Mycoplasmas are shown to cause various alterations in cultured cells. As described above, 

some alterations are due to direct effects on the cells by mycoplasma components, and other 

alterations are due to indirect effects, via inducing the host cell to alter its gene and protein 

expression and activity. It is important to emphasize the fact that mycoplasmal-altered cell 

phenotype and function is often observed in specific types of cells under special conditions, 

e.g., when the cultured cells are exposed to certain agents. The detection of mycoplasma 

contamination, and the identification of the factors and pathways involved in the 

mycoplasmal effects are thus of utmost importance in handling cultured cells, including 

using stem cells for differentiation to specific tissues. 
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