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1. Introduction 

Steam is important secondary energy resource media in iron& steel enterprises, amounting 

to nearly 10% of the whole energy consumption. When an enterprise is running, if all the 

produced steam can meet all the demands and no steam is bled, the overall energy 

efficiency can be effectively improve. Thus the complex networks of steam pipes and steam 

production scheduling systems were set up. Obviously, steam scheduling has to depend on 

the real time measured data from the steam pipe networks. Accurately measuring the 

variables of pressure, temperature and flow rate is essential to secure the safety and 

economic efficiency. It’s also necessary for accumulating the amount of steam production or 

the consumption to calculate the energy cost for each working procedure. 

With the help of Energy Management System (EMS), all the data collected from the 

distributed instruments. In practice, the measurements of pressure and temperature are 

usually accurate enough for the application except that the sensors or the transducers fail. 

However, the measurements of mass flow rate are not so accurate because of the complex 

nature of the steam itself, lacking of high precision measuring instruments, the impact of 

interference and information transmitting network failures and other reasons. The reliability 

of the measurement of mass flow rate is poor. 

When the steam mass flow measurement values deviate from the actual values to a certain 

extent, the automatic control system may largely deviate from the process requirements 

substantially. Even worse steam bleeding or accident could happen [1]. Therefore, it is not a 

satisfactory to decide or adjust the production process according to the data from the flow 

rate meters [2]. In energy management, the accumulation differences between production 

and consumption make it difficult to calculate the energy costs, analyze the segments of 
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irrational use of steam, and find the weakness in the management links. Therefore, 

improving the reliability the steam flow rate measurement data is essential for the normal 

production and energy conservation in iron& steel enterprises. 

The objective of the work may be depicted by figure 1. The real time data (mainly referring 

to the mass flow rate variables) would be mainly processed by three approaches. By fault 

data detection and reconstruction, the fault data would be picked out and the real value 

would be reconstructed or estimated. By gross error detection, the data with gross error 

would be discovered and re-estimated. By data reconciliation, the random error would be 

decreased and the quality of the data would be further improved. 

 

Figure 1. The objective of the work 

For fault data detection and reconstruction, the reasons of the low accuracy of steam flow 

rate data are introduced. By applying the statistical process control theory[3] to determine 

univariate and multivariate process control limit to monitor the abnormal data online. The 

approach to calculate the real data (mass flow rates) through the thermal and hydraulic 

mathematical models of the steam pipe networks is proposed.  

For the section of gross error detection, the definition of the problem is introduced. And the 

two basic gross error detection approaches, the Measurement Test (MT) method and the 

Method of pseudonodes (MP), are demonstrated.  

For the section of data reconciliation, the constrained least-squares problems stated in the 

section of gross error detection is discussed in detail, including the assumptions for the 

application,the constraint equations and the selection of the weighted parameter matrix. 

The presented approaches of data processing can be programmed for computers to 

determine the abnormality and improve the precision of the mass flow rate data.  

2. Fault data detection and reconstruction 

2.1. The reasons of the poor accuracy of steam flow rate measurement 

There are many reasons for the poor accuracy of steam measurement data. The most 

important reasons can be concluded as follows: 

1. The working conditions of the instrument deviating from the designed conditions 
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At present, the mass flow rates are mostly deduced by the volume flow rates and the 

density. However, the changes of temperature and pressure in the transmission process 

would lead to the density of steam deviate from the original designed value [3]. The 

measurement errors would be very large [1]. Any more, some superheated steam 

would change into a vapor-liquid two-phase medium, which making precision worse. 

2. The Complexity of Steam Characteristics 

With the ambient temperature changing, the total amount of the condensate water in 

the transmission process will be different. That makes difference between the amount of 

the production and the consumption of steam. In addition, the steam pipe leakage will 

add to the difference. Therefore, the accumulated readings are always doubtful. 

3. The Occurrence of wearing or damage to the Key Components 

As the orifice differential pressure flow rate meter being in use for long time, the size of 

aperture would differ from the original size because of the adhered foreign bodies, or 

erosion by the durative high temperature steam flow. As the parameters can not be 

adjusted on time, and it is hard to calibrate the instrument, the measurement errors will 

accumulate. 

4. The external Interference or the Failure of Data Transmission Channel 

The instrument interfered by the disturbances or failure happening in data transmission 

channels will make significant errors to the data derived in the control center.  

2.2. Determining control limits for fault data detecting 

The abnormal data from certain sensors (including temperature, pressure and flow rate 

sensors) may be characterized as fluctuation quickly with a large magnitude (induced by the 

poor contact in the instruments), keeping a certain value without any varying (induced by 

the failure of the data sampling systems) or being outside the normal variable range. The 

first two cases are not discussed here because they are easy to be discovered. As for the last 

case, the statistical process control approaches to determine the control limits for data 

monitoring is applied. When the values of the controlled variables (or functions) exceed the 

limits, it shows there are abnormal data except that the process is actually abnormal. The 

statistical process control includes two types--univariate and multivariate control.  

2.2.1. Determining the control limits for single variable 

The statistical process control (SPC) and control chats were first proposed by Shewhart in 

quality prediction. Traditional SPC mainly treated single variables. When the value 

locates outside the normal range, the system would output an alarming signal to notify 

the operators to check and make sure whether the state is abnormal. In the work, if the 

process state is actually normally operating, the values of the variables can be judged as 

fault data. Reasonably determined control limits can reduce the probability of false alarm. 

Many researches focus on the problem [4-6]. In the work, empirical distribution function 

combined with the principle of “3σ”[3]is applied to determine the control limits of 

different variables.  
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Denote 1nX R ×∈ as one of the measurement data matrix, n is the number of the samples, 

each row of X is a measured sample.If 1 2( , ,..., )T
nX x x x= , the range of the data matrix is: 

 ( ) max( ) min( ),( )i iR X x x i i n= − ≤ ≤  (1) 

Divide the range into N intervals with the same length, each length of the interval is: 

 
( )R X

c
N

=  (2) 

The corresponding intervals are marked as 1 2, ,..., Nc c c . So each element in X belongs to one 

of the intervals and these data are divided into N groups. The probability of the sampled 

variable value locates in each interval can be estimated as: 

 r
r

v
f

N
=  (3) 

1,2,... , ir N v= is the number of the data locate in the ith interval. As the data are 

independent to each other (usually the hypothesis is reasonable). The probability defined: 

 { }r i r rP X c f∈ ≈  (4) 

The average probability density of each interval can be written as: 

 { }
( ) / ( )

r r
r i r

i i

f Nf
p X c

R X N R X
∈ ≈ =  (5) 

The empirical distribution of X can be got with the lengths of intervals as bottom and rp as 

the height. When n and N are large enough, the bar graph would be more similar to the 

global distribution of X. According to the central limit theorem, when the system has only 

one stable state, the measured data would follow normal distribution as the sample size 

grows. So the global distribution function of X can be written as normal distribution: 

 

2

2

( )

2
1

( )
2

x

f x e

µ

σ

πσ

−
−

=  (6) 

Figure 2 shows the distribution graph. The probability of data locating in the range of 

μ±3σis 99.73%. When the value of X is outside the range, it’s reasonable to suspect the value 

being abnormal (otherwise, the process doesn’t normally function ). That’s the principle of 

“3σ”. In practice, the outside of “3σ”occupying about 0.25% probability is named “red 

zone”, and the range inside μ±2σis named “green zone”(about 95% probability). The 

intervals between them are “yellow zone”. Four control limits are determined by the 

method.  

As the expectation and the deviation of the X global distribution are unknown, and the 

estimated values with the sample are not accurate especially when the empirical distribution 

isn’t similar to normal distribution, the principle of “3σ” can not be applied directly. 
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Figure 2. The probability density distribution graph of normal distribution 

However, according the principle of “3σ” and the empirical distribution of X, the control 

limits can be deduced reversely by searching the respective probability of limits.  

Two kinds of special instances have to be noticed: 

1. No crossing point between empirical distribution and the testing level. 

It shows the corresponding sample value is not appeared in the significance test level 

range. To determine the limits, the empirical distribution can be linearly extended to 

outer range or estimated with experience by comparing with the real process 

performance state.  

2. Two more crossing points between empirical distribution and the testing level at one side. 

It shows there are disturbances in the data, which makes the empirical distribution 

fluctuate at one lateral side. According to principle of “3σ” , find the highest probability 

interval and search from it to the two laterals for the points first amounting to the 

probability (1-α)/2. 

Figure 3-5 show the control limits (4 lines) and monitoring result in a plant. The interval 

between the two green lines is the “green zone” showing normally working. The intervals 

outside the red lines are the “red zones” indicating the fault data or process abnormality. 

The other two intervals are the “yellow zones” which reminds the operators to notice the 

changes of the data. Figure 4 and 5, in the right side the red and green line are coincident. It 

can be explained that the outer equipment constraints the variable freely moving. 

By determining the limits of single variable, the wild values considered as fault data can 

easily be discovered. However, two kinds of inherent errors can not be avoided. 

The approach of Univariate Statistical Process Control (USPC) can roughly judge fault data. 

The approach is also appropriate to monitor the temperature and pressure variables. 

2.2.2. Determining the control limits of multivariate system based on PCA 

The shortage of USPC is the operators being prone to “information overload”when the 

number of the variables is large. Anymore, it’s too rough to judge the normalty of data just by 

monitor alarming. In practice, the variables maybe constrained by certain inherent functions. It 
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shows the existence of fault data when the functions are unsatisfied. Principal Component 

Analysis (PCA) is one of the approaches to discover the relationship among the variables by 

means of statistics. By determining the control limits of two guidelines, Hotelling’s T2 and SPE 

(Squared Predictive Error, Q), the multivariate process can be monitored conveniently.  

 

Figure 3. Monitoring the Steam Flow Rate of the Steel Making Process 

 

Figure 4. Monitoring the Flow Rate of Start Steam Boiler 

 

Figure 5. Monitoring the Steam Flow Rata of CDQ (Coke Dry Quenching) 
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The proposed approach is to distinguish different stable states of the process by empirical 

distribution function, and determine the control limits for each stable state. 

i.  Differentiate the stable states and group the samples 

Denote the measurement matrix as n mX R ×∈ , n is the size of samples, m is the number 

of the monitored variables. The rows of X are the serial samples in time order. 

Denote 1 2( , ,..., )i i i niX x x x=  (i=1,2,…,m) as the ith column. The empirical distribution of 

iX  can be derived as just mentioned. When the process has two or more stable states, 
the distribution bar graph would characterize as multi peaks. 

Figure 6 is the curve of flow rate and the distribution bar graph of a chemical process in 

a period. The two peaks represent different demands for steam in different states.  

Without loss of generality, the two peaks distribution is to be discussed. If the control 

limits are determined without considering the different states, the sensitivity of 

detecting fault data will be too low for the multivariate process. Apply two normal 

distributions to fit the two peak sections. If the averages and deviations are signed as 

. 1i sX , . 1i sσ , . 2i sX , . 2i sσ , the rule to divide the samples into different groups (different 

states) is listed as equation (7): 

 

  
 

Figure 6. The curve and distribution bar graph of flow rate for a chemical process 
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= 

∈ −
     1,2,...,k n=  (7) 

γ can be selected in the interval of (1, 3), and the total state region should cover the 

whole range of the sampled data. Ideally, the state regions should not have folded 

region or the folded region is narrow and with low probability. Or, the variable have no 

necessity for state differentiating, which is not the case discussed here. 

By the rule of (7), the samples are separated into two groups. By the same way, the two 

groups can be further grouped with other variables. However, it’s not suggested to 

divide the sample into many groups with too few elements in each group. Assume 
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there are only two groups of samples are derived. They are marked as 1n m
aX R ×∈ and 

2n m
bX R ×∈ ( 1 2n n n+ ≤ ,some samples may be discarded because they don’t belong to 

any state region). 

ii. Determining the control limits of different state with PCA 

Through grouping, the sample data is more convergence. First standardize aX , denote: 

 1 2( , ,..., )a mX x x x=  (8) 

In it,, 1 2, ,..., mx x x 1 1nR ×∈ . Calculate each average and standard deviation:  

 
1 2

( , ,..., )
a m

M m m m= 11 .nR ×∈  (9) 

 1 2( , ,..., )a mS s s s= 11 nR ×∈  (10) 

The measured data matrix is standardized as: 

 
1 2

1 1 1
[ (1 1 ... 1) ] ( , ,... )T

a a a
m

X X M diag
s s s

= −  (11) 

Derive the eigenvalues of the covariance matrix 
1

1
T
a aC X X

n
=

−
   and orthogonalize the 

matrix, then the model of PCA can be written as: 

 ˆ T
a a aX X E T P E= + = +  (12) 

 a aT X P=   (13) 

In the equations, m AP R ×∈ is the load matrix. If arrange the eigenvalues of C in descendent 

order, the former A elements are noted as 1 2( , ,..., )a Aλ λ λ λ= . The corresponding unitized 

eigenvectors form the matrix of P, 1 2( , ,..., )AP P P P= . A is the number of the selected 

components. 1n A
aT R ×∈ is the scored matrix and E is the error matrix.. 

The MSPC based on PCA defined two statistical variables: Hotelling’s T2 and SPE (Q). 

If the jth measurement vector is signed as ajX (row vector), the corresponding scored 

vector is signed as ajT  (ie. The jth row of matrix aT ), then 2
ajT  is defined as[7]: 

 2 1 T
aj aj a ajT T Tλ−=  (14) 

When the testing level is α ,its control limit can be calculated according F distribution: 

 
1 1

2 1
, , , 1,

1

( 1)
A n A n

A n
T F

n Aα α−

−
=

−
 (15) 

1, 1,A nF α−  is the critical value corresponding to testing level α , degree of freedom A,n1-1. 
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SPE(also called statistical variable Q)is defined as:  

 ( )T T T
aj aj aj aj ajQ e e X I PP X= = −   (16) 

The control limit can be calculated by: 

 0

2 1
2 02 2 0 0

1 2
1 1

2 ( 1)
( 1 ) hc h h hα

α

θ θ
δ θ

θ θ

−
= + +  (17) 

In the equation
1

( 1,2,3)
m

i
i j

j A

iθ λ
= +

= = , 1 3
0 2

2

2
1

3
h

θ θ

θ
= − , cα  is the threshold value under the 

testing level α  of normal distribution.When there’s no fault data in the sample or the 

process normally functions, the two statistical variables satisfy the following 

inequalities. 

 
1

2 2
, ,aj A nT T α≤  (18) 

 2
ajQ αδ≤  (19) 

the second data matrix bX  can also be processed to derive the control inequalities: 

 
2

2 2
, ,bj A nT T α′≤  (20) 

 2
bjQ αδ ′≤  (21) 

iii. The monitoring results for the experimental data 

Three variables are considered and some of the data are modified on the original data. The 

no. 167-172 and no.350-355 samples show the transition procedure of two states. The no.360-

365 samples are modified data which deviate from the normal constraint. Figure 7 shows the 

changing curves of the three variables and the scatter diagram in 3-dimention space. 

Two experiments are designed to testify the advantage of differentiating states applied in 

this work. Figure 8 is the case no differentiating states, whilst figure 9 is the differentiating 

case. As the figures shown, the approach of differentiating states and determining the 

control limits respectively is more sensitive to the transition of states and fault data. 

iv. Locate and isolate the fault data  

In the case of MSPC, the fault data can be located and isolated by contribution diagram. 

The variable contribute to SPE and 2
iT  can be written as (22)(23). iξ  is the ith column of 

unit matrix. The fault data is judged as the variable with larger contribution to SPE and
2T . 

 2( ( ) )SPE T T
i iCont I PP xξ= −  (22) 
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 2 1T T T T
i i iCont x P P xξ ξ−= Λ  (23) 

 

Figure 7. The changing curves and scatter diagram of three variables  

 

Figure 8. The result of monitoring no differentiating states  
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Figure 9. The result of monitoring no differentiating states 

2.3. The steam pipe network modeling and calculating the fault data based on 

the model 

After the fault data are detected, the next step is to estimate the true values of the variables. 

As the experience shown, the measured temperature and pressure values are usually 

accurate. So the object of the work is to calculate the flow rate value with the detected 

temperatures and pressures according to the steam network model.  

2.3.1. The static model of steam pipe network 

To deduce the model, the real conditions are simplified as: 1) The steam in the pipes is axial-

direction one dimensional flow; 2) The network is composed of nodes and branches(pipes). 

3) There is no condensate or secondary steam and the effect is neglected. 

i. The hydraulic and thermal model of single pipe. 

- The hydraulic model of single pipe 

By the law of momentum conservation the hydraulic model can be written as [8]: 
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2

2 2 8 1 2 2
1 2 5

1 1

1.25 10
m

q P T Z L
P P

D T Z

λ

ρ
− = ×  (24) 

1 2,P P —the input and output pressure of the steam in the pipe, Mpa; 

1 2,T T —the input and output absolute temperature, K; 

1 2,Z Z —compressibility factor of the input and output steam; 
λ —frictional factor;  

q —the mass flow rate, t/h;  

L —the length of the pipe, m;  

D —the inner diameter of pipe, mm;  

mρ —the weighted mean density of steam, kg/m3. 

Usually, there’s little difference between the products of compressibility factors and 

temperatures in the same pipe. Considering the elbows, reducer extenders and 

other friction factors, the equivalent coefficient η  is added to the equation. 

Equation (24) changes to (25). 

 
2

2 2 8 1
1 2 5

(1 )
1.25 10

m

q P L
P P

D

λ η

ρ

+
− = ×  (25) 

Thus: 

 
5

2 2 2 2
1 2 1 28

1

( )
1.25 10 (1 )

m
P

D
q P P C P P

qP L

ρ

λ η
= − = −

× +
 (26) 

 
5

8
11.25 10 (1 )

m
P

D
C

qP L

ρ

λ η
=

× +
 (27) 

In accordance with Альтщуль equation, frictional factor λ : 

 0.2568
0.11 ( )

ReD
λ

Δ
= × +  (28) 

Δ —the equivalent absolute roughness, mm; Re —the Reynolds number of the 

steam. 

After transferring the units of ,D q  to mm and t/h (ton per hour), Reynolds number 

is : 

 Re 354mDu q

D

ρ

µ µ
= =  (29) 

In the equation, u —the characteristic velocity of the steam in this pipe, m/s; µ —

the mean dynamic viscosity coefficient. It’s determined by equation (33)[9]. 
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Denote 1 2,ρ ρ  as the input and output steam densities. 1 2,ρ ρ , µ , mρ  can be 

calculated with following equations (31),(32),(33). The unclaimed symbols were 

defined in reference[9].  

 1
1 0

1( )r

P

r r RTπ π

ρ
π

=
+

 (30) 

 2
2 0

2( )r

P

r r RTπ π

ρ
π

=
+

 (31) 

 1 22

3 3m

ρ ρ
ρ = +  (32) 

 *( , )µ δ τ η= Ψ  (33) 

- The thermal model of single pipe 

By the law of energy conversation, the static thermal model can be written as 

follows: 

 1 2

(1 ) (1 )

1000 278
1000

3600

l l

p
p

q L q L
T T

c q
c q

β β+ +
− = =

×

 (34) 

 

2

1 2 1 2

278
( ) ( )

(1 )

p

T
l

c q
q T T C T T

q Lβ
= − = −

+
 (35) 

 

2278

(1 )

p

T
l

c q
C

q Lβ
=

+
 (36) 

The definitions and units of 1 2, , ,T T L q  are the same as eqation (24).(note: changing 

equation (34) to (35) is to make thermal model has the same pattern with equation 

(26)). 

β —the appending heat loss coefficient for the appendix of pipe, valve, and 

support, the value can be 0.15-0.25 depending on pipe laying methods; 

pc —specific heat capacity at constant pressure, kJ/kg.K; 

lq —the amount of heat loss along unit pipe length, W/m. 

In term of equation IF-97, The unclaimed symbols are defined in the reference[9]. 

 2( )o
pc R γ

γγ γγτ γ γ= − +  (37) 

The amount of heat loss along unit pipe length can be calculated using equation (38)  
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 0

0

1 1
ln

2

a
l

o

i w

T T
q

D

D D aπε π

−
=

+

 (38) 

0 , aT T —the out surface temperature of the pipe and the environment temperature, K; 

0 , iD D —the outer and inner diameters of the steam pipe, mm; 

ε —the coefficient of thermal conductivity of the heat insulated material, W/m.K; 

In equation (38), wa  is determined by:  

 11.6 7wa v= +  (39) 

v —the velocity of environmental air, m/s; 

ii. Steam pipe network synthetic model 

- Incidence matrix of pipe network 

Draw out pipe network map, number the nodes in the order of steam sources, 

users, three-way nodes, and number the pipes in the order of leaf pipes, branch 

pipes. Suppose there are 1m  intermediate nodes and 2m  outer nodes, there are total 

1 2m m m= +  nodes and 1p m= −  pipes. Set the element of the ith row and the jth 

column in m pA R ×∈ as ija , it’s defined as: 

 

1 ( )

1( )

0 ( )
ij

flow in from node i

a flow out from node i

unrelated




= −



 (40) 

- The flow rate balance equation of the pipe network 

Denote: 2 2 2
1 2( , ,..., )T

mP P P P= , 2 ,( 1,..., )iP i m=  the square of the ith node’s pressure, 

MPa2; 

1 2( , ,..., )T
mT T T T= , ,( 1,..., )iT i m= the ith node temperature, °C;  

1 2( , ,..., )T
pq q q q=


, ,( 1,..., )jq j p=  the flow rate of the jth pipe, t/h;  

1 2( , ,..., )T
mQ Q Q Q= , ,( 1,..., )iQ i m=  the flow rate of the ith node, unit t/h; For steam 

souce the value is minus jq  , and for the user the value is positive jq , otherwise, 

the value is 0. 

*
1 2( , ,..., ), ,( 1,..., )p P P Pp PjC diag C C C C j p= = parameters are determined by equation 

(27); 

*
1 2( , ,..., ), ,( 1,..., )T T T Tp TjC diag C C C C j p= = the parameter are determined by 

equation(36). 

In term of mass conservation law, the total flow rate of each node should be 0, that 

is: 
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 0Aq Q+ =


 (41) 

According to the hydraulic and thermal equations, for the pipe network equations: 

 * *T T
P Tq C A P C A T= =


 (42) 

Substitute (42) into (41): 

 * 0T
PAC A P Q+ =  (43) 

 * 0T
TAC A T Q+ =  (44) 

Equations (26), (27), (35), (36), (42), (43), (44) comprise the static model. 

2.3.2. Hydraulic and thermal calculation based on searching 

Industrial networks are equipped with temperature, pressure and flow meters except 

intermediate nodes. The proposed algorithm tries to calculate the flow rate of each pipe with 

the given condition. The flow rate meter readings are applied to evaluate of the algorithm. 

 

Figure 10. Layout of steam pipe network  

Set figure 10 as an example. the index of the nodes and pipes are shown in the figure: 

Step 1. Determine the elements of matrices A, Q as the preliminarily defined.  

 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 1 0 0 1

0 0 1 1 1

A

 
 

− 
 −
 =

− 
 − 
 − 

 (45) 
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 1 2 3 4( , , , ,0,0)TQ q q q q= −  (46) 

As the previous definitions for equation (41)(42), 5 6 5 6, , , ,P P T T q


 are unknown. From 

equation (27), it’s easy to discover friction factor and density are relative with

5 6 5 6, , ,P P T T . Only by presetting q


 can equations (42) (43) be applied for hydraulic 

iterative calculation. However, in thermal calculation only pc  relates with 5 6 5 6, , ,P P T T . 

Changing equation (34) to (35), q


 can be calculated directly. 

 
(1 )

,( 1,2,...,5)
278

li i
i

p i

q L
q i

c T

β+
= =

Δ
 (47) 

In equation (47), i —the pipe index, iTΔ —the temperature difference of input and output.  

Step 2. Thermal calculation 

It can be inferred by the flow direction of steam that: 

 2 5 1 3 4 6 5,max( , )P P P P P P P< < < <  (48) 

 2 5 1 3 4 6 5,max( , )T T T T T T T< < < <  (49) 

Presume: 

 
5 2 1 6 5 3 4

1 1
( ); ( max( , ))

2 2
P P P P P P P= + = +  (50) 

Set the searching start value for 5T , 6T  as 1T  and 3 4max( , )T T  respectively, and set the 

searching step size as h then begin searching 5T , 6T  in the range (49). For each searching 

step size, calculate pc (equation (37)) and flow rate of each pipe (equation (49),(50)), and 

test whether 1Aq Q ξ+ ≤


 is satisfied. If it is not satisfied, update 5T , 6T  with one step to 

continue calculation, or retain the temperature value and the corresponding flow rates. 

Step 3. Hydraulic calculation 

Just as the thermal calculation, first presume the temperature of the intermediate nodes as 

the value searched by the former step, and set the start point and step size for the two 

intermediate pressures. Then begin searching in the region determined by inequality (48) 

with the step size to calculate the density (equation (32)), frictional factor ((28), (29), (33)), 

and flow rate ((26), (42)) of each pipe. When calculating the flow rate, presetting the initial 

values as the result of step 2 will reduce the iterative calculation time. Test whether 

2Aq Q ξ+ ≤


 is satisfied, If the inequality is not satisfied, update 5P , 6P  with one step size 

to continue calculation, or retain the pressure values and the corresponding flow rates. 

Step 4. Thermal model Verification 

Substitute the intermediate nodes’ temperature (determined by step 2), pressure and 

flow rate values (determined by step3) into thermal model to verify the inequality
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*
3

T
TAC A T Q ξ+ ≤ . If it is satisfied, the calculation ends with the result of step 3. If not, 

presume the intermediate pressure values as the result of step 3, reduce step size and go 

to step 2 and start another calculation cycle. 

In the algorithm, the value 1 2 3, ,ξ ξ ξ  can be set as 0.05-0.3 depending on the demand for 

errors and calculation stability. The calculation flow chart is depicted with figure 11. 

2.3.3. Comparisons of calculation results and measurements 

The specifications of each pipe are shown in table 1. The parameters in the model and 

algorithm are initially set as: 0.2η = , 0.2Δ = , 0.15β = , 0.035ε = , 1,2,3 0.3ξ = .  

Substitute the specification data in Table 1 and temperature and pressure data in Table 2 to 

the algorithm calculating flow rate values.The comparision results are listed in Table 2. It 

shows the largest difference is less than 6%. Actually, the neglected factors in model, the 

parameter errors and measurement errors add to the difference.  

 

 

Pipe No. Length(m) 
Inner Diameter

(mm) 

Outer Diameter 

(mm) 

Heat Insulation Layer 

Thickness (mm) 

1 600 700 720 110 

2 2300 600 630 105 

3 700 400 426 95 

4 1300 500 529 100 

5 1200 600 630 105 

 

Table 1. The Specifications of the Pipes 

 

 

Outer node 

No. 
Pressure(MPa) 

Temperature

(°C) 

Measured 

q(t/h) 

Calculated 

q (t/h) 

the relative 

difference 

1 0.705 286 117 121 3.4% 

2 0.679 195 19 20 5.2% 

3 0.563 246 19 19 0 

4 0.445 256 79 82 3.8% 

 

Table 2. The Comparisons of the Measured Data and the Calculated Data. 
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1
ξ≤+QqA



2
ξ≤+QqA



3

* ξ≤+QTAAC
T

T

 

Figure 11. The flow chat of flow rate calculation 



 
Data Processing Approaches for the Measurements of Steam Pipe Networks in Iron and Steel Enterprises 261 

The results show the validation of the model and effectiveness of the algorithm, and the 

proposed model and algorithm can be applied to simulate the running of static steam pipe 

network, reconstruct the discovered fault data of the mass flow rates.  

As for the larger scale steam network with more than 3 intermediate nodes, it’s difficult to 

apply the algorithm directly. However, the pipe network can be divided into several smaller 

networks from the nodes with known temperature and pressure. 

3. Gross errors detection 

3.1. Problem definition 

A section of the steam network named “S2” for an iron &steel plant in China is shown in 

figure 12. In the figure, N1-N7 represent the different production processes. The arrows 

point to the direction of steam flow, the variables Xi or Xij on behalf of the real steam mass 

flow. The electric valves are remotely controlled by the operators. Many industrial steam 

systems are similar in structure to this system, but the scale is much larger. 

 

 
 

Figure 12. A section diagram of steam network 

If all of the variables above have been measured, suppose that the electric valves are fixed 

at a certain position, and the pipeline leakage and the amount of condensate water can be 

neglected, the constraint equations can be written out on the basis of the mass balance. 
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1 11 12 0

2 21 22 0

3 31 32 0

4 41 42 0

5 6 51 52 0

X X X

X X X

X X X

X X X

X X X X

 − − =


− − =
− − =

 − − =
 + − − =

 (51) 

The overall balance equation can also be written out as: 

 5 6 4 3 1 2 01 02 0X X X X X X X X+ + + − − − − =  (52) 

If we remark 

1 2 18( 01, 02, 1, 11, 12, 2, 21, 22, 3, 31, 32, 4, 41, 42, 5, 6) ( , ,..., )T TX X X X X X X X X X X X X X X X X X X X= =  (53) 

as the vector of mass flow rates in the steam network.(51) (52) can be abbreviated as: 

 0AX =  (54) 

In (54), A is the incidence matrix. The matrix is composed by the elements of 1, -1, and 0. 

If Y represents the vector of measured flow rates and X is the vector of true flow rates , then:  

 Y X W ε= + +  (55) 

In the equation, W is the vector of the measurement gross errors (or systematic errors), and

ε is the vector of random measurement errors with each element being normally distributed 

with zero means and known covariance matrix, Q. The approaches to detect and remove the 

gross error from the measurements are to be discussed in this section. 

When there is no gross error in the measurement vector, finding a set of adjustments to the 

measured flow rates to satisfy equation (54) is the problem of data reconciliation. Denote the 

adjustment vector as a , and the adjusted flow rate vector as X̂ , we get: 

 X̂ Y a= +  (56) 

Applying Least squares method, it can be stated as the constrained least-squares problems: 

1min Ta Q a−  subject to ˆ 0AX =  

Q is the weighed parameter matrix. Usually, Q is selected as: 

 
2 2 2
1 2 18( , ,..., )Q diag σ σ σ=  (57) 

(1 18)i iσ ≤ ≤  is the deviation of the measurement variable (1 18)iX i≤ ≤ . 

The solution *X̂ to the problem can be obtained by Largrange multipliers[10] 

 
* 1ˆ ( )T TX Y QA AQA AY−= −  (58) 
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The vector of residuals e  

 
* 1ˆ ( )T Te Y X QA AQA AY−= − =  (59) 

By gross error detection, the systematic errors in the measurements can be removed, and by 

data reconciliation the random errors can be reduced. However, if the gross errors are not 

removed, the gross errors in some variables will propagate to other accurately measured 

variables in the procedure of data reconciliation. So gross error detection had better be 

adopted in advance.There are two basic types of gross error detection methods, they are 

based on measurement test (MT) and nodal imbalance test (NT). 

3.2. Gross error detection based on test of residuals 

Detection based on test of residuals belongs to the statistical test and has been termed and 

evaluated [11]. Measurement test[12] is the basic algorithm. 

Step 1. Apply the least-squares routine by using equation (58) (59) to compute *X̂ and e . 

Step 2. Compute the variable for each pipe (or stream) 

 
/j j jjz e v=  (60) 

In the equation, 

 
( )T TV QA AQA AQ=  (61) 

On the hypothesis that the measured value in the jth stream doesn’t contain gross error, 

jz follows standard normal distribution. 

Step 3. Compare jz  with a critical test value cz . If j cz z> , denote stream j as a bad 

stream. cz recommended[12] 1 /2cz z β−= , the 1 / 2β−  point of the standard normal 

distribution. 

 
1/1 (1 ) nβ α= − −  (62) 

Where n is the number of measurements tested (currently, n=18), α (the recommended 

value is 0.05) is the overall probability of a type I error for all tests, and β  is the 

probability of a type I error for each individual test. Denote by S the set of bad streams 

found by the above procedure. The measurement ,jy j S∈  is considered to contain gross 

error. 

Step 4. If S is empty, proceed to step 7. Otherwise, remove the streams contained in S and 

aggregate the nodes connected with the stream. This process yields a system of lower 

dimension with compressed incidence matrix A′ , measurement vector Y′ , and weighed 

matrix Q′ . Denote T as the set of streams with the measurement data in Y′ . 
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Step 5. Replace A, Y, and Q with A′ , Y′ , and Q′ respectively and Compute the least-

squares estimates in T applying equation (58).  

Step 6. Solve equation (54) to Compute the rectified values of the streams in S by 

substituting the estimated values computed in step 5 with the data of the steams in T. 

The original measured data are used for the streams in the set ( )R U S T= − ∪ , where U 

is the all stream set. 

Step 7. The vector comprised of the results from steps 5, 6 and the original measured data 

for the streams in R is the rectified measurement vector. If S is empty, then *ˆ ˆY X= , the 

rectification of the measured data is completed in step 1. 

Notations to the algorithm: 

1. In step 4, it’s possible to remove the good streams into S in some cases. 

2. The equation (62) and critical level value provides a conservative test since the residuals 

are generally not independent. It’s not always applied [13].  

3. The different significance levels will induce different results and effects. 

4. For the shortage of MT that it tends to spread the gross errors over all the measurement 

and obtain unreasonable (negative or absurd) reconciled data, The Iterative 

Measurement Test (IMT) method and Modified IMT (MIMT) method were proposed. 

However, the main frames are the same with MT. 

3.3. Gross error detection based on nodal imbalance test 

The algorithms of gross error detection based on statistical test of nodal imbalance are 

mainly based on the work of literature [14]. Applying nodal imbalance test to each node and 

the aggregation node (ie. pseudonode) to locate and remove the gross errors. The basic 

algorithm named Method of pseudo nodes (MP) is listed as: 

Step 1. Compute the nodal imbalances vector r  and the statistical testing variable vector 

z . On the assumption that no systematic error exits, the defined variable iz are standard 

normal distributed.  

 r AY=  (63) 

 /i i iiz r g=  (64) 

Where 

 TG AQA=  (65) 

Step 2. Compare each iz with a critical test value 1 /2cz z α−= , which corresponding to the 

point of the significance testing level (1 / 2)α− . For the instance a test at the 95% 

significance level, 0.05α =  and 1.96cz = . If i cz z≤ is satisfied, the ith node is regarded 

as a good node and denote all streams connected to the node i as good streams. 
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Step 3. If no bad nodes are detected in step 2, proceed to step5. Otherwise, repeat steps 1 ,2 

(changing the matrices and vectors accordingly) for pseudonodes containing 2, 3… m 

nodes.  

Step 4. Denote the set of all streams not denoted as good in the previous steps by S. The 

measurements ,iy i S∈  are considered containing gross errors. 

Steps 5-8.  The procedure is the same as the steps 4-7 of the MT algorithm. 

Notations to the algorithm: 

1. The principle assumption is that the errors in two or more measurements do not cancel. 

2. In step 3, m is chosen by the effect of locating the gross errors. If the increasing of m 

doesn’t gain any improvement, the step can be stopped. 

3. By applying graph-theoretical rules[14] some streams can be determined as bad 

measured streams. The additional identification may be useful for the procedure of MP. 

4. Equation (62) is not applied in the algorithm to control type I error. The probability of a 

type I error in the nodal imbalance test is not necessarily equal to the probability of 

rejecting a good measurement in MT [15]. 

5. If the set S obtained in step 4 is empty, but there is one or more nodes are truly bad. 

Usually the instances happen when there’s leak in the network system or the measured 

errors canceling each other. To solve the problem, the Modified MP (MMP), MT-NT 

combined methods [16] are proposed. 

As the above two methods shown, gross data detection and data reconciliation are 

inherently combined together. Gross errors detection is proceeded with the help of the least-

square routine, which actually can obtained the optimal estimates.  

4. Data reconciliation 

4.1. The basic problems of data reconciliation 

Just as mentioned in section 3, the data reconciliation problem is expressed as the solution of 

the constrained least-squares problems.However, the assumptions, the constraint equations, 

and the weighted parameter matrix have to be discussed. 

4.1.1. On the assumptions of data reconciliation in the present application 

For the application of the steam network, there are four latent assumptions. They are: 

1. The process is at the steady state or approximately steady state.  

Suppose that the electric valves are fixed at a certain position, and the mass flow rate in 

each steam has been close to a constant for a period of time. So the constraint equation 

(54) can be written out on the basis of the balance for all the nodes (including real nodes 

and pseudonode) and the solution of the problem can be in accordance with the actual 

state.  
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2. The measurement data are serial uncorrelated. The assumption makes it easier to 

estimate the deviations of the measurements. Although this is usually not the real case, 

the serial data can be processed to reduce the confliction [17]. 

3. The Gross Errors have been detected and removed. If there’s gross error in the 

measurement data, the procedure of data reconciliation will propagate the errors. 

4. The constrained equations are linear. The style of equation (54) is linear; however the 

true constrained equation will be related with many other environmental variables and 

obviously not linear. So the assumption is to be approximately satisfied. 

Only these four assumptions are nearly satisfied, can the solution of the problem 

(equation (58)) be closer to the true value. 

4.1.2. On the constraint equation 

Need to note equations (51) and (52) are based on the assumptions of steady state and linear 

constraints, no pipeline leakage or condensate water loss. But it cannot avoid the condition 

of the pipeline leakage and condensate water. So the equations (51)(52)should be written as: 

 

1 11 12 1 0

2 21 22 2 0

3 31 32 3 0

4 41 42 4 0

5 6 51 52 5 0

X X X

X X X

X X X

X X X

X X X X

δ

δ

δ

δ

δ

 − − − =


− − − =
− − − =

 − − − =
 + − − − =

 (66) 

 5 6 4 3 1 2 01 02 0 0X X X X X X X X δ+ + + − − − − − =  (67) 

Here: 

 ( , , , , , )i i i i i ii f D l T P Xδ τ=       ( )i 0,1, ,5= …  (68) 

It represents the vector for the condensate water and leakage loss amount of each constraint 

equation. Each element has relations with the environmental temperature τ, pipe diameter 

D, pipe length l, steam temperature T, pressure P and the flow rates of main pipes.  

It’s difficult to set up the mathematical models of these loss amounts. However, by the first 

order of Taylor Expansion at the point of ( 0 0 0 0 0 0, , , , ,i i i i iD l T P Xτ ):  

0 0 0 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0 0

( , , , , , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i
i i i i i i i i i i i

i i

i i iT iP i i ix i i

f f f f
i f D l T P X T T P P X X

T P X

k k T T k P P k X Xτ

δ τ τ τ
τ

δ τ τ

∂ ∂ ∂ ∂
= + − + − + − + −

∂ ∂ ∂ ∂

= + − + − + − + −

 (69) 

The constants in equation (69) can be determined by the method of multiple linear 

regression with a certain number of history data. As the constraint equation changed into: 

 AX δ=  (70) 



 
Data Processing Approaches for the Measurements of Steam Pipe Networks in Iron and Steel Enterprises 267 

The solution to the least-squares problem of reconciliation is: 

 
* 1ˆ ( ) ( )T TX Y QA AQA AY δ−= − −  (71) 

4.1.3. On selection of the weighted parameter matrix Q 

The selection of Q directly influences the result of the data reconciliation. In theory Q is 

recommended as the equation (57). However, the deviations are usually unknown or may 

vary as the time of instruments being used getting long. The deviation of each measurement 

can be estimated by the standard deviation of the sample data. 

 

2

1

1
( ) ,(1 8)

1

N

i i ij i
j

s X X i
N

σ
=

≈ = − ≤ ≤
−
  (72) 

Where, ijX is the j th sample of the variable iX , and iX  is the average of iX . 

If a small number of high-precision instrument are applied,, the corresponding elements in 

the matrix of Q with smaller value, then the quality of data will be greatly improved. 

Though some literatures [18] [19] recommended the methods to determine or adjust the 

matrix Q, the methods or theories for general application is not available. 

4.1.4. Simulation results 

The simulation results of data reconciliation for the present application are shown in table 3. 

The measured data is presumed according to (73) 

 
10% . (18,1)Y X X Rand= + × ×  (73) 

The standard deviations are set to be 0.5 percent of the true values. In the simulation, the 

pipe network loss is not considered. As shown in table 3, most of the rectified data are much 

closer to the true values. The simulation testifies the efficiency of data reconciliation. 

 

 X01 X02 X1 X11 X12 X2 X21 X22 X3 

true value 5 5 50 25 25 60 30 30 30 

measured value 5.347 5.159 54.751 25.086 26.097 62.289 32.297 32.386 30.561 

variance 0.0006 0.0006 0.0625 0.0156 0.0156 0.0900 0.0225 0.0225 0.0225 

rectified value 5.347 5.150 52.228 25.090 25.514 62.178 31.946 31.730 31.174 

 X31 X32 X4 X41 X42 X5 X51 X52 X6 

true value 15 15 40 20 20 20 25 25 30 

measured value 15.735 15.668 42.585 21.419 21.509 20.552 26.699 26.638 32.488 
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 X01 X02 X1 X11 X12 X2 X21 X22 X3 

variance 0.0056 0.0056 0.0400 0.0100 0.0100 0.0100 0.0156 0.0156 0.0225 

rectified value 15.582 15.592 42.306 21.340 21.566 20.946 26.086 26.236 31.375 

Table 3. The Result of Data Rectification 

5. Conclusion 

In the chapter, three data processing approaches to improve data quality are demonstrated. 

For the importance of properly controlling the steam system performance normally, The 

data obtained from EMS should be accurate and reliable. However, the data may be 

influenced many outer factors. The approaches proposed in the chapter are to detect the 

fault data, locate and remove the gross errors and reduce the random errors. 

Four main reasons induce the low accuracy of the mass flow rate measurement. Combining 

the principle of “3σ” and empirical distribution function to determine control limit is 

proposed for single variable monitoring, and applying PCA to determine the control limits 

for the multivariate process. With the limits, most of fault data can be identified easily. For 

the fault data of flow rates, the approach to setup the mathematical model of the steam 

network and calculate the flow rates is proposed. The simulation and experimental results 

show the effectiveness of the approaches. 

Two approaches, MT and MP, to detect the gross errors are demonstrated. Both are 

preceded by selecting the statistical variables, which follow standard normal distribution, 

and applying hypothesis test. Some notations for the two algorithms are stated. 

The constrained least-squares problem applied for present application is discussed. The four 

assumptions are approximately satisfied when the steam network is normally function and 

the state is nearly static. The pipe network loss can be considered to add to the constraint 

equations for more accurate results. The weighed parameter matrix has influence on the 

results of data reconciliation. To estimate the deviations of the instruments online and apply 

several instruments with high precision will improve the quality of reconciled data. 
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