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1. Introduction 

Biomaterials should simultaneously satisfy many requirements and possess properties such 

as non-toxicity, corrosion resistance, thermal conductivity, strength, fatigue durability, 

biocompatibility and sometimes aesthetics. A single composition with a uniform structure 

may not satisfy all such requirements. Natural biomaterials often possess the structure of 

Functionally Graded Materials (FGMs) which enables them to satisfy these requirements. 

FGMs provide the structure with which synthetic biomaterials should essentially be formed. 

The size of biomaterial components is relatively small. In the case of dental applications, the 

components are generally smaller than 20 mm. This substantially reduces the difficulty of 

fabricating such materials due to a mismatch in thermal expansion which causes micro crack 

formation during the cooling cycle. 

Biomaterials are essential for life and health in certain cases. They have a generally high 

added value for their size. Thus, biomaterials form one of the most important areas for the 

application of FGMs. It is an area for which FGMs, at the present time, are sufficiently 

developed for practical use. The dental implant is used for restoring the function of chewing 

and biting, and therefore eating, which is the most fundamental activity of human beings 

required for living. We are living in an era of longer life expectancy and thus, dental care 

becomes especially important for better quality of life in old age. 

Implant may be classified to “implant’’ as an artificial bone for medical use and ‘‘dental 

implant’’ as an artificial tooth for dental use. The specified properties are slightly different 

depending on their use. The implants in orthopaedics are used mostly as structurally enforced 

artificial bone which is inserted inside the corpus. Medical implants lay more weight on 

strength, toughness, torque in mechanical properties and the specific problem of tribology and 

abrasion resistance in artificial joint. Dental implant is usually much smaller and is used to 

reconstruct the masticatory function when tooth root is completely lost or extracted.  
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Implant is placed in the jawbone in the manner to penetrate from the inside to the outside of 

the bone. The function is quite different at the inside of bone, outside and at the boundary. 

In the inside of jaw bone, bone affinity and stress relaxation are important and in the outside 

of bone, that is, in oral cavity, the sufficient strength is necessary. In the application of 

human body implant, FGM is usually composed of Collagen Hydroxyapatite (HAP) and 

titanium (Watari et al., 2004; Hedia, 2005).  

HAP is indeed a principal component in human bones and related tissues. HAP inclusion in 

forming the dental implant material can bring about an enhanced biocompatibility with the 

native hosting tissues. The main advantages of using FGM dental implant are: 1) reduction 

of stress shielding effect on the surrounding bones that usually arises in the presence of fully 

metallic implants (Hedia, 2005), 2) improvement of biocompatibility with bone tissues 

(Watari et al., 2004), 3) preventing the thermal-mechanical failure at the interface of HAP 

coated metallic implants (Wang et al., 2007) and 4) meeting the biomechanical requirements 

at each region of the bone while enhance the bone remodeling, hereby maintaining the 

bone’s health status (Yang & Xiang, 2007). The latter is more related to volume fraction of 

FGM. The first three aspects of using FGM implant have been investigated in the previous 

studies (Watari et al., 2004; Hedia, 2005; Wang et al., 2007).  

However, limited knowledge has been available in the effect on bone remodeling due to the 

use of FGM dental implants. The other issue needs to be systematically studied is how to 

devise an optimal FGM pattern for dental implant application. It has been widely accepted 

that a mating mechanical property to the host bone should be made in order to avoid stress 

shielding (Hedia & Mahmoud, 2004; Hedia et al., 2006) and promote osseointegration and 

bone remodeling (Chu et al., 2006; Yang & Xiang, 2007). However, there are few reports 

available which examine whether or not a mating property could result in the best 

remodeling consequence and ensure a long-term success. 

Recently, optimization of FGM dental implant was studied by Lin et al. (2009) using the 

Response Surface Methodology (RSM) and the results show the incompatibility of 

properties with each other and the need for using multi-objective algorithms to overcome 

the problem. Another issue concerns the existing material engineering technology which 

may not allow us to make such mating pattern for individuals in a cost efficient way. As a 

result, how to optimally tailor FGM pattern for remodeling is of noteworthy implication in 

developing FGM implantation. 

This chapter aims at extending a more realistic FGM design for dental implantation. Using 

Simulated Annealing (SA), the multi-objective optimization model was developed to 

optimize FGM gradient pattern for desirable on-going bone turnover outcome and 

mechanical responses. SA algorithm has shown great potential for solving optimization 

problems as they conduct global stochastic search. The multi-objective optimization 

problem was solved using SA and the results were compared with the RSM. 

2. Properties of FGM dental implant 

In this study, the configuration of FGM dental implant follows the patterns from literature 

(Wang et al., 2007; Yang & Xiang, 2007). The material gradient is governed by a power law 
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with parameter m, as in Equation (1). The volume fractions of the two-phase composite FGM 

dental implant can be calculated from the following equations (Hedia, 2005; Wang et al., 

2007; Yang & Xiang, 2007): 
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 (1 )m CV V= −  (2) 

where Vc denotes the volumetric fraction of HAP/Col (ceramic), Vm denotes the volumetric 

fraction of titanium (metal), m is a constant to define the variation in material composition, y 

is the vertical position within the implant region and h is the total length of the implant. Fig. 

1 shows the schematic view of FGM dental implant with graded material composition used 

in dentistry. 

 

Figure 1. Schematic view of FGM dental implant with graded material composition.  

Accordingly, the Young modulus and Poisson ratio can be calculated as (Hedia, 2005): 

 

2/3

0 2
3

( )

( )( )

c m c m
c

c m c m m

E E E v
E E

E E E v v

 
+ − =  

+ − −  

 (3) 

 m m c cv v V v V= +  (4) 

where E0 is the equivalent Young modulus at different regions of the implant, Ec is the 

Young modulus of HAP/Col, Em is the Young modulus of titanium. vc and vm are the Poisson 

ratios for HAP/Col and titanium, respectively. The HAP/Col and titanium compositions 

vary according to the relative length of y/h, with respect to the material gradient m, meaning 

that m governs the variation in the volumetric fraction of the titanium to HAP/Col 

compositions. Referring to the properties of FGM implant, the values of Ec and Em are kept 
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within the range of Ec >>1 GPa and Em >> 110 GPa, respectively (Hedia, 2005; Wang et al., 

2007; Yang & Xiang, 2007). 

Fig. 2 demonstrates the variation of mechanical properties including Young’s modulus and 

Poisson’s ration for diverse FGM pattern. From Fig. 2, the horizontal axis is the vertical 

position (y) along FGM dental implant, which is varied from 0 to 10 mm. By observing Fig. 

2, y=0 mm indicates the region directly connected to the crown, where FGM has the richest 

content of titanium when m=10, while the highest content of collagen HAP is obtained when 

m=0.1. In other words, m=10 and m=0.1, respectively, give the highest and lowest gradients 

in the Young modulus and Poisson ratio in the region of the crown’s end. Therefore, altering 

m enables us to tailor the property gradient, thereby providing a means to optimizing the 

remodeling performance induced by the FGM dental implant. 

  

Figure 2. Variation in material properties for different FGM configuration: (a) Young’s modulus, (b) 

Poisson’s ration. 

3. Bone remodeling calculations 

The biomechanical environment changes considerably when using FGM dental implant. 

Consequently, the bone remodels itself to adapt to the new changes that is imposed on it by 

minimizing the difference between the new mechanical response and related equilibrium 

state. Strain energy density is one of the most important mechanical stimuli to explain the 

bone remodeling (Weinans et al., 1992). The mathematical equations of bone remodeling are 
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given as follows (Huiskes et al., 1987; Weinans, 1992; Turner et al., 1997; Turner, 1998; Lin et 

al., 2008a, 2008b): 

Bone apposition: 
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Bone resorption: 
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where η denotes the mechanical stimulus (i.e. strain energy density), ρ is the bone density, B 

is the remodeling constant set to 1gr/cm3 (Weinans et al., 1992), Ξ is the remodeling 

reference value equal to 0.004 J/g (Weinans et al., 1992; Turner, 1998), and ξ is the bandwidth 

of bone remodeling with an adapted value of 10% (Weinans et al., 1992). After the bone 

density values are calculated from the remodeling equations, the Young modulus of cortical 

and cancellous bones (in GPa) can be updated by using the following equations (Rho et al., 

1995; O’Mahony et al., 2001): 

 23.93 24cortical corticalE ρ= − +  (8) 

 2.152.349cancellous cancellousE ρ=  (9) 

Equations (8) and (9) are utilized to update Young modulus after the densities are 

determined via the remodeling calculations. The internal bone remodeling system is formed 

using Equation (5) to Equation (9). 

4. Design optimization problem 

The bone remodeling provides quantitative data of changes in bone densities and the 

stiffness of dental apparatus. The former indicates how the bones react to the change in 

biomechanical environment in terms of the variation in bone morphology. The latter 

indicates how the bone remodeling alters the mechanical response, thereby stabilizing the 

implant and in turn strengthening the bone. In this research, the changes in bone densities 

and vertical displacement are taken as the direct measures of on-going performance of 

implantation. 

From the biomechanical point of view, increase in surrounding bone density and decrease in 

the occlusal displacement indicate the positive sign to a long-term success in dental 
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implantation. Thus, design of FGM gradient parameter (m) is expected to maximize the 

densities and minimize the displacement, which in a form of multi-objective optimization 

may be represented as: 
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where f1, f2 and f3 represent the objective functions, Dcortical  and Dcancellous are the densities of 

cortical and cancellous bones, respectively and u(m) denotes the vertical displacement at the 

top of artificial crown. The objective functions f1, f2 and f3 represent the condition of FGM 

dental implant at month 48 (Lin et al., 2009). These polynomial response functions are given 

as: 

 6 6 5 5 3 4 3 3 2 2 2( ) 2 8 1 6.2 1.9 1.76 1.9297corticalD m e m e m e m e m e m e m− − − − − −= − + − + − + +  (11) 

 
6 6 5 5 4 4 3 3 3 2 3( ) 2 6 6 2.6 3 2.4 1.1712cancellousD m e m e m e m e m e m e m− − − − − −= − + − + − +  (12) 

 
10 6 8 5 7 4 6 3 6 2 5 5( ) 7 2 3 2 7 1 4u m e m e m e m e m e m e m e− − − − − − −= − − − + − +  (13) 

The polynomial response functions were obtained using experimental tests on various 

quantities of material gradient on the FGM dental implant. Lin et al. (2009) proposed to 

adopt the RSM to construct the appropriate objective functions for a single design variable 

problem. Fig. 3 represents the cortical and cancellous densities, and displacement versus 

material gradient (m). As m increases, the displacement function u(m) is increased as shown 

in Fig. 3c. The increase in m results in an increase in the cortical density as shown in Fig. 3a. 

From Fig. 3b, the increase in m results the decrease in the density of cancellous. 

The design objectives were to maximize both Dcortical  and Dcancellous in order to determine the 

best possible material configuration for implant that will give the maximum amount of bone 

remodeling. At the same time, the objective function f3 is minimized in order to reduce the 

downward implant displacement. An ideal situation would be to attain a consistent optimal 

material gradient, where the maximum bone turnover can be made and the displacement is 

kept to minimal. To explore such a multi-objective design, first, the two objective 

optimization problems of either cortical or cancellous densities versus the displacement 

were formulated as follows: 
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and 
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Figure 3. Mass densities and displacement for FGM dental implant: (a) cortical density, (b) cancellous 

density, (c) displacement (u) (The horizontal axis is m). 

Fig. 4 shows the trend of cortical density function (f1), cancellous density function (f2) and 

the displacement function (f3). From Figs. 4b and 4c, it is clear that f2 and f3 have the same 

trend and behavior and it is expected to obtain one optimal solution. Based on Fig. 3c, we 

need to minimize the maximum of displacement in order to obtain the minimum value of 

displacement. The function f3 is minimized by multiplying u(m) by -1. In other hand, Figs. 4a 

and 4c show the different trend and behavior which with increasing m, the cortical density 

function decreases while, the displacement function increase. Therefore, it is anticipated to 

obtain a range of optimal solutions. The problem investigated in this chapter, is taken from 

(Lin et al., 2009) where the results were obtained using RSM. 
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Figure 4. Mass densities and displacement functions for FGM dental implant: (a) cortical density 

function (f1), (b) cancellous density function (f2), (c) displacement function (f3) (The horizontal axis is m). 

5. Multi-objective optimization 

The multi-objective optimization has become an important research topic for scientists and 

researchers. This is mainly due to the multi-objective nature of real life problems. It is 

difficult to compare results of multi-objective methods to single objective techniques, as 

there is not a unique optimum in multi-objective optimization as in single objective 

optimization. Therefore, the best solution in multi-objective terms may need to be decided 

by the decision maker. 
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The increasing acceptance of SA for solving multi-objective optimization problems is due to 

their ability to: 1) find multiple solutions in a single run, 2) work without derivatives, 3) 

converge speedily to Pareto-optimal solutions with a high degree of accuracy, 4) handle 

both continuous functions and combinatorial optimization problems with ease and 5) are 

less susceptible to the shape or continuity of the Pareto front (Suman & Kumar, 2006). 

5.1. Pareto-optimal solutions 

The concept of the Pareto-optimal solutions was formulated by Vilfredo Pareto in the 19th 

century (Rouge, 1896). Real life problems require simultaneous optimization of several 

incommensurable and often conflicting objectives. Usually, there is no single optimal 

solution. However, there may be a set of alternative solutions. These solutions are optimal in 

the wider sense that no other solutions in the search space are superior to each other when 

all the objectives are considered. They are known as Pareto-optimal solutions. When the 

objectives associated with any pair of non-dominated solutions are compared, it is found 

that each solution is superior with respect to at least one objective. The set of non-dominated 

solutions to a multi-objective optimization problem is known as the Pareto-optimal set 

(Zitzler & Thiele, 1998). 

6. Simulated annealing 

In 1953, Metropolis developed a method for solving optimization problems that mimics the 

way thermodynamic systems go from one energy level to another (Metropolis et al., 1953). 

He thought of this after simulating a heat bath on certain chemicals. This method is called 

Simulated Annealing (SA). Kirkpatrick et al. (1983) originally thought of using SA on a 

number of problems. The name and inspiration come from annealing in metallurgy, a 

technique involving heating and controlled cooling of a material to increase the size of its 

crystals and reduce their defects. The heat causes the atoms to become free from their initial 

positions (a local minimum of the internal energy) and wander randomly through states of 

higher energy. 

The system is cooled and as the temperature is reduced the atoms migrate to more ordered 

states with lower energy. The final degree of order depends on the temperature cooling rate. 

The slow cooling process is characterized by a general decrease in the energy level for with 

occasional increase in energy. On the other hand, a fast cooling process, known as 

quenching, is characterized by a monotonic decrease in energy to an intermediate state of 

semi-order which is used as temperature schedule in this chapter. 

At the final stages of the annealing process, the system’s energy reaches a much lower level 

than in rapid cooling (quenching). Annealing (slow cooling) therefore allows the system to 

reach lower global energy minimum than is possible using a quick quenching process, 

equivalent to a local energy minimum. 

By analogy with this physical process, each step of the SA algorithm replaces the current 

solution by a random "nearby" solution, chosen with a probability that depends both on the 
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difference between the corresponding function values and also on a global parameter T 

(temperature), that is gradually decreased during the process. The dependency is such that 

the current solution changes almost randomly when T is large, but increasingly "downhill" 

as T goes to zero (Fleischer, 1995). The allowance for "uphill" moves potentially saves the 

method from becoming stuck at local optima. Several parameters need to be included in an 

implementation of SA. 

These are summarized by Davidson and Harel (1996): 

• The set of configurations, or states, of the system, including an initial configuration 

(which is often chosen at random). 

• A generation rule for new configurations, which is usually obtained by defining the 

neighborhood of each configuration and choosing the next configuration randomly 

from the neighborhood of the current one. 

• The target, or cost function, to be minimized over the configuration space. (This is the 

analogue of the energy). 

• The cooling schedule of the control parameter, including initial values and rules for 

when and how to change it (This is the analogue of the temperature and its decreases). 

• The termination condition, which is usually based on the time and the values of the cost 

function and/or the control parameter. 

SA is a popular optimization algorithm due to the simplicity of the model and its 

implementation. However, due to CPU time-consuming nature of standard SA, a fast 

temperature schedule to fulfill the required conditions is suggested. In fact, simulated 

annealing algorithm with the fast cooling process is called simulated quenching (SQ) which is 

used as an optimization method in this chapter to overcome the slow SA optimization process. 

7. SA for multi-objective optimization 

SA has been used as an optimization method for solving a wide range of combinatorial 

optimization problems. It has also been adapted for solving multi-objective problems due to 

its simplicity and capability of producing a desirable Pareto set of solutions. In addition, it is 

not susceptible to the shape of the Pareto set, since shape may be considered as a concern for 

mathematical programming techniques. 

7.1. The method of Suppapitnarm and Parks (SMOSA) 

The concept of archiving the Pareto-optimal solutions for solving multi-objective problems 

with SA has been used by Suppapitnarm et al. (2000). The Suppapitnarm Multi-Objective 

Simulated Annealing (SMOSA) enables the search to restart from an archived solution in a 

solution region, where each of the pair of non-dominated solutions may be superior with 

respect to at least one objective. Since SA only generates a single solution at a given 

iteration, an independent archive is required to record all non-dominated solutions found 

during search. Pioneering work in this area was first performed by Engrand (1997), and was 

further developed by Suppapitnarm et al. (2000). 
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7.1.1. Acceptance probability and archiving  

A new acceptance probability formulation based on an annealing schedule with multiple 

temperatures (one for each objective function) was also proposed. The changes in each 

objective function values are compared with each other directly before archiving. This 

ensures that the moves to a non-dominated solution are accepted. It does not use any weight 

vector in the acceptance criteria. Hence, the acceptance probability step is given as: 

 
1

min 1, exp
N

i

ii
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P
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=

  −Δ
=      
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where ΔS=(Zi(Y)-Zi(X)) and N is the number of objective functions, X is the current solution, 

Y is the generated solution, Zi is the objective function, and Ti is the annealing temperature. 

Thus, the overall acceptance probability is the product of individual acceptance probabilities 

for each objective associated with a temperature Ti . 

7.1.2. Annealing schedule 

A new annealing schedule is developed to control the lowering of individual temperatures 

associated with each objective function. If the temperatures are lowered too fast the chance 

of accepting solutions reduces rapidly and large parts of the search space are never 

explored. In contrast, if the temperature is reduced too slowly, many redundant solutions 

which do not lead to non-dominated solutions are accepted and the Pareto-optimal set of 

solutions develops very slowly. The latter is particularly undesirable if objective function 

evaluations are expensive and/or if computation time is a important factor.  

A statistical record of the values of each of the objective functions (fi) is maintained. First, the 

temperatures are lowered after NT1 iterations by setting each temperature to the standard 

deviation (σ) of the accepted values of fi (Ti = σi). Thereafter, the temperatures based on the 

quenching schedule are updated after every NT2 iterations or NA acceptances as follows: 

 ( 1) ( ) 0 1i k i k iT T α α+ = × < <  (17) 

where Ti is the temperature, k is the time index of annealing, and αi is the cooling ratio of 

each objective function. The suitable values for NT1 and NT2 were chosen 1000 and 500 

iterations, respectively (Suppapitnann, 1998). 

7.1.3. Return to base strategy 

In order to completely expose the trade-off between objective functions, the random 

selection of a solution from the archive, from which to recommence search, is systematically 

controlled using an intelligent return-to-base strategy. After the start of search, a return-to-

base is first activated when the basic features of the trade-off between objectives have 

developed. It seems sensible that this take place when the temperatures are first lowered, 

i.e., after NT1 iterations. Thereafter, the rate of return is, naturally, increased to intensify the 
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search in the trade-off. The number of iterations NBi to be executed prior to the ith return-to-

base after the start of search is updated as given: 

 1 2,3,4,...Bi B BiN r N i−= =   (18) 

where rB is a constant parameter which varies between 0 and +1 and dictates the frequency 

of return. Recommendation values for rB and NB1 may be chosen as 0.9 and 2NT2, 

respectively (Suppapitnann, 1998). In order to fully develop the trade-off, solutions that are 

more isolated from the rest of the trade-off solution should be favored in returns-to-base. 

The extreme solutions, those solutions that correspond to minimum values for each 

objective in the trade-off, also require special consideration. These solutions are almost 

invariably only just feasible, which makes the design space around them difficult to search.  

For these reasons, a base set of candidate solutions was proposed which consists of a 

number of the most isolated of those solutions currently held in the archive and the M 

extreme solutions in the archive. Therefore, when a return-to-base is activated, the search 

diversifies into less well explored regions of the trade-off. To evaluate the degree of isolation 

for a solution, the following formula was proposed (Suppapitnarm et al., 2000): 
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where I(Xj) is the normalized value for distance in objective space for the jth solution from all 

other archived solutions and Xj denotes the jth archived solution. As and M are the total 

number of solutions and extreme solutions stored in the archive, respectively. fkmax and fkmin 

are the maximum and minimum values for kth objective function (fk), respectively. Each 

solution - except for the extreme solutions - is ranked in order to decrease isolation distance, 

thereby, establishing an ordered set with the most isolated solutions at its top and the least 

isolated solutions at the bottom. 

7.1.4. Step size control 

An improvement in SA performance may be gained by varying the maximum allowable 

step changes in each of the decision variables during perturbation between iterations (Parks, 

1990). Hence, the value of each design variable is rescaled to Uik such that it varies between - 

1 and +1 at its lower and upper bounds, respectively. At the next iteration, Ui(k+1) is modified 

as given: 

 ( 1)i k ik iU U rand S+ = + ×  (20) 

where rand is a uniformly distributed random number between -1 and +1, and Si is the 

maximum (positive) step-size for each design variable. If the solution is accepted, Si is 

updated using following equation: 
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 (0.9 0.21 )i iS S rand= + ×  (21) 

A suitable value for the upper bound for each Si was set to 0.5 to permit, initially, a wide 

search around the current position. Accordingly, a lower bound of 0.0001 was chosen for the 

smallest possible value of each Si to prevent stagnation during search (Parks, 1990). 

Therefore, the maximum step change in the design variables is monitored and is varied to 

reduce violation of the constraints. 

7.1.5. The steps and flowchart of the SMOSA 

The basic steps involved in the SMOSA algorithm for a problem having N objective 

functions and n decision variables are as follows (Suman, 2004): 

Step 1. Start with a randomly generated initial solution vector, X (an n×1 vector whose 

elements are decision variables) and evaluate all objective functions and put it into 

a Pareto set of solutions. 

Step 2. Generate a random perturbation and a new solution vector, Y, in the neighborhood 

of current solution vector, X, re-evaluate the objective functions and apply a penalty 

function approach to the corresponding objective functions, if necessary. 

Step 3. Compare the generated solution vector with all the solutions in the Pareto set and 

update the Pareto set, if necessary. 

Step 4. If the generated solution vector is archived, assign it as the current solution vector 

by putting X=Y and go to Step 7. 

Step 5. If the generated solution vector is not archived, accept it with the probability using 

Equation (16). If the generated solution is archived, assign it as the current solution 

vector by putting X=Y and go to Step 7. 

Step 6. If the generated solution vector is not archived, retain the earlier solution vector as 

the current solution vector and go to Step 7. 

Step 7. Periodically, restart with a randomly selected solution from the Pareto set. While 

periodically restarting with the archived solutions, Suppapitnarm et al. (2000) have 

recommended biasing towards the extreme ends of the trade-off surface. 

Step 8. Reduce the temperature using Equation (17) and annealing schedule. 

Step 9. Repeat Steps 2 to 8, until a predefined number of iterations is carried out. 

In addition, the flowchart of SMOSA optimizer is illustrated in Fig. 5. 

8. Optimization of the two objective functions using SMOSA 

An ideal situation would be to attain a consistent optimal material gradient, where the 

maximum one turnover can be made and the displacement is kept to minimal. The problem 

described in previous sections was solved by multi-objective SA code written in MATLAB 

software programming and run on Pentium IV, 2500 GHz and 4 GB RAM. The SMOSA was 

run 5 times and the obtained averaged results were compared to results obtained from RSM. 

The parameters which must be specified before running the algorithm are initial 

temperature, frozen state represented by the final temperature, cooling ratio (annealing), i.e. 
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the rate at which the temperature is lowered between two cooling cycles, the randomly 

generated initial solution, and the lower and upper bounds for design variable (m). Table 1 

shows the user parameters used for the SMOSA. 

 

Figure 5. Flowchart of the SMOSA optimizer. 
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User Parameters Quantities 

Initial temperature for each objective (Ti0) 100 

Final temperature for f2 and f3 1e-6 

Final temperature for f1 and f3 1e-8 

Cooling ratio (αi) 0.98 

Lower bound 0.1 

Upper bound 10 

Table 1. Optimization parameters associated with the SMOSA. 

The SMOSA was conducted on two objective functions, f3 as displacement function and f1 as 

cortical density function as in Equation (14). Fig. 6 represents the comparison of Pareto front 

for two objective functions using SMOSA and RSM (Lin et al., 2009). Comparing Figs. 6a and 

6b, the same trend is seen in both figures. It can be seen that the increase in f1, results in f3 to 

decrease and vice versa. Hence, SMOSA confirms the results obtained by RSM. However, the 

data ranges obtained by SMOSA do not match exactly with the data range obtained by RSM. 

The data range given by SMOSA for f1 is from 0.51688 to 0.51778 as shown in Fig. 6b while, 

RSM gives values from 0.5169 to 0.5175 for f1 (see Fig. 6a). Similarly, the data range given by 

SMOSA for f3 is from -3.9054e-5 to -3.5907e-5 and for RSM for f3 is from 3.5205e-5 to 3.603e-5. 

The date range for cortical density function given by SMOSA is almost 33% more than the 

range obtained by RSM in micro scale. This shows the efficiency of the SMOSA in providing 

more data range for cortical density than RSM. 

The safety factor (acceptance capability) obtained by SMOSA is 33% higher than the one 

given by RSM for magnitude of cortical density function. This increasing of data range is 

interesting for FGM dental implant design and shows that SMOSA has outperformed RSM 

in cortical density function. SMOSA gives the data range for displacement almost 73% more 

than the values given by RSM in micro scale. That means SMOSA enables the designer with 

a wider choice for design. 

In general, SMOSA method gives more selection of material gradient (m) for designing of 

the FGM dental implant but with higher displacement compared to the RSM. The order of 

quantities (micro-scale) shows the importance of accuracy in the optimization of the FGM 

implant. Hence, any improvement in quantities may be considerable although such 

improvements may seem to be negligible. 

Fig. 7 illustrates the trend for cortical density and displacement functions with respect to m. 

By inspecting Fig. 7, the acceptable range for m is from 0.1 to 0.65. The magnitude of f1 

decreases as m increases which means the density of cortical (Dcortical) increases. In contrast, 

with the increase in m the quantity of vertical displacement (f3) increases. This trend shows 

the non-dominated solution from the Pareto front plot so that the increase in one function 

results in the decrease of the other function and vice versa. Such data was extracted from the 

Pareto front depicted in Fig. 6b. 



 
Simulated Annealing – Single and Multiple Objective Problems 232 

 

Figure 6. Pareto front for optimization of two objective functions (f3 and f1) using: (a) RSM, (b) SMOSA. 

Fig. 8 demonstrates f1, f2 and f3 with respect to the m. When the temperature is high at the 

beginning of the optimization process, all invalid moves were accepted by the acceptance 

probability (P), as shown in Fig. 8. By decreasing the temperature at each iteration, the 

probability of accepting invalid moves is reduced and therefore, only qualified points and 

valid moves (so called non-dominated solutions) were accepted. 

As a next step, the multi-objective simulated annealing method was applied on other two 

objective functions as shown in Equation (15). The result indicates the Pareto front is a 

cluster of points that are gathered in one point representing an optimal solution. Going back 

to Figs. 4b and 4c for minimizing both objective functions (f2 and f3), we expect to have one 

optimal solution as the two functions have a similar trend to reach the optimal point. 

In other words, if one moves from the right side of the Figs. 4b and 4c to the left side, the 

cancellous density increases while the displacement decreases. This situation may be 

considered as an optimal state. The optimal material gradient is taken as 0.1 (m=0.1). The 

values for f3 and f2 are equal to -3.9068e-5 and 0.8540, respectively. Hence, the best material 

gradient for these two objective functions is given when m=0.1. 
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Figure 7. Cortical density and displacement functions versus m using SMOSA for: (a) f1, (b) f3. 

9. Optimization of the three objective functions using SMOSA 

The results obtained from the optimization of two objective functions may not adequately 

address the full design requirements and therefore, the three objective functions were 

developed as defined in Equation (10). Fig. 9a shows the Pareto front surface for three 

objective functions using RSM. Fig. 9b illustrates the 3D plot of the Pareto front for three 

objective functions (f1, f2, and f3) using SMOSA. From Fig. 9, the good harmony and 

similarity between the results obtained by SMOSA and RSM are depicted. 

Fig. 10 represents various aspects of Fig. 9b. This figure shows the trend for f1, f2, and f3 in 

terms of the material gradient. The acceptable range for m varies from 0.1 to 0.65 (see Fig. 

10). As shown in Fig. 10a, the maximum value for cortical density is obtained for m=0.63. In 

Fig. 10b, the increase in f2 leads to increase in m, and hence, decrease in the cancellous 

density. This indicates that for material gradient 0.1 (m=0.1) cancellous density has the 

maximum value. In addition, by observing Fig. 10c, when m=0.1, the displacement has the 

minimum value. Finally, based upon the obtained results, the optimal range for material 

gradient is almost varying from 0.1 to 0.65 (0.1 ≤ m ≤ 0.65). 
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Figure 8. Distribution of mass densities and displacement functions with respect to the m using 

SMOSA: (a) f1, (b) f2, (c) f3. 

 

Figure 9. 3D Pareto front for three objective functions (f1, f2 and f3) using: (a) RSM, (b) SMOSA. 
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Figure 10. Mass densities and displacement functions in optimization of three objectives in terms of 

material gradient using SMOSA for: (a) f1, (b) f2, (c) f3. 
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10. Conclusions 

This chapter presents some important findings for Functionally Graded Material (FGM) 

dental implant design in a power law configuration. This is vital for maintaining the overall 

health of the bone tissues. The research clearly suggests that, a better performance in bone 

turnover can be achieved by lowering the FGM dental implant material gradient. However, 

this will at the same time reduce the stiffness of implantation, consequently placing the 

bone-implant interface at higher risk of damage during the early healing stage. 

The problem may be solved by the multi-objective optimization method. The Pareto front 

was determined using the Suppapitnarm Multi-Objective Simulated Annealing (SMOSA) 

optimization procedure. The results obtained from the SMOSA confirm the results obtained 

by the Response Surface Methodology (RSM), in addition to offering further improvements. 

The SMOSA optimized the objective functions on a wider data range than RSM and offered 

better results with respect to the cortical density function (almost 33% more than RSM). 

SMOSA optimization in this case, gives more selection of material gradient (m) for designing 

FGM dental implant compared to RSM. The material gradient varies from 0.1 to 0.65 given 

by SMOSA. 

By considering the point that the scale in the FGM dental implant is in micro, the 

importance of accuracy in optimization of the FGM implant is understood. The design of 

FGM gradient parameter is expected to maximize the densities (cortical and cancellous) and 

minimize the displacement and plays a more important role in the design methodology. 

However, sacrifice may be made when the third criterion of displacement is introduced, 

which means that an optimal gradient m for bone remodeling may not be the best for 

stiffness. It is expected that the design methodology can produce more favorably patient 

specific implant, better improving the immediate and long-term restorative outcomes. 
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