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1. Introduction 

The study of rotating machinery appears in the context of machines and structures due to 

the significant number of phenomena typical to their operation that impact their dynamic 

behavior and maintenance. Consequently, rotor bearing systems face numerous problems 

that affect a wide variety of machines, e.g., compressors, pumps, motors, centrifuge 

machines, large and small turbines. This type of machine finds various applications in the 

industry, such as, automotive, aerospace and power generation. In most applications an 

unpredictable stoppage can lead to considerable financial losses and risks. Therefore, there 

is an evident need for the complete modelling of rotating systems, including the 

components of the interface between fixed and moveable parts, such as the hydrodynamic 

bearings. Bench-scale experimental analyses provide more complete models of the main 

components of the rotor, with strong emphasis on the modelling of the bearings of rotary 

machines, since they constitute the rotor-foundation structure connecting elements.  

The machinery parameters are needed to study the dynamic behavior of the system, namely 

the Campbell diagram, stability analysis, critical speeds, excitation responses, control and 

health monitoring. The determination of unknown parameters in rotating machinery is a 

difficult task. To overcome this difficulty, the use of optimization techniques to solve the 

inverse problem represents an important alternative approach.  

In the literature, various works have been proposed to determine unknown parameters of 

dynamic systems. Edwards et al. [1] presented a procedure to determine unbalance and 

support parameters simultaneously based on the least-squares method. Xu et al. [2] 

proposed a rotor balancing method by using optimization techniques, which does not need 
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trial weights. Assis and Steffen [3] developed strategies in order to use optimization 

techniques for determining the parameters of gyroscopic systems and they commented 

about the difficulties that arise in using classical optimization algorithms due to their 

difficulty in avoiding local minima. The properties of the supports located at the ends of the 

rotor were considered as variables in the optimization procedure. An inverse problem was 

developed by using a hybrid cascade-type optimization scheme considering a single 

unbalance distribution. Castro et al. [4] proposed an optimization method based on genetic 

algorithms to tune displacements of the rotor supported by hydrodynamic bearings. Castro 

et al. [5] applied a hybrid algorithm based on genetic algorithm and simulated annealing to 

tune the orbits of the rotary system in the critical region. In this search algorithm, the genetic 

algorithm is applied in order to make an approximation of the optimal result, while the 

simulated annealing refines this result. Tiwari and Chakravarthy [6] presented an 

identification algorithm for simultaneous estimation of the residual unbalances and the 

bearing dynamic parameters by using the impulse response measurements for multi-degree-

of-freedom flexible rotor-bearing systems. Kim et al. [7] presented a bearing parameter 

identification of rotor–bearing system using clustering-based hybrid evolutionary 

algorithm. Castro et al. [8] applied multi-objective genetic algorithm to identify unbalance 

parameters. Nauclér and Söderstöm [9] consider the problem of unbalance estimation of 

rotating machinery based on the development of a novel method which takes disturbances 

into account, leading to a nonlinear estimator. More recently, Saldarriaga et al. [10] 

proposed a methodology for the experimental determination of the unbalance distribution 

on highly flexible rotating machinery using Genetic Algorithms. Modal analysis techniques 

were previously performed to obtain an initial guess for the unknown parameters. A 

pseudo-random optimization-based approach was used first to identify the parameters of 

the system in such a way that a reliable rotor model was obtained. Satisfactory results 

encouraged the use of the proposed approach in the industrial context. Sudhakar and 

Sekhar [11] proposed a method dedicated to fault identification in a rotor bearing system by 

minimizing the difference between equivalent loads estimated in the system due to the fault 

and theoretical fault model loads. This method has a limitation since the error found in the 

identified fault parameters increases when decreasing the number of measured 

experimental data. 

In this context, the present chapter discusses the possibility of using the Simulated 

Annealing algorithm (SA) for the identification of unknown parameters of a rotor model 

from the unbalanced response of the system. Basically, the SA algorithm exploits the 

analogy between the search for a minimum in the optimization problem and the process of 

gradual cooling of a metal in a crystalline structure of minimal energy. A desirable 

characteristic of a minimum search method is the ability to avoid the convergence to a local 

optimal point, e.g., in terms of the physical process of annealing a meta-stable structure is 

obtained in the end. Thus, the paradigm of SA is to offer means of escaping from local 

optima through the analysis of the neighbourhood of the current solution, which can 

assume, within a given probability, worse solutions, but makes the finding of a new path to 

the global optimum possible. Metropolis et al. [12] presented an algorithm that simulates the 

evolution of a crystalline structure in the liquid state up to its thermal equilibrium. 
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Metropolis’ algorithm can be used to generate sequences of configurations in a 

combinatorial optimization problem. SA is seen as a sequence of Metropolis algorithms, 

executed with a decreasing sequence of the control parameter. The temperature (control 

parameter) is continually reduced after a certain number of neighbourhood searches in the 

current state. 

It is worth mentioning that although the SA is a powerful and important optimization tool, 

often it is not applied according to strict adherence to sufficiency conditions, permitting the 

researcher to truly claim that the optimal solution has been (statistically) found. According 

to Ingber [13], the reason typically given is simply that many variants of this technique are 

considered to be too consuming of resources to be applied in such strict fashion. There exist 

faster variants of SA canonical, but these apparently are not as quite easily coded and so 

they are not widely used. Many modifications of SA are really quenching, and should aptly 

be called simulated quenching (SQ). 

In the present contribution, the canonical SA, e.g., based on the algorithm proposed by 

Kirkpatrick et al. [14] to include a temperature schedule for efficient searching, is used for 

the design and identification of rotor bearing systems. The goal for the first problem 

presented is to increase the difference between two critical speeds of a rotor-bearing system 

that was previously modelled by using the finite element method. In this case, the design 

variables are the parameters of the rotor-bearing system. To solve this multi-criteria 

optimization problem a methodology based on a combination of SA, non-dominated sorting 

strategy and crowding distance operator for guaranteeing convergence and diversity of 

potential candidates in the population is proposed. The second problem studied is related to 

the identification of unknown parameters of flexible rotor-bearing systems, modelled 

mathematically by using the finite element method. The difference between the unbalance 

experimental responses of the rotor and the simulated unbalance responses (obtained by 

using the mathematical model) is used to write the objective function to be minimized, so 

that the damping and stiffness parameters are found. For illustration purposes, the 

experimental (synthetic) data used were generated by using the solution of the direct problem 

to which artificial noise was added. 

This chapter is organized as follows. The rotor bearing formulation is revisited in Section 4. In 

Sections 5 and 6 the main characteristics of the SA and multi-objective optimization are briefly 

presented, respectively. The Multi-objective Optimization Simulated Annealing (MOSA) 

proposed in this work is described in Section 7. The results and discussion are presented in 

Section 8.  Finally, the conclusions and suggestions for future work complete the chapter. 

2. Rotor bearing modelling 

The mathematical model used to calculate the unbalance forces, natural frequencies and 

vibration mode shapes is obtained by using the Finite Element Method. The discrete rotor 

model is composed of symmetric rigid disc elements, symmetric Timoshenko beam 

elements, nonsymmetric coupling elements, and nonsymmetric viscous damped bearings, 

as presented in Figure 1.  
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Figure 1. Rotor references frames. 

Two reference systems are considered, namely the inertial frame (X,Y,Z) and the frame 

(x,y,z) that is fixed to the disk [3]. By using the Lagrange’s equations in steady-state 

conditions, the rotor model is represented by the following matrix differential equation [15]: 

 1 2 3 4 5sin( ) cos( ) sin( ) cos(  )Mq Cq Kq F F t F t F a t F a t+ + = + Ω + Ω + Ω + Ω    (1) 

where q is the N order generalized coordinate displacement vector; K is the stiffness matrix 

which takes into account the symmetric matrices of the beam and the nonsymmetric 

matrices of the bearings; C is the matrix containing the antisymmetric matrices due to 

gyroscopic effects and the nonsymmetric matrices due to bearings viscous damping; F1 is 

the constant body force such as gravity; F2 and F3 are the forces due to unbalance; F4 and F5 

are the forces due to the nonsynchronous effect; and a is a constant. 

3. Simulated annealing 

SA resembles the cooling process of molten metal through annealing (slow cooling process). 

At high temperature (T), the atoms in the molten metal can move freely with respect to each 

other, but as the temperature is reduced, the movement of the atoms gets restricted. The 

atoms start to get arranged and finally form crystals having the minimum possible energy 

which depends on the cooling rate. If the temperature is reduced at a very fast rate, the 

crystalline state may not be achieved at all and, instead, the system may end up in a 

polycrystalline state, which may have a higher energy state than the crystalline state. 

Therefore, in order to achieve the absolute minimum energy state, the temperature should 

be reduced at a slow rate [16].  

From the optimization point of view, this physical process is analogous to the determination 

of near-global or global optimum solutions. The energy of the atoms represents the objective 

function and the final ground state corresponds to the global minimum of the objective 

function. The analogy between the physical system and the optimization problem is shown 

in Table 1 [17]. 
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Physical system Optimization problem

State Feasible Solution 

Energy Cost Function 

Ground state Optimal solution 

Rapid quenching Local search 

Careful annealing Simulated annealing 

Table 1. Analogy between simulated annealing and optimization. 

The basic steps of canonical SA are presented in Figure 2 and described in the following 

subsections [18].  

 

Figure 2. Simulated Annealing algorithm flowchart (NI is the number of iterations). 

3.1. Initial population 

In this iterative technique, an initial guess is randomly generated according to the design 

space. It should be emphasized that other forms of generating the initial population can be 

used to initialize the optimization process. 

3.2. Initial temperature 

The control of the ‘temperature’ parameter must be carefully defined since it controls the 

acceptance rule defined by the Boltzmann distribution. T has to be large enough to enable 

the algorithm to move off a local minimum but small enough not to move off a global 

minimum. According to Chibante et al. [18], the value of T should be defined in an 



 
Simulated Annealing – Single and Multiple Objective Problems 202 

application based approach (ad-hoc) since it is related with the magnitude of the objective 

function value. 

3.3. Perturbation mechanism 

This operator permits the creation of new solutions from the current one. In other words it 

deals with the exploration of the neighbourhood of the current solution by adding small 

changes to the current solution.  

A solution s is defined as a vector s = (x1, ..., xn) representing a point in the search space. A 

new solution is generated by using a vector σ = (σ1, ..., σn) of standard deviations to create a 

perturbation from the current solution. A neighbour solution is then produced from the 

present solution by: 

 1 (0, )i i ix x N σ+ = +   (2) 

where N(0,σi) is a random Gaussian number with zero mean and σi standard deviation. 

3.4. Temperature update 

The most common cooling schedule is the geometric rule for temperature variation: 

 
( )

1

log
exp

1

temp temp

i i
temp

stop start
T T

n+

 
 =  − 
 

  (3) 

where stoptemp and starttemp are the final temperature (standard deviation) and the initial 

temperature, respectively, and ntemp is the number of temperatures considered. However, 

other schedules have been proposed in the literature [19]. Another parameter is the number 

of iterations for each temperature, which is often related with the size of the search space or 

with the size of the neighbourhood. This number of iterations can even be constant or, 

alternatively, can be defined as a function of the temperature or based on a feedback from 

the process [18]. 

3.5. Termination criterion 

Among the several strategies proposed for the termination of the algorithm, we can cite 

some very common approaches: the maximum number of iterations; the minimum 

temperature value; the minimum value of the objective function; the minimum value of the 

acceptance rate and the maximum computational time. 

4. Multi-objective optimization 

Real-world design problems involve the simultaneous optimization of two or more (often 

conflicting) objectives, known as multi-objective optimization problems (MOOP). The 

solution of such problems is different from the one of the single-objective optimization 
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problems. The main difference is that MOOP normally have not one but a set of solutions, 

which should be equally satisfactory [20,21].  

Traditionally, the treatment of such problems is done by transforming the original MOOP 

into a scalar single-objective problem. Several studies dealing with multi-objective 

optimization techniques have been reported over the past decades, based on the Kuhn-

Tucker's criterion. These techniques follow the preference-based approach in which a 

relative preference vector is used to rank multiple objectives. Classical searching and 

optimization methods use a point-to-point approach, in which the solution is successively 

modified so that the outcome of the classical optimization method is a single optimized 

solution. However, Evolutionary Algorithms (EA) can find multiple optimal solutions in 

one single simulation run due to their population-based search approach. Thus, EA are 

ideally suited for multi-objective optimization problems.  

When dealing with MOOP, the notion of optimality needs to be extended. The most 

common one in the current literature is that originally proposed by Edgeworth [22] and later 

generalized by Pareto [23]. This notion is called Edgeworth-Pareto optimality, or simply 

Pareto optimality, and refers to finding good tradeoffs among all the objectives. This 

definition leads to a set of solutions that is known as the Pareto optimal set, whose 

corresponding elements are called non-dominated or non-inferior. The concept of optimality 

in the single objective context is not directly applicable in MOOPs. For this reason a 

classification of the solutions is introduced in terms of Pareto optimality, according to the 

following definitions [20]: 

• Definition 1 - The Multi-objective Optimization Problem (MOOP) can be defined as: 

 ( ) ( ) ( ) ( )( )1 2,  ,  ...,   ,  1,  ...,mf x f x f x f x m M= =   (4) 

subject to 

 ( ) ( ) ( ) ( )( )1 2,  ,  ...,   ,  1,  ...,ih x h x h x h x i H= =   (5) 

 ( ) ( ) ( ) ( )( )1 2,  ,  ...,   ,  1,  ...,jg x g x g x g x j J= =   (6) 

 ( )1 2,  ,  ...,   ,  1,  ..., ,  nx x x x n N x X= = ∈   (7) 

where x is the vector of design (or decision) variables, f is the vector of objective functions 

and X is denoted as the design (or decision) space. The constraints h and g (≥ 0) determine 

the feasible region.  

• Definition 2 - Pareto Dominance: for any two decision vectors u and v, u is said to 

dominate v, if u is not worse than v in all objectives and u is strictly better than v in at 

least one objective.  

• Definition 3 - Pareto Optimality: when the set P is the entire search space, or P = S, the 

resulting non-dominated set P’ is called the Pareto-optimal set. Like global and local 
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optimal solutions in the case of single-objective optimization, there could be global and 

local Pareto-optimal sets in multi-objective optimization. 

In the multi-objective context, various Multiple-Objective Evolutionary Algorithms 

(MOEAs) can be found. This group of algorithms conjugates the basic concepts of 

dominance described above with the general characteristics of evolutionary algorithms. 

Basically, the main features of these MOEAs are [20,21]: 

• Mechanism of adaptation assignment in terms of dominance - between a non-

dominated solution and a dominated one, the algorithm will favour the non-dominated 

solution. Moreover, when both solutions are equivalent in dominance, the one located 

in a less crowded area will be favoured. Finally, the extreme points (e.g. the solutions 

that have the best value in one particular objective) of the non-dominated population 

are preserved and their adaptation is better than any other non-dominated point, to 

allow for maximum front expansion. 

• Incorporation of elitism - the elitism is commonly implemented using a previously 

stored secondary population of non-dominated solutions. When performing 

recombination (selection-crossover-mutation), parents are taken from this file in order 

to produce the offspring. 

In the literature, various multi-objective algorithms based on SA have been proposed. 

Basically, the first extensions were proposed by Serafini [24,25] and by Ululgu and 

Teghem [26], where various ways of defining the probability in the multi-objective 

framework and how they affect the performance of SA based multi-objective algorithms. 

Czyzak et al. [27] combined mono-criterion SA and genetic algorithm to provide efficient 

solutions for multi-criteria shortest path problem. Ulungu et al. [28] designed a MOSA 

(Multi-objective Optimization Simulated Annealing) algorithm and tested its 

performance using multi-objective combinatorial optimization problems. Suppapitnarm 

et al. [29] used the neighbourhood perturbation method to create a new point around an 

old point using MOSA. In this algorithm, the single objective SA is modified to give a set 

of non-dominated solutions by using archiving of solutions generated earlier, and using 

a sorting procedure (based on non-dominance and crowding). Kasat et al. [30] used the 

concept of jumping genes in natural genetics to modify the binary-coded non-dominated 

sorting genetic algorithm (NSGA-II) to give NSGA-II-JG. Smith et al. [31] compared the 

candidate to the current solution according to the cardinalities of their dominant subsets 

in the file. Marcoulaki and Papazoglou [32] proposed a new multiple objective 

optimization approach by using a Monte Carlo-based algorithm stemmed from SA. Since 

the expected result in a multiple objective optimization task is usually a set of Pareto-

optimal solutions, the optimization problem states assumed here are themselves sets of 

solutions.  

5. Multi-objective optimization simulated annealing – MOSA 

Due to the success obtained by the SA in different science and engineering applications, 

their extension to the multi-objective context is desirable. In this work, the Multi-objective 
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Optimization Simulated Annealing (MOSA) algorithm is proposed. This approach is based 

on the classical SA associated with the so-called Fast Non-Dominated Sorting operator and 

has the following structure:  

• An initial population of size NP is randomly generated;  

• All dominated solutions are removed from the population through the operator Fast 

Non-Dominated Sorting. In this way, the population is sorted into non-dominated 

fronts μj (sets of vectors that are non-dominated with respect to each other) [20,21]; 

• Following, SA is applied to generate the new population (potential candidates to solve 

the MOOP); 

• If the number of individuals of the population is larger than a number defined by the 

user, it is truncated according to the Crowding Distance criterion [20,21]. 

The steps presented are repeated until a determined stopping criterion is reached. The 

operators used in the MOSA are described below.  

5.1. Fast non-dominated sorting 

The so-called Fast Non-Dominated Sorting operator was proposed by Deb et al. [21] in order 

to sort a population of size N according to the level of non-domination. Each solution must 

be compared with every other solution in the population to find if the solution is dominated. 

This requires O(MN) comparisons for each solution, where M is the number of objective 

functions. When this process is continued to find the members of the first non-dominated 

class for all population members, the total complexity is O(MN2). At this point, all 

individuals in the first non-dominated front are found. In order to obtain the individuals in 

the next front, the solutions of the first front are temporarily discarded and the above 

procedure is repeated. In the worst case, the task of obtaining the second front also requires 

O(MN2) computations. The procedure is repeated so that subsequent fronts are found. 

5.2. Crowding distance operator  

This operator describes the density of solutions surrounding a vector. To compute the 

Crowding Distance for a set of population members the vectors are sorted according to their 

objective function value for each objective function. To the vectors with the smallest or 

largest values, an infinite Crowding Distance (or an arbitrarily large number for practical 

purposes) is assigned. For all other vectors, the Crowding Distance (distxi) is calculated 

according to [20,21]: 

 
, 1 , 1

1 max min
i

m
j i j i

x
j j j

f f
dist

f f

+ −

=

−
=

−
   (8) 

where fj corresponds to the j-th objective function and m equals the number of objective 

functions. This operator is important to avoid many points close together in the Pareto’s 

Front and to promote the diversity in terms of space objectives [21]. 
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5.3. Consideration of constraints 

In this work, the treatment of constraints is made through the Static Penalization Method, 

proposed by Castro [33]. This approach consists in assigning limit values to each objective 

function to play the role of penalization parameters. According to Castro [33], it is 

guaranteed that any non-dominated solution dominates any solution that violates at least 

one of the constraints. In the same way, any solution that violates only one constraint will 

dominate any solution that presents two constraint violations, and so on. For a constrained 

problem the vector containing the objective functions to be accounted for, is given by: 

 ( ) ( ) p violf x f x r n≡ +   (9) 

where f(x) it is the vector of objective functions, rp it is the vector of penalty parameters that 

depends on the type of problem considered, and nviol is the number of violated constraints. 

6. Applications 

6.1. Rotor-dynamics design 

Modern design of rotor-bearing systems usually aims at increasing power output and 

improved overall efficiency. The demanding requirements placed on modern rotating 

machines, such as turbines, electric motors, electrical generators, compressors, turbo-pumps, 

have introduced a need for higher speeds and lower vibration levels [34]. This problem can 

be formulated as a multi-objective problem aiming at minimizing, for instance, the total 

weight of the shaft, the transmitted forces at the bearings and the positions of the critical 

speeds [35]. In this context, the present application considers the maximization of the 

difference between the 6th and 5th critical speeds for the system whose finite element model 

is composed of rigid disks with seventeen elements, two bearings and two additional 

masses, as shown in Figure 3.  

 

Figure 3. Finite element model of the rotor-bearing system. 
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The material used for the shaft and disks is the steel-1020 (density = 7800 Kg/m3, Elasticity 

modulus = 2.1E11 N/m2 and Poisson coefficient = 0.3). The shaft geometry is so that the 

diameter and length are 10 mm and 552 mm, respectively. The geometric characteristics of 

the disks are presented in Table 2. 

 

Disc Mass (Kg) 
Moment of 

Inertia (Kg m2) 

External 

Diameter (mm) 

Thickness 

(mm) 

1 0.818 0.0008 90 16.0 

2 1.600 0.0045 150 11.2 

3 0.981 0.0018 120 10.6 

Table 2. Geometric characteristics of the disks. 

Mathematically, the optimization problem can be formulated as: 

 ( ) ( )( )
2

1 inf 1min  5cf x ROT a v= −   (10) 

 ( ) ( )( )
2

2 2 supmin  6cf x v a ROT= −   (11) 

where vc is the critical speeds vector, ROTi are the permissible rotations (i=inf or sup), a1=1.3 

and a2=1.3.   

For evaluating the methodology proposed in this work, some practical points regarding the 

application of this procedure should be emphasized: 

1. The design variables are the following: radius of bar elements (xi), where the design 

space is given by: 0.4 mm ≤ xi ≤ 0.8 mm. 

2. ROTinf = 1400 Hz and ROTinf = 1900 Hz. 

3. To solve the optimization problem the following heuristics are used: 

• Non-dominated Sorting Genetic Algorithm (NSGAII) parameters [20,36]: 

population size (50), crossover probability (0.8), mutation probability (0.01). For the 

considered parameters, the number of objective function evaluations is 12550. 

• Multi-objective Optimization Differential Evolution (MODE) parameters [37]: 

population size (50), perturbation rate (0.8), crossover probability (0.8), 

DE/rand/1/bin strategy for the generation of potential candidates, reduction rate 

(0.9) and number of pseudo-curves (10). For the considered parameters, the 

number of objective function evaluations is 15050. 

• Multi-objective Optimization Simulated Annealing (MOSA) parameters [14]: 

population size (50), initial temperature (5.0), cooling rate (0.75), number of 

temperatures (20), number of times the procedure is repeated before the 

temperature is reduced (25), and tolerance (10-6). For the considered parameters, 

the number of objective function evaluations is 12550. 

4. Stopping criterion: maximum number of generations (250). 
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5. Each algorithm was run 20 times by using 20 different seeds for the random generation 

of the initial population.  

6. Objective Function (OFA) is the best value of objective function considering the first 

objective proposed. Objective Function (OFB) is the best value of objective function 

considering the second objective function. Objective Function (OFC) is calculated using 

the origin of the coordinated axes as a reference, e.g., the point (0,0) is used to obtain the 

distance between this point and each one of the solution points along the Pareto's Front. 

Thus, the smallest distance obtained was defined as the choice criterion. 

Figure 4 shows the Pareto’s Front obtained by NSGA II, MODE and MOSA algorithms. 

 

Figure 4. Pareto’s Front. 

In this figure it is possible to observe that all evolutionary algorithms are able to obtain, 

satisfactorily, the Pareto’s Front for a similar number of objective function evaluations. 

Table 3 present some points of Pareto’s Front obtained by the MOSA algorithm by 

considering the criteria specified earlier.   

6.2. Identification 

As mentioned earlier, the identification of unknown parameters in rotating machinery is a 

difficult task and optimization techniques represent an important alternative for this goal 

[3,38,39]. The machine parameters are needed to perform the dynamic analysis and 

prediction of rotor-bearing systems: Campbell diagram, stability, critical speeds, excitation 

responses [15]. Another important aspect is when one desires to tune a finite element model 

to match experimental data generated by tests of an actual rotor system [10].   
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 OFA OFB OFC 

x1 (mm) 0.55186 0.40015 0.50692 

x2 (mm) 0.49994 0.42153 0.52587 

x3 (mm) 0.53139 0.40623 0.50733 

x4 (mm) 0.79128 0.40000 0.50851 

x5 (mm) 0.49810 0.40000 0.50726 

x6 (mm) 0.55709 0.40000 0.50025 

x7 (mm) 0.41059 0.40000 0.50811 

x8 (mm) 0.71018 0.40000 0.50683 

x9 (mm) 0.57777 0.40151 0.50713 

x10 (mm) 0.44676 0.41028 0.50192 

x11 (mm) 0.79883 0.40000 0.49997 

x12 (mm) 0.67159 0.40000 0.50671 

x13 (mm) 0.57684 0.40000 0.50592 

x14 (mm) 0.46109 0.40000 0.51012 

x15 (mm) 0.52452 0.40000 0.50257 

x16 (mm) 0.61355 0.40399 0.50747 

x17 (mm) 0.57261 0.40281 0.50533 

f1 (Hz2) 0.00364 1110741.5 479693.69 

f2 (Hz2) 1842938.0 225219.04 602024.24 

Table 3. Results obtained using MOSA (all the algorithms were executed 20 times so that average 

values were calculated). 

Furthermore, identification procedures try to establish an unequivocal relation in between 

the damage and specific mechanical parameters, based on a suitable model and can be used 

to fault detection and machinery diagnosis as in Seibold and Fritzen [40]. On a simple 

manner parameter identification of rotor-bearing systems can be performed as follows: i) the 

frequency response function (or unbalance response) is measured for different operation 

speeds; ii) the design variables (unknown parameters) are initialized; iii) and an error 

function between experimental and simulated data is minimized. 

 

Figure 5. Rotor system finite element model. 
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In this application, a simple flexible rotor containing two disks and two bearings is studied.  

The Figure 5 shows the finite element model of the system with 10 nodes, 2 disks and two 

bearings. 

The characteristics of bearing and disks are given in Table 4. It can be observed that 

damping parameters are also taken into account in this application.  

 

Bearing Stiffness(N/m) Damping (Nm/s)

 xxk  zzk  xzk  xxc  zzc  xzc  

A=B 1E06 2E06 1E04 1E03 2E03 1E02 

Disk External Diameter (m) Thickness (m) 

1 0.5 0.005 

2 0.3 0.005 

Table 4. Parameters of bearings and disks. 

The goal of this application is to identify the unknown parameters of the rotor-bearing 

system, e.g., the stiffness and damping parameters. For this purpose the following steps are 

established: 

1. The objective function consists in the determination of the stiffness and damping values 

through the minimization of the difference between the experimental and calculated 

values given by the solution of the direct problem. To mimic real experimental data, 

sets of synthetic experimental data were generated from eq. (12): 

 ( )exp cal
i i exactZθ θ κλ= +  (12) 

were θ represents the calculated values of the unbalance response by using known values of 

the physical properties Zexact (kxx, kzz, kxz, cxx, czz, cxz). In real applications these values are not 

available (they can be obtained through the solution of the corresponding inverse problem). 

κ simulate the standard deviation of the measurement errors, and λ is a pseudo-random 

number from the interval [-1, 1]. 

 ( )exp cal
i i exactZθ θ κλ= +  (13) 

In order to examine the accuracy of the inverse problem approach for the estimation of the 

physical parameters, the influence of noise (κ =0.02, e.g., corresponding to 5% error) was 

compared to the case without noise (κ =0). 

The design variables considered to generate the synthetic experimental data are presented in 

Table 5. The following ranges for the design space are considered: 5.0E05 N/m ≤ kxx ≤ 1.2E07 

N/m, 1.0E06 N/m ≤ kzz ≤ 2.4E07 N/m, 5.0E03 N/m ≤ kxz ≤ 1.2E05 N/m, 5.0E02 Nm/s ≤ cxx ≤ 
1.2E04 Nm/s, 1E03 Nm/s ≤ czz ≤ 2.4E04 Nm/s, 1E01 Nm/s ≤ cxz ≤ 1.2E03 Nm/s. 
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2. To solve the optimization problem the following heuristics are used: 

• Genetic Algorithm (GA) parameters [41]: population size (50), type of selection 

(normal geometric in the range [0 0.08]), type of crossover Arithmetic, 2), type of 

mutation (non-uniform [2 100 3]). 

• Differential Evolution (DE) parameters [42]: population size (25), perturbation rate 

and crossover probability both equal to 0.8 and DE/rand/1/bin strategy. 

• Particle Swarm Optimization (PS) parameters [43]:  population size (25), maximum 

velocity (100), upper limits (2.0), and a linearly decreasing inertia weight starting at 

0.7 and ending at 0.4 was used. 

• Simulated Annealing (SA) parameters [14]: initial design (generated randomly in 

the design space), initial temperature (5.0), cooling rate (0.75), number of 

temperatures (20), number of times the procedure is repeated before the 

temperature is reduced (25), and tolerance (10-6). 

3. Stopping criterion: maximum number of objective function evaluations equal to 5000. 

4. Each algorithm was run 20 times by using 20 different seeds for the random generation 

of the initial population.  

Table 5 presents the results obtained by the algorithms considered (pristine condition and 

noisy data). 

Considering κ=0 (see Table 5), all the optimization strategies were able to estimate the 

parameters satisfactorily as shown by the values obtained for the objective function. 

However, the SA algorithm shows to be very competitive, in averege, with the smallest 

standard deviation of the objective function. When noise is taken into account (κ=0.002, e.g., 

error corresponding to 5%), all the algorithms were able to obtain good estimates, as 

presented in Figure 6. 

 

 Error 
kxx 

(N/m) 

kzz 

(N/m) 

kxz 

(N/m) 

cxx 

(Nm/s) 

czz 

(Nm/s) 
cxz (Nm/s) OF 

SA 
0 % 984674.3 1802257.4 24197.8 1157.4 1953.4 168.4 4.38 

5 % 962861.5 1817105.5 18378.3 1046.6 2843.4 35.8 7.01 

GA 
0 % 998204.7 2030908.5 3589.1 1078.8 2068.1 149.7 4.42 

5 % 986445.7 2114381.8 8695.9 1010.5 2164.4 25.8 07.11 

DE 
0 % 1000380.9 2005635.1 17449.8 1102.4 2092.8 183.7 4.35 

5 % 970336.4 1964371.6 46943.8 1037.2 2347.5 84.5 6.96 

PS 
0 % 987254.1 2098581.6 57858.5 1079.1 1425.6 119.8 4.40 

5 % 990895.2 2042193.6 15630.8 1118.9 1937.8 189.7 7.09 

Table 5. Estimation Results. 
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Figure 6. Boxplots showing the influence of different optimizaion strategies to solve the inverse 

problem. 

7. Conclusions 

In the present contribution, the mono and multi-objective algorithms based on Simulated 

Annealing were used in the design and identification of rotor bearing systems. For 

illustration purposes, two simple test-cases were studied by using the proposed 

methodology. The goal for the first application was to increase the difference between two 

critical speeds of the rotor-bearing system through the formulation of a multi-objective 

problem, where the radii of bar elements were taken as design variables. To solve this multi-

objective problem the Multi-objective Optimization Simulated Annealing (MOSA) algorithm 

was proposed. This evolutionary strategy is based on the Simulated Annealing algorithm 

associated with the non-dominated sorting and crowding distance operators. The second 

application consists in the identification of unknown parameters of flexible rotor-bearing 

systems. The objective function was defined as the difference between the unbalance 

experimental responses of the rotor and the simulated unbalance responses so that the 

parameters of damping and stiffness are obtained by an inverse problem approach. The 

experimental (synthetic) data used were generated by using the solution of the direct problem 

and adding artificial noise. In all applications, the finite element method was used to obtain 

the mathematical model of the system.  

It is important to emphasize that the results obtained in both test-cases are considered 

satisfactory as compared with those obtained by other evolutionary strategies. In addition, it 

is possible to conclude that the proposed methodology represents an interesting alternative 

for design and identification of mechanical systems. 

Further research work will be focused on the influence of the optimization parameter values 

on the solution of the optimization problem. Also, strategies to dynamically update the SA 

parameters will be evaluated. Finally, the authors will study the performance of the 

Simulated Quenching algorithm aiming at proposing a hybrid approach involving the 

Simulated Annealing and Simulated Quenching algorithms. 

(a) Noiseless data. (b) Noisy data. 

SA GA DE PS
4.35

4.4

4.45

4.5

4.55

O
b

je
ct

iv
e 

F
u

n
ct

io
n

SA GA DE PS

7

7.1

7.2

7.3

7.4

7.5

O
b

je
ct

iv
e 

F
u

n
ct

io
n



 
Design and Identification Problems of Rotor Bearing Systems Using the Simulated Annealing Algorithm 213 

Author details 

Fran Sérgio Lobato, Elaine Gomes Assis and Valder Steffen Jr 

Universidade Federal de Uberlândia, Brazil 

Antônio José da Silva Neto 

Universidade do Estado do Rio de Janeiro, Brazil 

Acknowledgement 

The authors acknowledge the financial support provided by FAPEMIG and CNPq (INCT-

EIE). The fourth author is grateful to the financial support provided by CNPq and FAPERJ. 

8. References 

[1] Edwards, S., Lees, W., Friswell, M. Experimental Identification of Excitation and 

Support Parameters of a Flexible-Rotor-Bearing Foundation System for a Single 

Rundown. Journal of Sound and Vibration; 2000, 232 (5), 963-992. 

[2] Xu, B., Qu, L., Sun, R. The Optimization Technique Based Balancing of Flexible Rotors 

Without Test Runs. Journal of Sound and Vibration; 2000, 238 (5), 877-892. 

[3] Assis, E. G., Steffen Jr, V. Inverse problem techniques for the identification of rotor-

bearing systems. Inverse Problems in Science and  Engineering; 2003, 11 (1), 39-53. 

[4] Castro, H. F., Idehara, S. J., Cavalca, K. L., Dias Jr., M. Updating Method Based on 

Genetic Algorithm Applied to Nonlinear Bearing Model, Proceedings of ImechE 2004, 

8th International Conference on Vibrations in Rotating Machinery, Swansea, UK; 2004, 

1-10. 

[5] Castro, H. F., Cavalca, K. L., Mori, B. D. Journal Bearing Orbits Fitting Method with 

Hybrid Meta-heuristic Method, Proceedings of the COBEM2005, Ouro Petro, Brazil; 

2005, 1-10. 

[6] Tiwari, R., Chakravarthy, V. Simultaneous Identification of Residual Unbalances and 

Bearing Dynamic Parameters from Impulse Responses of Rotor–Bearing Systems. 

Mechanical Systems and Signal Processing; 2006, 20, 1590-1614. 

[7] Kim, Y.-H., Yang, B.-S., Tan, A. C. C. Bearing Parameter Identification of Rotor–Bearing 

System using Clustering-Based Hybrid Evolutionary Algorithm. Structural and 

Multidisciplinary Optimization; 2007, 33 (6), 493-506. 

[8] Castro, H. F., Cavalca, K. L., Camargo, L. W. F. Multi-objective Genetic Algorithm 

Application in Unbalance Identification for Rotating Machinery. Proceedings of ImechE 

2008 - 9th International Conference on Vibration in Rotating Machinery, London; 2008, 

885-897. 

[9] Nauclér, O., Söderström, T. Unbalance Estimation using Linear and Nonlinear 

Regression. Automatica; 2010, 46, 1752-1761. 



 
Simulated Annealing – Single and Multiple Objective Problems 214 

[10] Saldarriaga, M. V., Steffen Jr, V., Hagopian, J. D., Mahfoud, J. On the Balancing of 

Flexible Rotating Machines by Using an Inverse Problem Approach, Journal of 

Vibration and Control; 2011, 17 (7), 1021-1033. 

[11] Sudhakar, G. N. D. S., Sekhar, A. S. Identification of Unbalance in a Rotor Bearing 

System. Journal of Sound and Vibration; 2011, 330, 2299-2313. 

[12] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. Equation of State 

Calculations by Fast Computing Machines, Journal of Chemical Physics; 1953, 21 (6), 

1087-1092. 

[13] Ingber, L. Simulated Annealing: Practice versus Theory, Mathematical Computing 

Modelling; 1993, 18 (11), 29-57. 

[14] Kirkpatrick, S., Gelatt, C. D. Jr., Vecchi, M. P. Optimization by Simulated Annealing. 

Science; 1983, 220 (4598), 671-680. 

[15] Lalanne, M., Ferraris, G. Rotordynamics Prediction in Engineering, John Wiley and 

Sons; 1998. 

[16] Vasan, A., Raju, K. S. Comparative analysis of Simulated Annealing, Simulated 

Quenching and Genetic Algorithms for optimal reservoir operation, Applied Soft 

Computing; 2009, 9, 274-281. 

[17] Aarts, E., Korst, J. Simulated Annealing and Boltzmann Machines: A Stochastic 

Approach to Combinatorial Optimization and Neural Computing, Wiley Publishers, 

ISBN 978-0-471-92146-2, United States of America; 1991. 

[18] Chibante, R., Araújo, A., Carvalho, A. Parameter Identification of Power Semiconductor 

Device Models using Metaheuristics, chapter of book: Simulated Annealing Theory 

with Applications, edited by Rui Chibante; 2010. 

[19] Fouskakis, D., Draper, D. Stochastic Optimization: A Review, International Statistical 

Review; 2002, 70 (3), 315-349. 

[20] Deb, K. Multi-Objective Optimization using Evolutionary Algorithms, John Wiley & 

Sons, Chichester, UK, ISBN 0-471-87339-X; 2001. 

[21] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. A Fast and Elitist Multi-Objective 

Genetic Algorithm-NSGA-II, KanGAL Report Number 2000001; 2000. 

[22] Edgeworth, F. Y. Mathematical Psychics, P. Keagan, London, England; 1881.  

[23] Pareto, V. Manuale di Economia Politica, Societa Editrice Libraria, Milano, Italy; 1906.  

Translated into English by A. S. Schwier as Manual of Political Economy, Macmillan, 

New York; 1971. 

[24] Serafini, P. Mathematics of Multiobjective Optimization Berlin: CISM Courses and 

Lectures, Springer Verlag; 1985. 

[25] Serafini, P. Simulated Annealing for Multiple Objective Optimization Problems. In 

Multiple criteria decision making. Expand and enrich the domains of thinking and 

application. Springer Verlag; 1994, 283. 

[26] Ululgu, E. L., Teghem, J. Multiobjective Combinatorial Optimization Problems: A 

survey. Journal of Multicriteria Decision Analysis; 1994, 3, 83-95. 



 
Design and Identification Problems of Rotor Bearing Systems Using the Simulated Annealing Algorithm 215 

[27] Czyzak, P., Hapke, M., Jaszkiewicz, A. Application of the Pareto-simulated Annealing 

to the Multiple Criteria Shortest Path Problem. Tech. Rep., Politechnika Poznanska 

Instytut Informatyki, Poland; 1994. 

[28] Ulungu, L. E., Teghem, J., Fortemps, P. Heuristics for Multiobjective Combinatorial 

Optimization Problems by Simulated Annealing. In MCDM: theory and applications, 

Sci-Tech Windsor; 1995. 

[29] Suppapitnarm, A., Seffen, K. A., Parks, G. T., Clarkson, P. J. A Simulated Annealing 

Algorithm for Multiobjective Optimization. Engineering Optimization; 2000, 33, 59-70. 

[30] Kasat, R. B., Kunzru, D., Saraf, D. N., Gupta, S. K. Multiobjective Optimization of 

Industrial FCC Units using Elitist Nondominated Sorting Genetic Algorithm. Industrial 

& Engineering Chemistry Research; 2002, 41, 4765-4775. 

[31] Smith, K. I., Everson, R. M., Fieldsend, J. E. Dominance-based Multi-objective Simulated 

Annealing, IEEE Transactions on Evolutionary Computation; 2008, 12 (3), 323-342. 

[32] Marcoulaki, E. C., Papazoglou, I. A. A Dynamic Screening Algorithm for Multiple 

Objective Simulated Annealing Optimization. 20th European Symposium on Computer 

Aided Process Engineering – ESCAPE20; 2010. 

[33] Castro, R. E. Multi-objective Optimization of Structures using Genetic Algorithm. PhD 

Thesis (in portuguese). Federal University of Rio de Janeiro, Brazil; 2001. 

[34] Saruhan H. Design Optimization of Rotor-Bearing Systems, Journal of Engineering 

Sciences; 2003, 9 (3), 319-326. 

[35] Shiau, T. N., Chang, J. R. Multi-objective Optimization of Rotor-Bearing System with 

Critical Speed Constraints, Journal of Engineering for Gas Turbines and Power; 1993, 

115 (2), 246-256. 

[36]  Srinivas, N., Deb, K. Multiobjective Function Optimization using Nondominated 

Sorting Genetic Algorithms. Evolutionary Computation; 1995, 2, 221-236. 

[37] Lobato, F. S. Multi-objective Optimization to Engineering System Design, Thesis, School 

of Mechanical Engineering, Universidade Federal de Uberlândia, Brazil (in Portuguese); 

2008. 

[38] Bachschmid, N, Bruni, B., Collina, A. On the Identification of Rotor Bow, Coupling 

Misalignment and Unbalance in Rotor Systems from Bearing Measurements. Proc. 9th 

International Congress on Condition Monitoring and Diagnostic Engineering 

Management (COMADEM 96). Sheffield, UK; 1996. 

[39] Chen, J. H., Lee, A. C. Estimation of Linearized Dynamic Characteristics of Bearings 

Using Synchronous Response, Int. Journal of Mechanical; 1995, 37 (2), 197-219. 

[40] Seibold, S., Fritzen, C. P. Identification Procedures as Tools for Fault Diagnosis of 

Rotating Machinery, Int. Journal of Rotating Machinery; 1995, 1 (3), 267-275. 

[41] Houck, C., Joines, J., Kay, M. A Genetic Algorithm for Function Optimization: A 

MTLAM implementation, NCSU-IE, TR 95–09; 1995. 

[42] Price, K., Storn, R. Differential Evolution - A Simple Evolution Strategy for Fast 

Optimization . Dr. Dobb’s Journal; 1997, 22 (4), 18-24. 



 
Simulated Annealing – Single and Multiple Objective Problems 216 

[43] Kennedy, J., Eberhart, R. C. Particle Swarm Optimization. In Proceeding of IEEE 

International Conference Neural Networks, Perth, Australia; 1995, 1942-1948. 


