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1. Introduction 

Many with disabilities have some difficulties in integrating into society due to impossibility 

or to restriction in performing simple tasks of day-to-day. This situation is gradually 

changing by virtue of technological development in the biomedical instrumentation area in 

respect of human rehabilitation and especially with in the development of assistive 

technology managed by computational intelligence (computing algorithms and learning 

machines using techniques as fuzzy logic, artificial neural networks, genetic algorithms, 

support vector machines, among others). Scientific researches in this area are allowing the 

development of several mechanisms to improve the life quality of people with special needs, 

making them more independent and more likely to real social and economical integration. 

It’s possible to cite, for example, research related to robotic prosthesis. The development of 

system managed by myoelectric signals (MES) with the intention to mimic the human arm 

movement, is far from perfect, making the subject of many researches (Ajiboye & Weir, 2005; 

Chan et al., 2000; Englehart & Hudgins, 2003; Favieiro & Balbinot, 2011; Favieiro et al., 2011; 

Hincapie & Kirsch, 2009; Hudgins et al., 1991; Hudgins et al., 1994; Jacobsen et al., 1982; 

Katutoshi et al., 1992; Khushaba et al., 2010; Momen et al., 2007; Park & Meek, 1995). These 

researches are mainly being conducted in able-bodies subjects to verify the feasibility and 

performance of different algorithms for pattern recognition using EMG signals from the 

forearm muscles. In these studies are usually employed a high number of electrode pairs, 

ranging from 4 to 12. Using classification patterns techniques such as LDA, fuzzy logic, 

among others, was found high accuracies (>90%) for the classification of different moves 

ranging from four to ten. Develop a robotic prosthesis as similar as possible to the human 

arm is not a simple task. There are great difficulties both in the area of distinguish the 
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various degrees of freedom that the arm can have as developing a robotic prosthesis that can 

accomplish or replicate all these movements.  

Briefly, the myoelectric signal is the bio-signal muscle control of the human body which 

contains the information of the user’s intent to contract a muscle and, therefore, perform a 

certain movement. Studies have shown that amputees are able to repeatedly generate 

certain standard myoelectric signals in front of intention to carry out a particular movement. 

It makes the use of such signal highly advantageous, because the control of a robotic 

prosthesis can be accomplished according to user’s intention to perform a specified 

movement. Furthermore, detection of the myoelectric signal can be obtained noninvasively 

through surface electrodes. Although the distress signal has low amplitude (mV range) is 

sufficient for its analysis and surface electrodes are far more hygienic and convenient as the 

removal, insertion and sterilization can be accomplished by the user.  

Therefore, it is possible to distinguish certain muscle movements while processing the 

electrical parameters of the myoelectric signal both in time domain and frequency domain. 

With the characterized movements is possible to control a robotic prosthesis that aims to 

replicate, the best possible, the movements of a human arm. Considering that premise, this 

research aims to study and develop a system that uses myoelectric signals, acquired by 

surface electrodes, to characterize certain movements of the human arm,  allowing studies 

between man and machine with adequate precision for future enabling the actual 

replacement of an amputee limb with a robotic prosthesis suitable and intuitively controlled 

through the remaining muscle signals. To recognize certain hand-arm segment movements, 

was developed an algorithm for pattern recognition technique based on neuro-fuzzy, 

representing the core of this research. This algorithm has as input the preprocessed 

myoelectric signal, to disclosed specific characteristics of the signal, and as output the 

performed movement.  

The present research was also preoccupy in not only distinguish certain simple movements 

of the human arm, but also characterize complex movements that combine several degrees 

of freedom, making this study more closely to the reality, in which more degrees of freedom 

represents an improve in the life quality of people with special needs, making them more 

likely to real integration in the society. 

2. Soft computing 

The understanding, processing or solving complex problems require intelligent systems that 

combine knowledge, techniques and methodologies from various sources (Zadeh, 1992). 

Thus, intelligent systems should aggregate human knowledge in a specific domain, adapt 

and learn the best way possible in environments that are constantly changing. For this 

reasons, it is very advantageous to use several computational techniques instead of just one, 

which is the essence of neuro-fuzzy technique: neural networks that recognize patterns and 

are able to adapt to changes and the fuzzy inference system that incorporates human 

knowledge for making decisions.  
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Typically a fuzzy system incorporates a rule base, membership functions and an inference 

procedure and has been presenting success in systems with applications in the presence of 

ambiguous elements (Begg et al., 2008; Zadeh et al., 2004). Systems combining neural 

networks with fuzzy systems usually have the following characteristics (Jang, 1997): 

• human knowledge presented in the form of rules, for example, if-then; 

• computational models based on biological models, such as the use of neural networks 

for pattern recognition; 

• optimization techniques, such as the use of a hybrid technique; 

• construction of a model with data sample; 

• numerical computation instead of symbolic computation. 

This chapter briefly presents the fuzzy techniques, adaptive algorithms, neuro-fuzzy and 

data clustering used in the present research. 

2.1. Fuzzy logic 

A fuzzy set is defined as a set or collection of elements with membership values between 0 

and 1. Therefore, the transition between belonging or not belonging to the set is gradual and 

is characterized by its fuzzy Membership Function (MF) that is used to describe the fuzzy 

membership value given to fuzzy set elements (Begg et al., 2008) enabling the fuzzy set model 

linguist expression used in everyday life, such as, “the rms value of the masseter myoelectric 

signal is medium high”. For these reasons, the fuzzy sets theory is very efficient when dealing 

with concepts of ambiguity (Zadeh, 1992) and allows its use in several applications. 

Therefore, a fuzzy set not-empty Z in a given space X (ܼ ⊆  is the set represented by ,(ࢄ

equations (1) e (2): 

 ܼ = ൛൫ݔ, ;൯(ݔ)௓ߤ  ൟ  (1)ࢄ߳ݔ

ࢄ	:௓ߤ  → ሾ0,1ሿ  (2) 

since ߤ௓ a membership function of an specified fuzzy set. This function indicates for each 

element ݔ	߳	ࢄ its membership degree to the fuzzy set Z between three possibilities 

(Rutkowski, 2005): 

(ݔ)௓ߤ • = 1 means the full membership of element x to the fuzzy set Z, in others words, ܼ߳ݔ; 

(ݔ)௓ߤ • = 0 means the lack of membership of element x to the fuzzy set Z, in others 

words, ݔ ∉ ܼ; 

• 0 < (ݔ)௓ߤ < 1 means a partial membership of element x to the fuzzy set Z. 

2.1.1. Standard forms of membership functions 

A membership function (MF) is a curve that defines how a point in the input space is 

mapped into a membership degree between 0 and 1 (Dubois, 1980). Typically a MF is 
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defined by a mathematical expression. Following is a few membership functions (ߤ௓(ݔ)) 
commonly used.  

The triangular membership function or simply membership function of class t is defined by 

equation (3): 

(ݔ)௓ߤ  = ;ݔ)ݐ ܽ, ܾ, ܿ) = 	 ۔ۖەۖ
ۓ 0, ݔ ൑ ܽ௫ି௔௕ି௔ , ܽ ൑ ݔ ൑ ܾ௖ି௫௖ି௕ , ܾ ൑ ݔ ൑ ܿ0,										ܿ ൑ ݔ   (3) 

where b is the modal value (ܽ < ܾ < ܿ)		and a and b are the upper and lower bounds of 

t(x;a,b,c), respectively.  

The Gaussian-membership function é specified by equation (4): 

(ݔ)௓ߤ  = ;ݔ)݃ σ) = ݌ݔ݁	 ൬− ቀ௫ି௫̅ఙ ቁଶ൰																																																	 (4) 

where ̅ݔ is the middle and ߪ defines the width of the Gaussian curve. It is the most common 

membership function (Rutkowski, 2005). While Bell membership function é specified by 

equation (5): 

(ݔ)௓ߤ  = ;ݔ)݈݈ܾ݁ ܽ, ܾ, ܿ) = 	 ଵଵାቚೣష೎ೌ ቚమ್       (5) 

where the parameter a defines its width, the parameter b its slopes, and the parameter c its 

center.  

Other membership functions found in some applications are ߁-membership function, S-

membership function, trapezoidal-membership function and exponential-membership 

functions. For more details, see (Rutkowski, 2005). As an example, Figure 1 shows the 

standard format of the MF Gaussian and MF Bell. 

 

 

Figure 1. Membership function: (a) Gaussian and (b) bell. 
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The triangle and trapezoidal function are widely used in several applications because they 

are simple expressions and have suitable computational efficiency for real-time applications. 

However, these two membership functions are composed of straight line segments showing 

no soft edge at their ends. As a result, the Gaussian and Bell membership functions are 

increasingly used to specify fuzzy sets (Jang, 1997). 

2.1.2. Fuzzy reasoning and Sugeno fuzzy inference system  

In general, the fuzzy reasoning process can be divided into four main steps that are used in 

a fuzzy inference system (Dubois, 1980):  

• comparison of the known facts to the fuzzy rules background facts to determine the 

compatibility degree for each of the antecedent membership function;  

• combination of compatibility degrees in relation to the antecedents membership 

functions in a rule using fuzzy operators, for example, ‘AND’ or ‘OR’ to form the firing 

strength that indicates the degree whose part of the antecedent rule is satisfied;  

• application of firing strength for the consequent membership function of a rule to 

generate a qualified consequent membership function that represents how the firing 

strength was propagated and utilized in a fuzzy implication statement; 

• selection of all qualified consequent membership functions for the general output 

membership. 

A fuzzy set is characterized by its membership function and operations on fuzzy sets 

manipulate these functions. For further details on fuzzy operations such as adding, 

subtracting, inverse operation, scaling operation, among others, just as, fuzzy relations and 

their properties consult the works indicated in the references of this chapter (Begg et al., 

2008; Dubois, 1980; Rutkowski, 2005).  

In recent years, different structures of neuro-fuzzy networks have been proposed combining 

the advantages of neural networks and fuzzy logic (Rutkowski, 2005). Several studies using 

the Mamdani type interference or the Takagi-Sugeno model. For this study the Sugeno 

fuzzy model proposed by Takagi, Sugeno and Kang (Sugeno, 1988; Takagi, 1985) had been 

used to generate fuzzy rules from a set of input and outputs. A typical fuzzy rule in the 

Sugeno fuzzy model is shown in (6):  

 If x is equal to A and y is equal to B, then z=f(x,y)   (6) 

as A and B sets of fuzzy antecedents and z= f(x,y) the crisp consecutive function. 

Considering the computational performance and the mathematical operations usually used 

(for instance, weighted sum) the Sugeno fuzzy model is the most popular inference system 

for fuzzy modeling based on input data (Jang, 1993) 

2.2. Adaptive Neuro Fuzzy Inference System 

Adaptive Neuro Fuzzy Inference System or ANFIS is a class of adaptive networks whose 

functionality is equivalent to a fuzzy inference system, proposed by Jang, which generates a 

fuzzy rule base and membership functions automatically (Jang, 1993). 
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Typically the ANFIS network topology consists of connected nodes that depend on 

parameters that change according to certain learning rules that minimize the error criteria. The 

learning technique most commonly used is the gradient method, however Jang proposed 

hybrid learning rule which includes the Least Square or simply LSE Estimator (Jang, 1993). 

Considering a fuzzy system with three inputs x, y and z one output, v and a fuzzy inference 

Sugeno model. One possible set of rules is shown in equations (7) and (8): 

Rule 1: If x is equal to A1, y is equal to B1, and z is equal to C1, then f1 = p1x + q1y + r1y + s1  (7) 

Rule 2: If x is equal to A2, y is equal to B2, and z is equal to C2, then f2 = p2x + q2y + r2z + s2   (8) 

as an example, Figure 2 illustrates the reasoning mechanism for the Sugeno inference model. 

The equivalent ANFIS architecture is presented in Figure 3 with nodes of same layer having 

similar functions. Following is an explanation for each of the network layers based on Jang’s 

excellent text (Jang, 1997). 

 

Figure 2. Example of a Sugeno inference model containing three inputs and two rules. 

The first layer of Figure 3 is represented by adaptive nodes i whose functions are 

determined by equations (9), (10) and (11): 

  ଵܱ,௜ = ݅	ܽݎܽ݌								,(ݔ)஺೔ߤ = 1, 2	 (9) 

 ଵܱ,௜ = ݅	ܽݎܽ݌				,(ݕ)஻೔షమߤ = 3, 4	 (10) 

 ଵܱ,௜ = ݅	ܽݎܽ݌				,(ݕ)஼೔షరߤ = 5, 6	  (11) 

where x, y or z entries in node i and Ai Bi-2 and Ci-4 linguistic labels associated with that node. 

Thus, O1,i represents the pertinence degree to the fuzzy set A (A1, A2, B1, B2, C1 or C2) and 

specifies the degree to each input  x, y or z satisfies the fuzzy set A. The membership 

function µ can be any of the membership functions presented in section 2.1.1. Importantly, 

when the values (called the premise parameters) of the membership function are changed, 

the function varies, i.e., display various types of MF to the fuzzy set A.  
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Figure 3. The equivalent ANFIS architecture of the Sugeno Fuzzy model represented in Figure 2. 

The layer 2 has fixed nodes indicated by Π with outputs that represents the input signals 

product, as indicated in equation (12) – the output nodes represent the firing strength of a 

given rule:  

 ܱଶ,ଵ = ߱௜ = ݅						,(ݖ)஼೔ߤ(ݕ)஻೔ߤ(ݔ)஺೔ߤ = 1, 2.    (12) 

In layer 3 the fixed nodes are referred to N. The ith node calculates the firing strength rate of 

rule ith to the sum of all firing strength of rules, given by equation (13) – the nodes in layer 3 

are generally known as normalized firing strength: 

 ܱଷ,௜ = ప߱തതത = ఠ೔ఠభାఠమ ,			݅ = 1, 2.     (13) 

Layer 4, for example, the nodes i are adaptive with the function given by equation (14): 

 ସܱ,௜ = ప߱തതത ௜݂ = ప߱തതത(݌௜ݔ + ݕ௜ݍ + ݖ௜ݎ +  ௜),  (14)ݏ

where ప߱തതത is a normalized firing strength from layer 3 and {݌௜ , ௜ݍ , ௜ݎ ,  ௜} the set of parametersݏ

(called consequence parameters) of this node. 

The last layer of the Figure 3 has only one fixed node called Σ that determines the final 

output as the sum of all signals represented by equation (15):  

ݐݑ݌ݐݑ݋	݈݂ܽ݊݅  = 	ܱହ,ଵ = ∑ ప߱തതത ௜݂ =	∑ ఠ೔௙೔೔∑ ఠ೔೔௜   (15) 

Considering the architecture shown in Figure 3 it can be seen that while the values of the 

parameters of the premises is fixed, the final output can be expressed as a linear 

combination of consequence parameters. Therefore, the output can be rewritten, for 

example, by the linear equation with the following consequence parameters: p1, q1, r1, s1, p2, 

q2, r2 and s2 (see equation 16): 
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 ݂ ===
ఠభఠభାఠమ ଵ݂ + ఠమఠభାఠమ ଶ݂ప߱തതത(݌ଵݔ + ݕଵݍ + ݖଵݎ + (ଵݏ +	߱ଶതതതത(݌ଶݔ + ݕଶݍ + ݖଶݎ + )(ଶݏ ప߱തതത݌(ݔଵ + ( ప߱തതതݍ(ݕଵ + ( ప߱തതതݎ(ݖଵ + ( ప߱തതത)ݏଵ + (߱ଶതതതതݔ)݌ଶ + (߱ଶതതതതݕ)ݍଶ + (߱ଶതതതതݖ)ݎଶ + (߱ଶതതതത)ݏଶ (16) 

The hybrid training algorithm is based on the following criteria: In the forward step of the 

hybrid algorithm, the outputs of the nodes will forward to the layer 4 and the consequence 

parameters are identified by the least squares method. In the backward step, the error signal 

is propagated backward and the premise parameters are updated by gradient descent 

method (Jang, 1993) 

2.3. Subtractive clustering 

The utilization of clustering algorithms allows characterization and organization of data, but 

also the construction of models from a database. Basically clustering divides data sets 

derived from a large group into similar groups. Clustering can be used to model an initial 

fuzzy network, in other words, to determine the fuzzy rules. For this purpose, the clustering 

technique is validated based on the following propositions: 

•  Similar entries in a target system should be modeled to produce similar outputs;  

• These similar pairs input-output are packed in clusters of the training data set. 

The technique subtractive clustering proposed by Chiu, considers any data points as 

candidates for the cluster centers (Chiu, 1994). Using this method, the processing is 

proportional to the number of data points, independent of the size of the problem under 

consideration. 

For example, is a collection of n data points {x1,...,xn} in an M-dimensional space, whose 

points were normalized to a hypercube. Since each data point is candidate for the cluster 

center, the density measurement at each point xi is defined by equation (17): 

࢏ࡰ				  = ∑ −)	ܘܠ܍ ฮ࢐࢞ି࢏࢞ฮ૛(ࢇ࢘ ૛⁄ )૛ ୀ૚࢐࢔(      (17) 

where ra is a positive constant. A point will have a great density it has many neighbor 

points. The radius ra defines the neighborhood and the points outside of the neighborhood 

contribute very little to the density measurement. 

After the density measurement (Di) is calculated for all of the points, the point with highest 

density is selected to be the center of the first cluster. If xc1 is the selected point and Dc1 your 

density value, the measured density for each point is revised according to the expression 

shown in (18): 

࢏ࡰ		  = ࢏ࡰ − −)	ܘܠ܍૚ࢉࡰ ࢈࢘)૚‖૛ࢉ࢞ି࢏࢞‖ ૛⁄ )૛ )   (18) 

After reviewing the density of each point, the next center xc2 is selected and all of the density 

measures of the points are revised again. This process is repeated until a sufficient number 

of clusters are created. When applied the subtractive clustering technique for a set of input-
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output data, each cluster center will represents a prototype that exhibits certain 

characteristics of the system being modeled. This cluster centers are used as centers of the 

premises of the fuzzy rules in a zero order Sugeno model. 

3. Experimental methods 

To help understanding, a block diagram of the proposed system is presented in the Figure 4. 

In the following sections are presented detailed discussions of the key elements that make 

up this block diagram. 

 

Figure 4. Block diagram of the purposed system. 

The proposed experimental apparatus consists of an LCD screen that generates visual 

stimulus with animations of random movements of the hand-arm segment which should be 

replicated by the user An 8-channel electromyography is used with surface electrodes 

placed in strategic places and previously defined in the right arm to capture the myoelectric 

signal during displayed movements. Through a data acquisition board, the myoelectric 

signal is digitized and processed in a portable computer, where it is filtered and analyzed by 

software using the technique of pattern recognition, based on neuro fuzzy systems. Finally, 

the system has as output the characterization of the movement and also verifies if the 

executed movement was well recognized. 

3.1. Electromyograph and data acquisition system 

Electromyograph is a device used to capture the myoelectric signals with the help of 

electrodes. The electromyograph used in this work was developed in the research project 

coordinated by Balbinot (Balbinot, 2005). 

The recording signal is performed using bipolar electrodes of passive configuration. Located 

near the electrodes, in each acquisition cable, was used an instrumentation amplifier with 

differential input, INA118, to minimize the noise as the amplitude of the acquired signal is 

in mV. The signal is amplified up to 1000 times 
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The frequency of the muscular signals captured by the surface electrodes has a range 

varying from 20 to 500 Hz. Due to this fact, the EMG designed consist of two cascaded 

second order low-pass filters with a cutoff frequency at 1000 Hz, and two cascaded second 

order high-pass filters with cutoff frequency at 20Hz. 

To perform the data acquisition was chosen the National Instruments acquisition board NI 

USB 6008. This board features eight analog input channels with 10 bit resolution and 

sampling rate of 10 kS/s. In this study we used the eight analog input channels (one entry 

per channel) with an acquisition rate of 1 kHz per channel. 

3.2. Virtual model 

Virtual human body models are used in many applications that allow human-machine 

Interaction. The virtual model created in this work aims to help the standardization of tests 

for the acquisition of the myoelectric signal. With this virtual model is possible, for the 

Subject, visualize the movement to be performed during the tests, so that all Subjects 

perform as best as possible, the same movements at the same time base and at the same 

time, leaving the system more user-friendly. For the development of the virtual model we 

used the software MakeHuman Alpha5 and Blender 1.0 Beta 2:54. 

Initially, MakeHuman software was used to define the parameters of the humanoid (height, 

weight, sex) that is subsequently exported to the software Blender. This virtual model is a 

skeleton whose manipulative joints are used to define the positions that it should take (Tale 

& Balbinot, 2011). For the development of the animation it was necessary to set the start and 

end position and movement timing of each of the respective movement. The software then 

builds an animation by connecting the two points during a defined duration. Also was 

established a rest position which was adopted for all movements. Importantly, all 

movements start from the rest position, run and return to it. It should be noted that after the 

generation of virtual models, a video of the animations are created using a standard rate of 

24 fps Avi format.  

To display the animations, a routine in Labview was developed enabling the reading of Avi 

files and reproduction of videos representing the virtual model through a window of 

Windows Media Player. This window opens in the auxiliary display (LCD screen in Figure 

4) being viewed only by the user of the system. The operator sees only the Labview 

programming window on the laptop screen, where it is shown that the signal is being 

acquired during the tests. 

The set of movements generated through the virtual model was divided into two groups: 

simple and complex movements (sequence of simple movements). There are seven simple 

movements represented in Figure 5, which are: wrist flexion; hand contraction, wrist 

extension, forearm flexion, forearm rotation, hand adduction and hand abduction. For the 

simple movements were adopted the following time sequence with a total duration of each 

animation of 8.3 s: 

• Initial interval: 0,4 s in which the animation will be on rest position; 
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• forward movement: duration of 2,9 s; 

• movement interval: 1,25 s, in which the animation keeps static at the end the going 

movement; 

• backward movement: same duration of the forward movement (2,9 s); 

• final interval: duration of 0,8 s, which the animation is again on rest position; . 

 

Figure 5. Pictures representing the simple movements created by the virtual model: (a) resting position, 

(b) wrist extension, (c) wrist adduction, (d) wrist flexion (e) wrist abduction, (f) forearm flexion, (g) 

hand contraction and (h) forearm rotation. 

In the Figure 6 is shown a static representation of the simple movements presented in video 

format. 

The movements that are called complex are characterized by a combination of determined 

basic movements defined above. For this study, five complex movements were selected as 

shown in Figure 7, that are: hand contraction with forearm rotation, forearm rotation with 

forearm flexion; forearm rotation with forearm flexion and wrist flexion, hand contraction 

with forearm flexion and wrist extension and flexion. 

For the animations of the complex movements, the same parameters of the simple 

movement animations were been used, but with total duration of 17 second for each 

complex movement. 

3.3. Experimental procedures 

All the experiments were carried out with consent of the Subjects, according to the ethical 

precepts and respecting the bio signal acquisition techniques (in this case related to the 

myoelectric signal acquisition), like for instance the treatment of the skin, electrode 

positioning among other aspects.  

For the data acquisition the NI USB 6008 board was used. Eight pairs of electrodes located in 

the main muscle groups of the Subject were been used, which are the main part of the 

movements that were chosen to characterize: Biceps (C0), palmaris longus (C1), flexor carpi 

ulnaris (C2), flexor carpi radialis (C3), pronator teres (C4), extensor digitorum (C5), 

brachioradialis (C6) and extensor carpi ulnaris (C7), as shown in Figure 8.  
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Figure 6. Diagram representing the videos of simple movements developed as a virtual model. 
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Figure 7. Diagram representing the videos of complex movements developed as a virtual model. 

 

Figure 8. Picture showing the electrodes positions. 

To start the acquisition, after correct positioning of the electrodes, the Subject is instructed to 

replicate the animations of the virtual model, which appear on the LCD screen, using a 

moderate strength. In order to standardize the testing of signal acquisition was adapted to 

the methodology proposed by Li (Li, 2010), considering the following aspects: 

• each test consists of 5 sessions; 

• is generated a random sequence of animations for each session of the test; 

• each session is composed of 5 repetitions of each of the 12 selected movements; 

• between movements, the Subject should rest for 3 seconds; 
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• each Subject participates in a single test. 

In the figure 9 is shown a picture of one of the sessions.  

 

Figure 9. Picture of a session. 

A Labview routine was developed to interface with Matlab to generate the sequence of 

movements (See figures 6 and 7) randomly. The output is a vector with a random order of 

the movements of the virtual model presented to the user.  

3.4. Acquisition and signal pre processing 

The programming language chosen for the development of the proposed system software is 

Labview (Laboratory Virtual Instrument Engineering Workbench) from National 

Instruments. 

The acquisition and generation of the myoelectric signals database were obtained through a 

routine created in Labview software to read the input data acquired through the NI USB 

6008 card and store them in a file. 

To choose the sample rate was considered that the myoelectric signal of interest in this work 

is in the range 20-500 Hz, and most of the energy of this signal is in the frequency range 50-

150 Hz based on this information, the sampling frequency used was 1 kHz which is suitable 

for the proposed system. For this specification, 1 ms was sufficient to identify the user 

movements. 

The online acquisition is performed in a way that the signal is transferred to the computer in 

time windows of 50 ms, thought the acquisition board, and the signal is stored in a FIFO 

(First In First Out) queue, in which the stored time windows are being processed according 

to the acquisition order, ensuring no data loss. Figure 10 shows the corresponding flowchart 

of this stage. 
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Figure 10. Flowchart of the online acquisition routine. 

According to the flowchart shown in Figure 10, the data acquisition and processing are used 

simultaneously, since it is possible to perform parallel routines in Labview (note that the 

real parallelism is only supported from the Labview 2010 package). 

3.4.1. Calibration procedure 

The calibration of the system aims to achieve specific characteristics of the voluntary muscle 

signal, as each person may have a different muscle activity. Thus, the calibration allows that 

the system is generic and therefore adapts itself to different users. The calibration procedure 

of the system involves capturing the muscle signal in a time of relaxation and in a moment 

of maximum voluntary contraction (MVC). 

Figure 11 shows a brief block diagram of the calibration procedure. This step involves eight 

Boolean variables (SNR (x), x = 1.2 .. 8) indicating that all channels of myoelectric signal 

acquisition were correctly calibrated. If a pair of electrodes is not properly positioned, the 

distress signal has low quality, and once again must be repositioned until the signal / noise 

ratio is at least greater than 2 - value established based on the signal acquisition trials 

previously conducted with this electromyograph (Favieiro, 2009). 

For the calibration of each channel, initially an acquisition of the signal is performed with 

the muscle in rest position. Then the signal is processed to calculate the average peak values. 

Later on a MVC movement is performed and captured, and after this, again the average 

peak value is calculated. With this information is possible to evaluate the signal to noise 

ratio (SNR) that is given by dividing the value processed during the movement with MVC 

by the value found when captured a rest movement. 

A percentage ranging from 30-50% of the average peak values of the acquired signal with 

the maximum voluntary contraction (MVC) is then used to determine, during processing of 

the signal, the threshold value which indicates whether or not a muscle contraction 

occurring during the process of windowing the signal. 
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Figure 11. Block diagram of the calibration routine. 

The movements with MVC used for the calibration of each channel are shown in the table 1. 

 

Channel x Muscle Movement 

0 Biceps Forearm flexion 

1 Flexor carpi ulnaris Hand abduction 

2 Flexor carpi radialis Hand adduction 

3 Extensor digitorum Hand contraction 

4 Pronator teres Forearm rotation 

5 Brachioradialis Forearm rotation 

6 Palmaris longus Wrist flexion 

7 Extensor carpi ulnaris Wrist extension 

Table 1. Representation of movement defined for each channel calibration. 
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3.4.2. Preprocessing procedures  

Were used mathematical procedures typically used in the myoelectric signal analysis to 

preprocess the signal and generating one or more characteristics of interest to the 

classification stage. 

The techniques used are this stage was (for further details consult Favieiro, 2011): 

• removal of DC component (offset adjustment); 

• full-wave rectification; 

• windowing the signal of interest; 

• determining the rms value of the signal of interest. 

The signal is analyzed in periods of 50 ms, since it provides a comprehensive overview of 

the signal but, at the same time, specific, since it does not occur in tests muscle relaxation in 

period shorter than the determined, resulting in an efficient analysis of runtime system and 

results. To perform the windowing of the signal, the period in which a muscle contraction 

occurs were developed a routine in Labview which analyses the signal every 50 ms, where 

each channel is analyzed simultaneously, ensuring if in these data windows occurs a signal 

peak with value above the threshold. To consider that a movement is taking place is 

necessary to satisfy the following assumptions: 

• is considered that the channel is active if, in the processed time window, there are any 

peaks above the threshold limit. Considering the threshold a variable that has a value 

ranging from 30-50% of the respective channel MVC. This percentage is defined 

empirically according to preliminary test conducted with a user; 

• is necessary that at least three channels have a peak above the respective threshold, i.e., 

being active. This is done to ensure that any random noise introduced in at least one 

channel interfere with the signal windowing; 

• the signal must be considered active, at least 80% of the last 20 windows, i.e., the last 

one second. The history of activation of the channels is taken into consideration to try to 

ensure that a movement is actually occurring.  

With these assumptions satisfied, it is considered that a movement is occurring, and in turn, 

the signal is windowed in all channels simultaneously, considering the same time based for 

the beginning and end of the muscle contraction. Another assumption considered important 

is if two sequential movements were spaced in time by up to 3 seconds, they will be 

considered one single movement and the beginning time of the first movements and the end 

time of the second are used to define a new single window containing these two 

movements. Thus, ensuring that complex movements are not considered two or more 

distinct movements by the signal windowing.   

The set time of 3 seconds has been based on in the resting time of the Subject, which is 3 

seconds. Thus, the windowing of a movement is determined only after a time longer than 3 

seconds without the occurrence of a movement, only then is possible to analyze the 

windows stored in each channel, calculating the rms value from each channel in the 

occurrence time of a muscle contraction.  
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3.5. Myoelectric signal preprocessing by the neuro fuzzy method  

The step of characterizing the signal is achieved by a neuro fuzzy type ANFIS. The system 

takes as input the rms values of each pre-processed data acquisition channel. Presents as 

output the movements characterized that are being carried out by the human arm. The 

system ANFIS used in this research was implemented using the Matlab tool (Fuzzy Logic 

Toolbox). The fuzzy neural network is interfaced via Labview, where the routine developed 

in Matlab is called when needed, being processed in the background. 

3.5.1. Neuro fuzzy network dimensioning 

First was set the number of network inputs, which can vary from 2 to 8 depending on the 

number of channels which is intended to analyze. The channel that will be used on the 

network can be selected by the operator of the system which the developed routine 

performs reading of all channels and automatically separates the desired channels for 

processing. This function has as input the array of channels to be selected and as output 

only the desired channels. The output of the neuro-fuzzy networks is considered fixed, 

containing the 12 movements previously determined. The output values ranges from 0 to 1, 

and for each movement there is a corresponding fixed known value, as shown in Table 2. 

He developed structure is a fuzzy network type Sugeno obtained in the generation of a 

initial structure adapted from a input-output set acquired in the systems tests. The structure 

contains eight inputs and one output.  

 

Movement Corresponded output 

Hand contraction 0 

Wrist extension 0.083 

Wrist flexion 0.166 

Forearm flexion 0.249 

Forearm rotation 0.333 

Hand abduction 0.416 

Hand adduction 0.499 

Complex 1 0.582 

Complex 2 0.665 

Complex 3 0.748 

Complex 4 0.831 

Complex 5 0.914 

Table 2. Network output values associated with the recognized movements.  

3.5.2. Fuzzy neural network structure definition  

To adjust the system it is necessary first creates an initial fuzzy network, which should be 

representative of the Subject data. For this, was used the subtractive clustering technique, 

which can generate, from a input-output data, membership functions of input and output, 
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and the fuzzy rules structure for type Sugeno. This technique was chosen because it 

obtained good results in preliminary studies cases, its routine is represented in Figure 12. 

This routine is performed using the MatlabScript node that defines a script to be run in 

Matlab.  

 

Figure 12. Routine developed for definition of the fuzzy network structure. 

While creating the initial fuzzy structure was necessary to define the following parameters 

in Matlab: 

• input data: array with fuzzy inputs of the network; 

• output data: array with the expected output for the input data set; 

• membership function: the Gaussian function was selected because it is a smooth 

function on the edges, have shown better results in these trials;  

• radius: was selected the value of 0.1, which represents the influence radius of the 

cluster, when it is considered a unitary hypercube. The smaller the radius, more clusters 

are created and, consequentially, a greater number of rules.  

In the first Subject assay, the expected input and output values are used to create the system 

initial structure representing the fuzzy network of 8 inputs, 60 clusters (i.e., 60 rules) e one 

output, generated for a system assay, and adjust it later to adapt to represent more faithfully 

a model that can characterize the Subject movements.   

After creating the initial fuzzy structure is necessary to adapt the membership functions for 

the data acquired in the session, thus making a fine adjustment of the functions, leading to 

results more consistent with the ones expected. The adaptation step is very important, 

because it help to better define the limits and parameters of the membership functions, 

leaving the model best suited for the Subject. In this step were used a hybrid training 

function. The hybrid training is a combination of the gradient method with the LSE method 

to optimize the time convergence of the model, since it reduces the demand on the 

dimensional space. This function used the following parameters, according to the routine 

which utilized the MatlabScript function represented in Figure 13: 

• initial fuzzy network, created from the subtractive clustering technique; 

• input data: array with the network fuzzy inputs; 

• output data: vector with the expected output for the input data set;  
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•  number of training epochs: the value 10 was selected , which defines the number of 

training cycles, i.e., the maximum number of times the training set is presented to the 

network. An excessive number of cycles can lead to loss of power to the network 

generalization (over fitting). On the other hand, with a small number of cycles, the 

network cannot reach its best performance (under fitting); 

• target error: the value 0 was selected, which consists in terminate the training after the 

mean square error falls below a predetermined value α.  

 

Figure 13. Training routine of the neuro-fuzzy network.  

As output of the training step, is generated a fuzzy network with adapted membership 

functions to a particular Subject, causing the limits of each functions to be left according to 

the training data. 

4. Results and discussion 

This topic will discuss the test performed during system development, and the results 

obtained. It is important to note that the pre-processing routine and calibration have already 

been validated in previous studies (Favieiro, 2009; Favieiro & Balbinot, 2011).  

Subjects participating in this research present an age range of 20±5 years old, of both sexes. 

Altogether were conducted trials with seven Subjects. The abbreviations of the characterized 

movements are presented in Table 3.  

It is worth noting that the parameters of ANFIS training were the same for all Subjects. 

Figure 14 represents the result of section 2 for Subject 1 where is possible notice that for the 

movement M11 that is the hand contraction with the forearm flexion, 40% of the error was 

due to the fact that the network believed was dealing with movement M0 (hand contraction) 

which represents partially the movement performed. Another movement in which occurred 

the incorrect recognition was the M4 (forearm rotation) with M3 (forearm flexion), causing 

60% of error, which may occur since these movements uses muscle in common, such as the 

biceps, and were used only surface electrodes.  

As an example, Table 4 represents the average accuracy rate of the system for each 

movement per session, and the overall average of each movement per session for the Subject 

1. The movements with lower hit rate are: hand contraction (M0), forearm rotation (M4) and 
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hand contraction and forearm rotation (M11), with 65%, 57% and 50% hit rate, respectively. 

It happened by the similarity of M4 to M3 (forearm flexion) and by the similarity between 

M0 to M11.   

 

Performed movement Abbreviation 

Hand contraction M0 

Wrist extension M1 

Wrist flexion M2 

Forearm flexion M3 

Forearm rotation M4 

Hand abduction M5 

Hand adduction M6 

Hand contraction with forearm rotation M7 

Forearm rotation and flexion M8 

Forearm rotation and flexion with wrist flexion M9 

Wrist extension followed by flexion M10 

Hand contraction with forearm flexion M11 

Table 3. Abbreviations representing the performed movements. 

 

 
 

Figure 14. System output for Subject 1 – section 2 (5 repetitions). 
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Subject 1 M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 

Session 2 (%) 100 100 100 100 40 100 80 100 80 100 100 60 

Session 3 (%) 40 100 80 80 60 60 100 80 100 100 80 80 

Session 4 (%) 60 80 100 80 80 80 100 100 80 100 40 20 

Session 5 (%) 60 100 100 100 50 100 20 100 40 60 60 40 

Average (%) 65 95 95 90 57 85 75 95 75 90 70 50 

Table 4. Summary of the system average accuracy rate to the subject 1. 

4.1. Comparison between subjects 

As an example, Figure 15 shows the average accuracy rate for movement M10 for all 

Subjects. The average score was higher than 70% in all cases. This happened mainly because 

of the simple movements that compose the M10 movement are easily detectable antagonistic 

movements. Like the movements M1 and M2 achieved accuracy rates above 75% in most 

cases.  

 

Figure 15. Results of movement M10. 

Figure 16 represents the average of all tests performed for each movement. Analyzing the 

graph it is clear that the more accurate movements were M1, M2, M5 and M10 (combination 

of M1 and M2), with averages rates of approximately 80%. These movements are quite 

distinct, which increases the accuracy rate of the system. The worst case occurred with the 

movement M11, which had an average hit rate below 50%, it combines simple movements 

used in most of the complex movements performed, impairing the correct recognition. 

Overall the system achieved an average accuracy of 65%.  
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Figure 16. Overall result of the system for each movement.  

4.2. Comparison between the researched results and other studies 

The vast majority of studies in the area of recognition of hand-movements of the arm 

segment are based on the classification of simple movements, not taking into account 

combined movements, as was the aim of this study. As it was possible to see the results of 

this work, most of the errors were caused by similar movements, or the differentiation of 

compound movements with their simple movements. The human arm has many degrees of 

freedom and be able to develop a system that can characterize many different movements 

and combined is where the real challenge and for this reason is an active area of research 

(Favieiro et al., 2011; Favieiro & Balbinot, 2011).  

Comparing the system developed by Chan using fuzzy techniques which were classified 

four simple movements using only two channels with an accuracy of 91% (Chan, 2000). Also 

a system was developed by Ajiboye to characterize four classes of movements using four 

channels, obtaining an accuracy of 86% (Ajiboye, 2005). These systems had similar results to 

those found in the preliminary study of this research in which the neuro fuzzy technique 

was used to classify five distinct movements using three channels of signal acquisition, 

obtaining an accuracy of 86% (Favieiro & Balbinot, 2011). Demonstrating the system using 

only simple movements and a limited number of channels achieved accuracy higher than 

that found to characterize the combined movements. 

Compared with the research of Momen which categorize nine distinct movements, using 

only the rms characteristic of the window processed and four acquisition channels obtained 

an average accuracy of 48.9%. This study is very similar to the system developed, in the 

sense that uses the same characteristic of the signal and making a direct comparison of the 

average hit rate of the developed system is 30% higher than to 9 moves obtained per Momen 

(Momen, 2007). 
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Another difference that it is important to note is that the proposed study used only one feature 

extracted for each channel, unlike other studies that use up to 13 features per channel, whose 

average accuracy was 87% for the classification of 10 distinct movements (Khushaba, 2010). 

5. Conclusions 

The proposed system was designed to use a limited amount of up to 8 channels of the 

myoelectric signal acquisition and with the assistance of a more robust artificial intelligence 

technique was able to verify the validity of this system in terms of performance in the 

characterization of 11 distinct movements, including 5 complex movements. In tests, the 

mean peak signal with a maximum voluntary contraction (MVC) appeared at least four 

times greater than the average peak signal at a time of muscle relaxation. Thus, was possible 

determine a level ranging from 30 to 50% of MVC to differentiate a time of muscle contraction, 

representing a movement. With the windowing signal occurs at the instant when a movement 

occurs, is possible to obtain the rms value for each of the channels 8 and to use these values as 

input to a neuro fuzzy network with one output an up to 8 inputs. This network aims to 

characterize the movements that are being executed. The network is adapted in accordance 

with supervised training, to evaluate system performance over time. As can be seen on the 

results, some movements have achieved a lower hit rate, this may occur due to poor signal 

quality, user error, and the quantity of motion that was presented to the neuro fuzzy network, 

since most of the errors were caused by similar movements, or the differentiation of 

compound movements with their simple movements, which have a response very similar in 

rms value, causing the network to get confused. The average accuracy obtained was 65% of hit 

rate to 11 distinct movements in tests of long duration, about three hours. 

Also, it’s important to notice that the vast majority of studies in the area of recognition of 

hand-movements of the arm segment are based on the classification of simple movements, 

not taking into account combined movements, as was the aim of this study. The preliminary 

study of this research in which the neuro fuzzy technique was used to classify five distinct 

simple movements using three channels of signal acquisition, obtained an accuracy of 86% 

(Favieiro & Balbinot, 2011). Demonstrating the system using only simple movements and a 

limited number of channels achieved accuracy higher than that found to characterize the 

combined movements.  

The human arm has many degrees of freedom and be able to develop a system that can 

characterize many different movements and combined is the real challenge of this kind of 

research, which will really improve the life quality of people with special needs, making 

them more independent and more likely to real social and economical integration. 

6. Future studies 

It would be very important in future studies performing the tests with a larger number of 

volunteers, to conduct a robust statistical analysis of results, and allow a more robust 

assessment of its results, its flaws and strengths. Is ongoing the use of the system with 

Volunteers with total and partial amputation of the upper limb. This is crucial for research 
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to find out how the system would apply and adapt, it is possible to ascertain the validity of 

future control system for a prosthetic hand-arm segment by myoelectric signals. Another 

proposal for further work would find other characteristics that could be extracted from the 

signal to improve the performance of the fuzzy neural network, so that the system would be 

able to characterize a wide range of complex movements with a hit ratio above 90%, and a 

higher capacity to differentiate motion. One way to improve the hit rate of the system is to 

implement a feedback to the user, to the person performing the test whether they are doing 

it correctly, avoiding common errors of distraction, or applying excessive force.  
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