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1. Introduction

Modern nanotechnology can build advanced functional materials in molecular level in
nanoscales. The computer modeling and simulations are very important in such materials
design. The ability to perform quantum simulations of materials properties over length scales
that are relevant to experiments represents a grand challenge in computational materials
science. If one could treat multi-millions or billions of electrons effectively at micron scales,
such first-principle quantum simulations could revolutionize materials research and pave the
way to the computational design of advanced materials.

There are two principal reasons why quantum simulations at relevant experimental scales
are important. First of all, it allows a direct comparison between theory and experiment.
For example, the rapidly emerging field of nanotechnology demands realistic and accurate
modeling of material systems at the nanoscale, including nano-particles, nano-wires, quantum
dots, NEMS (Nano-Eletro-Mechanical Systems) and MEMS (Micro-Electro-Mechanical
Systems). All these nano-systems could reach a length scale of microns and contain millions or
billions of electrons, if not more. Secondly, quantum simulations at larger scales are essential
even for extended bulk crystals where periodic boundary conditions may be used. This is
due to the fact that a real bulk solid always contains lattice defects (or impurities) whose
interactions are long range - dislocations being the prominent example. An insufficiently
large periodic unit cell would lead to unrealistically high concentrations of defects and/or
impurities, rendering the results of such simulations questionable.

The full knowledge of the mechanical properties of the nano-materials are very important
for the advanced materials design and applications. Nanoindentation has now become
a standard experimental technique for evaluating the mechanical properties of thin film
materials and bulk materials in small volumes [25]. As it can measure nanometer penetration
length scales, nanoindentation is an indispensable tool to assess elastic moduli and hardness
of materials. It also can be used to derive strain-hardening exponents, fracture toughness, and
viscoelastic properties of materials [6].

In this chapter, we will present our recent studies of nano-indentation with first-principles
quantum simulations. We developed a multi-scale approach that is based entirely on density
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functional theory (DFT) [18, 19] and allows quantum simulations at micron scale and
beyond. The method, termed Quasi-continuum Density Functional Theory (QCDFT) [28–31],
combines the coarse graining idea of the quasi-continuum (QC) approach and the coupling
strategy of the quantum mechanics/molecular mechanics (QM/MM) method, and allows
quantum simulations at the micron scale and beyond.

It should be stated at the outset that QCDFT is not a brute-force electronic structure method,
but rather a multiscale approach that can treat large systems - effectively up to billions of
electrons. Therefore, some of the electronic degrees of freedom are reduced to continuum
degrees of freedom in QCDFT. On the other hand, although QCDFT utilizes the idea of
QM/MM coupling, it does not involve any classical/empirical potentials (or force fields)
in the formulation - the energy calculation of QCDFT is entirely based on orbital-free DFT
(OFDFT). This is an important feature and advantage of QCDFT, which qualifies it as a bona
fide quantum simulation method.

The QCDFT method have been used to study the nanoindentation of pure Al [30], random
distributed Mg impurities in Al thin film [31], and solid solution effects on dislocation
nucleation during nanoindentation [29]. The method was also applied to study the fracture
in Al recently [28]. Although these works had been published before individually, a small
review of this method and its applications is necessary. Here I will give an introduction
to QCDFT method in Section II, especially how QCDFT evaluate the energies and forces
from ab initio first-principles calculations. The application of QCDFT in quantum mechanical
simulations of nanoindentations will be illustrated in Section III, IV and V for pure Al
[30], random distributed Mg impurities in Al thin film [31], and solid solution effects on
dislocation nucleation during nanoindentation [29] respectively. And finally our conclusions
and outlooks of quantum mechanical simulations of nanoindentations in Sec. VI.

2. QCDFT methodology

In QCDFT, the degrees of freedom of the system is reduced by replacing the full set of N atoms
with a small subset of Nr “representative atoms” or repatoms (Nr ≪ N) that approximate the
total energy through appropriate weighting. This approach of reducing degrees of freedom
is critical in the multiscale method and it is adopted directed from the Quasi-continuum
method [32, 37, 40]. The energies of individual repatoms are computed in two different
ways depending on the deformation in their immediate vicinity. Atoms experiencing large
variations in the deformation gradient on an atomic scale are computed in the same way as
in a standard atomistic method. In QC these atoms are called nonlocal atoms. In contrast, the
energy of atoms experiencing a smooth deformation field on the atomic scale is computed
based on the deformation gradient G in their vicinity as befitting a continuum model. These
atoms are called local atoms because their energy is based only on the deformation gradient at
the point where it is computed. In a classical system where the energy is calculated based on
classical/empirical inter-atomic potentials, the total energy Etot can be written

EQCDFT
tot =

Nnl

∑
i=1

Ei(R) +
Nloc

∑
j=1

njE
loc
j (G). (1)

The total energy has been divided into two parts: an atomistic region of Nnl nonlocal atoms
and a continuum region of Nloc local atoms (Nnl + Nloc = Nr). The calculation in the nonlocal
region is identical to that in atomistic methods with the energy of the atom depending on
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the coordinates R of the surrounding repatoms. Rather than depending on the positions
of neighboring atoms, the energy of a local repatom depends on the deformation gradients
G characterizing the finite strain around its position. Then the energies and forces on the
local atoms and nonlocal atoms are treated differently, but entirely on ab inito first-principle
calculations.

In the following, we outline the energy and force formulations for both local and nonlocal
regions of QCDFT. In the local region, a finite element mesh is constructed with each repatom
is on the vertex of several surrounding finite elements. The energy and force of each local
repatom can be obtained from the strain energy density and the stress tensor of the finite
elements that share the same repatom. More specifically, according to the Cauchy-Born rule,
the deformation gradient G is uniform within a finite element, therefore the local energy
density ε and the stress tensor for each finite element can be calculated as a perfect infinite
crystal undergoing a uniform deformation specified by G. In other words, one could perform
an OFDFT-based energy/stress calculation for an infinite crystal by using periodic boundary
conditions with the primitive lattice vectors of the deformed crystal, hi given by

hi = G Hi, i = 1, 2, 3. (2)

Here Hi are the primitive lattice vectors of the undeformed crystal and the volume of the
primitive unit cell is Ω0. The details of the OFDFT calculation can be found in Sec. II C. Once
the strain energy density ε(Gk) is determined, the energy contribution of the jth local repatom
is given as

Eloc
j ({G}) =

Mj

∑
k=1

wkε(Gk)Ω0, (3)

where Mj is the total number of finite elements represented by the jth repatom, and wk is
the weight assigned to the kth finite element. The force on the jth local repatom is defined
as the gradient of the total energy with respect to its coordinate Rloc

j . In practice, the nodal
force on each finite element is calculated from the stress tensor of the finite element by using
the principle of virtual work [47]. The force on the repatom is then obtained by summing the
nodal force contributions from each surrounding finite elements.

For the energy/force calculation in the nonlocal region, we resort to a novel QM/MM
approach that was developed recently for metals [43, 44]. The coupling between the QM and
MM regions is achieved quantum mechanically within an OFDFT formulation. Although the
detailed implementation of the QM/MM approach is presented in Sec. II D, we wish to stress
two important points here: (1) The original QC formulation assumes that the total energy
can be written as a sum over individual atomic energies. This condition is not satisfied by
quantum mechanical models. The energy of the nonlocal region is now a functional of total
electron density, so instead of the expression in Eq. 1, the total energy of QCDFT should be
expressed as:

EQCDFT
tot = Enl[ρtot] +

Nloc

∑
j=1

njE
loc
j ({G}). (4)

Here ρtot is the total electron density in the nonlocal region as well as the coupling
nonlocal/local region i.e., the buffer region in the following discussion. (2) The nonlocal
energy, Enl should be calculated with appropriate boundary conditions; that is to say, it should
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include the interaction energy between the nonlocal atoms and neighboring local atoms. In
the original QC framework, this requirement is realized by including dummy atoms in the
energy/force calculation of a given nonlocal repatom. These dummy atoms are in the local
region and within the cut-off radius of the given nonlocal repatom. The dummy atoms are not
independent degrees of freedom in the local region, but rather slaves to the local repatoms.
In this way, the nonlocal calculation is carried out with the appropriate boundary conditions,
and at the same time, the energy of the dummy atoms is still treated with the Cauchy-Born
rule, consistent with their status. In the QCDFT approach, a buffer region including the
dummy atoms and local repatoms that are adjacent to the nonlocal repatoms is selected as
the “MM” region, and the nonlocal atoms constitute the QM region. The nonlocal atoms are
treated by OFDFT, and the coupling between the “MM” and QM region is also formulated
within OFDFT. Therefore the entire system is formulated with one energy functional, OFDFT.
Note that “MM” here is actually a misnomer: the local atoms are treated by OFDFT with the
Cauchy-Born rule as mentioned earlier, and we retain the designation “MM” solely to indicate
the similarity to the earlier coupling scheme [43, 44].

The nonlocal region is modeled at the atomistic level with a QM/MM approach. In a typical
QM/MM calculation, the system is partitioned into two separated domains: a QM region
and an MM region. In QCDFT, the QM region refers to the nonlocal region and the MM
region refers to the buffer region. The buffer region is introduced to provide the boundary
conditions for the calculation of nonlocal energy and it contains both dummy atoms and local
repatoms. The dummy atoms differ from the local and nonlocal repatoms in the following
sense: (1) their positions are interpolated from the positions of local repatoms using finite
element shape functions; (2) the energy and force on the dummy atoms does not need to be
considered explicitly since they are not explicit degrees of the freedom in the QC formulation.

At present, there are two types of QM/MM coupling strategies: mechanical coupling and
quantum coupling [7, 22, 24, 34, 36, 45]. The interaction energy between the QM and MM
regions is formulated at the MM level for mechanical coupling, and at the QM level for
quantum coupling. Although mechanical coupling is much simpler than quantum coupling,
it has many drawbacks - the most important one being that the electronic interaction between
the two regions is ignored. For example, with mechanical coupling, electrostatic, kinetic, and
exchange-correlation interaction energies are not considered explicitly. As a consequence,
the physics of the QM region is not accurately captured. Another problem with mechanical
coupling is that the reliability and availability of empirical potentials for treating the coupling
are severely limited. In contrast, quantum coupling should be more accurate as it accounts
for all quantum mechanical interaction terms. Depending on the level of the quantum
description, the extent of the electronic coupling varies from merely long-range electrostatic
interaction to a full Coulomb interaction, including short-ranged exchange-correlations [7, 22].

In the present QCDFT method, we use an OFDFT-based quantum mechanical QM/MM
coupling proposed by Zhang and Lu [43, 44] which considers the full Coulomb, kinetic
energy, and exchange-correlation interactions. More specifically, both the energy of the
nonlocal atoms and the interaction energy between the nonlocal atoms and the buffer atoms
are calculated by OFDFT. To simply the notation, we denote the nonlocal region as region
I, and the buffer region as region II. Typically, the buffer region consists of several atomic
layers surrounding the nonlocal region. The nonlocal energy Enl as defined in Eq. (4) can be
expressed as:
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Enl[ρtot] = minρI{EOF[ρ
I; RI] + Eint

OF[ρ
I, ρII; RI, RII]}. (5)

where RI and RII denote ionic coordinates in region I and II respectively. The OFDFT energy
functional EOF is obtained routinely [13–15, 21, 23, 30, 41]. The total charge density of the
QM/MM system ρtot consists of two contributions: ρtot = ρI + ρII where ρI and ρII represent
the charge density from region I and II respectively. While ρI is determined self-consistently
by minimizing the total energy functional Eq. (5), ρII is defined as a superposition of
atom-centered charge densities ρat via ρII(r) = ∑i∈II ρat(r − Ri). Note that ρat is spherically
symmetric and can be constructed a priori. It is important to point out that ρat is not a charge
density of an isolated atom, but rather an atom-centered charge density whose superposition
gives rise to the correct bulk density of region II [43]. Therefore ρII(r) is fixed for a given ionic
configuration of region II and it changes upon the motion of region II ions. In other words, the
electronic degree of freedom in the formulation is ρI only and ρII is fixed during the electronic
relaxation. The interaction energy is thus defined as following:

Eint
OF[ρ

I, ρII; RI, RII] = EOF[ρ
tot; Rtot]− EOF[ρ

I; RI]

− EOF[ρ
II; RII],

(6)

where Rtot ≡ RI ⋃ RII. The energy functional of Eq. (5) can be written as

Enl[ρtot] = minρI{EOF[ρ
tot; Rtot]− EOF[ρ

II; RII]}. (7)

A basic ansatz of the present QM/MM formulation (Eq. (7)) is that ρI must be confined
within a finite volume (ΩI) that is necessarily larger than region I but much smaller than the
entire QM/MM region. In addition, since some terms in the formulation Eq. (7) could be
more efficiently computed in reciprocal space (discussed in the following), we also introduce
a volume ΩB over which the periodic boundary conditions are applied. The periodic box
ΩB should be larger than ΩI so that ρI does not overlap with its periodic images [43].
Note that the QM/MM system is only a small fraction of the entire QCDFT system. To
facilitate the introduction of the QCDFT method, we present a schematic diagram in Fig. (1)
which demonstrates the typical partition of domains in a QCDFT calculation. This particular
example is for a nanoindentation calculation of an Al thin film which is used to validate the
QCDFT method (see Sec. III for details). The lower-right panel shows the entire system and
the corresponding finite element mesh. The lower-left panel is a blow-up view of the entire
system, which is further zoomed in as shown in the upper-left panel, focusing on the nonlocal
region. The upper-right panel shows out-of-plane displacements of the nonlocal atoms, where
the dislocations and the stacking faults are clearly visible. All lengths are given in Å. The blue
and green circles represent the nonlocal and buffer atoms, respectively. The volumes ΩI and
ΩB are represented by the black dash box and solid box in the upper-left panel, respectively.
There is no constraint on ρII, which can extend to the entire QM/MM system. In addition to
its computational efficiency as discussed in Sec. II B, OFDFT allows Eq. (7) to be evaluated
over ΩI rather than over the entire QM/MM system as Eq. (7) appears to suggest [3, 43]. This
significant computational saving is due to the cancellation in evaluating the first and second
term of Eq. (7), and it is rendered by the orbital-free nature of OFDFT and the localization of
ρI.
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Figure 1. (Color online) The overview of the entire system and domain partition in QCDFT with
nanoindentation as an example. The x, y and z axes are along [111],[1̄10], and [1̄1̄2], respectively. ΩI and
ΩB are 2.8 Å and 8 Å beyond the nonlocal region in ±x and ±y directions, respectively [43]. The colors
indicate uz, the out-of-plane displacement of atoms in the z-direction.

2.1. Ghost forces

In the QC method, the entire system is divided into two regions - local and nonlocal - and thus
an artificial interface is introduced. The atoms in these two regions are modeled differently:
in the local continuum region, the energy depends only on the deformation gradient, while
in the nonlocal atomistic region, the energy depends on the position of the atoms. There is
an inherent mismatch of the energy functional between the local and nonlocal regions. As a
result, a well-defined energy functional for the entire QC model will lead to spurious forces
near the interface, called “ghost forces" in the QC literature. Note that the ghost force only
exists on local repatoms adjacent to the local/nonlocal (or QM/MM) interface. The principal
reason for the ghost force is that we choose to focus on approximating the energy and not
the force. One could opt to avoid the ghost force by formulating the force appropriately, but
then one could no longer define an appropriate total energy of the system. There are two
advantages of having a well-defined energy in atomistic simulations: (1) it is numerically
more efficient to minimize energy, compared to the absolute value of a force; (2) one can
potentially obey an energy conservation law in dynamical simulations.

In the QCDFT (or the QM/MM) approach, the ghost force is defined as the force difference
between two distinctive formulations: (1) where the force is calculated by applying the

8 Nanoindentation in Materials Science
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Cauchy-Born rule throughout the entire system; this corresponds to a “consistent" way of
calculating force, thus no ghost force exists and (2) where the force is calculated based on the
mixed local/nonlocal formulation aforementioned and hence the ghost force exists. In the
first case, the force on a local repatom would be

F̃(RII) = −
∂ECB(R

tot)

∂RII , (8)

where ECB(R
tot) is the total energy of the system where the Cauchy-Born rule is used

throughout. In the second case, the total energy of the QM/MM system can be written as:

Etot(Rtot) = ECB(R
II) + EQM(RI) + Eint

QM(Rtot), (9)

where ECB(R
II) is the local energy computed using the Cauchy-Born rule, EQM(RI) is

the nonlocal energy computed by a quantum mechanical approach, and Eint
QM(Rtot) is the

quantum mechanical interaction energy. The force derived from this total energy functional is

F(RII) = −
∂ECB(R

II)

∂RII −
∂Eint

QM(Rtot)

∂RII

= −
∂ECB(R

tot)

∂RII +
∂Eint

CB(R
tot)

∂RII −
∂Eint

QM(Rtot)

∂RII

= F̃(RII) + Fghost,

(10)

where Eint
CB(R

tot) = ECB(R
tot)− ECB(R

I)− ECB(R
II) is the interaction energy calculated with

the Cauchy-Born rule applied to the entire system, and Fghost =
∂{Eint

CB(R
tot)−Eint

QM(Rtot)}

∂RII is the

ghost force. Note that ECB(R
I) does not depend on RII, hence its contribution to force is zero.

Having determined the ghost force in QCDFT, one can correct for it by adding a correction
force Fcorr = −Fghost on the local atoms (Fcorr + F(RII)) so that the resultant force is F̃(RII).
The correction force is applied to the local repatoms as a dead load, computed each time
the status of the representative atoms is updated, and remains fixed until the next update
required due to the evolving state of deformation. In practice, the correction force is nonzero
only for the local repatoms adjacent to the nonlocal region. Finally, the total energy expression
has to be modified accordingly so that its gradient is consistent with the new formulation of
force. This is achieved by incorporating the work done by the correction force into the original
energy formulation:

Ẽtot = Etot −

N ′
rep

∑
α

Fcorr
α · uα, (11)

where N′
rep denotes the number of local repatoms whose correction force is nonzero, and uα

is the displacement of the αth local repatom.

9First-Principles Quantum Simulations of Nanoindentation
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2.2. Parallelization of QCDFT

The present QCDFT code is parallelized based on the Message Passing Interface (MPI).
The parallelization is achieved for both local and nonlocal calculations. The parallelization
for the local part is trivial: since the energy/force calculation for each finite element is
independent from others, one can divide the local calculations evenly onto each processor. The
computational time is thus proportional to the ratio of the number of the local finite elements
to the available processors. Parallelization of the nonlocal region is achieved through domain
decomposition, since the calculations (e.g. charge density, energy and force computations) are
all performed on real space grids, except the convolution terms in the kinetic energy. Grid
points are evenly distributed to available processors, and results are obtained by summing
up contributions from all grids. The calculation of the convolution terms is performed by
parallelized FFT.

The speedup using parallelization in local part is linear. The nonlocal part is dependent on
the nodes used. In our calculations, an over all of about 26 times speedup was achieved when
the program runs on 32 nodes.

2.3. Model setup

[112]

[110]

[111]

20000 A

10000

P

25
A

A

Figure 2. Schematic representation of the nanoindentation of Al thin film: geometry and orientation

Nanoindentation has now become a standard experimental technique for evaluating the
mechanical properties of thin film materials and bulk materials in small volumes [25]. As
it can measure nanometer penetration length scales, nanoindentation is an indispensable
tool to assess elastic moduli and hardness of materials. It also can be used to derive
strain-hardening exponents, fracture toughness, and viscoelastic properties of materials [6].
Moreover, nanoindentation also provides an opportunity to explore and better understand
the elastic limit and incipient plasticity of crystalline solids [46]. For example, homogeneous
nucleation of dislocations gives rise to the instability at the elastic limit of a perfect crystal.
Exceeding the elastic limit can be manifested by a discontinuity in the load-displacement
curve in a nanoindentation experiment [4, 8, 11, 26, 27, 35]. The onset of the discontinuity is
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an indication that the atomically localized deformation, such as dislocation nucleation occurs
beneath the indenter. This correlation has been well established from both experimental
and computational perspectives. For example, an in situ experiment by Gouldstone et
al. using the Bragg-Nye bubble raft clearly demonstrated that homogeneous nucleation of
dislocations corresponds to the discontinuity of the load-depth curve [12]. MD simulations
have led to greater insight into the atomistic mechanism of nanoindentation [16, 48]. In
particular, several QC simulations have been carried out for nanoindentation in Al thin films
[13, 14, 17, 33, 39]. Tadmor et al. have used Embedded atom method based QC (EAM-QC) to
study nanoindentation with a knife-like indenter with a pseudo-two-dimension (2D) model
[39]. They observed the correspondence between the discontinuity in the load-displacement
curve with the onset of plasticity. By using a much larger spherical indenter (700 nm), Knap
et al. discovered that plasticity could occur without the corresponding discontinuity in the
load-displacement curve [17]. However, when the indenter size was reduced (to 70 nm) the
discontinuity reappeared. More recently, Hayes et al. have performed local OFDFT- and
EAM-based QC calculations for nanoindentation of Al with a spherical indenter of 740 nm
in radius [13, 14]. Using elastic stability criteria, they predicted the location of dislocation
nucleation beneath the indenter, and obtained different results from EAM and OFDFT local
QC calculations. Since many QC simulations have been carried out for nanoindentation of Al,
it is not the purpose of the present paper (and we do not expect) to discover any new physics
with QCDFT calculations. Instead, we use nanoindentation as an example to demonstrate the
validity and the usefulness of the QCDFT method.

The present QCDFT approach is applied to nanoindentation of an Al thin film resting on
a rigid substrate with a rigid knife-like indenter. The QC method is appropriate for the
problem because it allows the modeling of system dimensions on the order of microns and
thus minimizes the possibility of contaminating the results by the boundary conditions arising
from small model sizes typically used in MD simulations. We chose this particular system
for two reasons. First, there exists a good local pseudo-potential [9] and an excellent EAM
potential [5] for Al. Secondly, results from conventional EAM-based QC simulations can
be compared to the present calculations. An ideal validation of the method would require
a full-blown OFDFT atomistic simulation for nanoindentation, which is not yet attainable.
The second best approach would be a conventional QC simulation with an excellent EAM
potential that compares well to OFDFT in terms of critical materials properties relevant
to nanoindentation. Our reasoning is that the conventional QC method has been well
established; thus as long as the EAM potential used is reliable, then the EAM-QC results
should be reliable as well. In this paper, we have rescaled the “force-matching" EAM potential
of Al [5] so that it matches precisely the OFDFT value of the lattice constant and bulk modulus
of Al [3].

The crystallographic orientation of the system is displayed in Fig. (2). The size of the entire
system is 2 μm × 1 μm × 4.9385 Å along the [111] (x direction), the [1̄10] (y direction), and
the [1̄1̄2] (z direction), respectively. The system is periodic in the z-dimension, has Dirichlet
boundary conditions in the other two directions, and contains over 60 million Al atoms - a size
that is well beyond the reach of any full-blown brute-force quantum calculation. The thickness
of the thin film is selected to be comparable to the typical dislocation separation distance in
well-annealed metals, which is of the order 1 μm. The unloaded system is a perfect single
crystal similar to the experimental situation under the nanoindenter. The film is oriented so
that the preferred slip system 〈110〉 {111} is parallel to the indentation direction to facilitate
dislocation nucleation. The indenter is a rigid flat punch of width 25 Å. We assume the

11First-Principles Quantum Simulations of Nanoindentation
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perfect-stick boundary condition for the indenter so that the Al atoms in contact with it are not
allowed to slip. The knife-like geometry of the indenter is dictated by the pseudo-2D nature
of the QC model adopted. Three-dimensional QC models do exist and can be implemented
in QCDFT [13, 14, 17]. We chose to work with the pseudo-2D model in this example for its
simplicity. The prefix pseudo is meant to emphasize that although the analysis is carried out in
a 2D coordinate system, out-of-plane displacements are allowed and all atomistic calculations
are three-dimensional. Within this setting only dislocations with line directions perpendicular
to the xy plane can be nucleated. The elastic moduli of C12, C44, C11 of Al are computed
from three deformation modes, including hydrostatic, volume-conserving tetragonal and
volume-conserving rhombohedral deformations. The shear modulus μ and Poisson’s ratio
ν are computed from the elastic moduli by a Voigt average: μ = (C11 − C12 + 3C44)/5 and
ν = C11+4C12−2C44

2(2C11+3C12+C44)
. The values are listed in Table (1).

2.4. Loading procedure

The simulation is performed quasi-statically with a displacement control where the
indentation depth (d) is increased by 0.2 Å at each loading step. We also tried a smaller
loading step of 0.1 Å and obtained essentially the same results. Because OFDFT calculations
are still much more expensive than EAM, we use EAM-based QC to relax the system for most
of the loading steps. For load d = 0, the QCDFT calculation is performed to account for
surface relaxations. From the resultant configuration, the depth of the indenter d is increased
to 0.2 Å, again relaxed by QCDFT. After that, the calculations are done solely by EAM-QC
except for the loading steps at d = 1.8, 3.8, 9.2 Å, when the corresponding EAM configurations
are further relaxed by QCDFT. The onset of plasticity occurs at d = 9.4 Å. We increased
the indenter depth of 0.2 Å from the relaxed QCDFT configuration at d = 9.2 Å, and then
performed a QCDFT calculation to obtain the final structure at d = 9.4 Å. Such a simulation
strategy is justified based on two considerations: (1) An earlier nanoindentation study of the
same Al surface found that the onset of plasticity occurred at a smaller load with EAM-based
local QC calculations comparing to OFDFT calculations [13]. The result was obtained by a
local elastic stability analysis with EAM and OFDFT calculations of energetics and stress. The
result suggests that we will not miss the onset of plasticity with the present loading procedure
by performing EAM-QC relaxations preceding QCDFT. (2) Before the onset of plasticity, the
load-displacement response is essentially linear with the slope determined by the elastic
properties of the material. In other words, two QCDFT data points would be sufficient to
obtain the correct linear part of the curve. Moreover, the fact that the EAM potential used in
this study yields rather similar elastic constants to those from OFDFT suggests that the mixed
EAM/OFDFT relaxation should not introduce large errors in the results.

2.5. Computation parameters

In Fig. (1), we present a schematic diagram illustrating the partition of domains for a QCDFT
simulation of nanoindentation. The system shown in the diagram contains 1420 nonlocal
repatoms, 736 local repatoms and 1539 finite elements, and is periodic along the z direction.
The top surface is allowed to relax during the calculations while the other three surfaces of
the sample are held fixed.

The parameters of the density-dependent kernel are chosen from reference [42], and Al ions
are represented by the Goodwin-Needs-Heine local pseudo-potential [9]. The high kinetic
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energy cutoff for the plane wave basis of 1600 eV is used to ensure the convergence of the
charge density. For the nonlocal calculation, the grid density for the volume ΩI is 5 grid-points
per Å. The ΩI box goes beyond the nonlocal region by 8 Å in ±x and ±y directions so that
ρI decays to zero at the boundary of ΩI. The relaxation of all repatoms is performed by a
conjugate gradient method until the maximum force on any repatom is less than 0.03 eV/Å.

At beginning of the simulation, the number of nonlocal repatoms is rather small, ∼ 80. As the
load increases, the material deforms. When the variation of the deformation gradient between
neighboring finite elements reaches 0.15, the mesh is refined, and the number of repatoms
grows. The partitions, i.e. the size of nonlocal DFT region also grows. Close to the onset of
plasticity, the number of nonlocal DFT atoms reaches 1420. The energy functional are the same
for all the regions in these studies.

In order to validate the QCDFT method, we performed EAM-QC calculations of the
nanoindentation with the same loading steps. We also calculated some relevant materials
properties using the rescaled EAM and OFDFT method for bulk Al. The computational
results along with experimental values extrapolated to T=0 K [5] are listed in Table (1). These
numbers could shed light on the nanoindentation results from the QCDFT calculations.

OFDFT rescaled EAM Experiment (Unit)
elastic modulus C11 117.17 97.13 118.0 GPa
elastic modulus C12 41.36 51.16 62.4 GPa
elastic modulus C44 29.76 30.23 32.5 GPa

Bulk modulus E 66.63 66.48 80.93 GPa
shear modulus μ 33.01 27.33 30.62 GPa
Poisson’s ratio ν 0.287 0.319 0.332

lattice constant a0 4.032 4.032 4.032 Å
surface energy γ111 0.867 0.72 1.14-1.2 J/m2

stacking fault energy 0.10 0.10 0.12-0.14 J/m2

Table 1. Elastic moduli, Poisson’s ratio, lattice constant, (111) surface energy, and intrinsic stacking fault
energy obtained by OFDFT and EAM calculations on bulk Al, and the corresponding experimental
values extrapolated to T=0 K.

It is worth to note that the such quasi-2D simulations blocked the dislocations inclined in
the third dimension. As a result, the twin formation may occur at a high loading rate and
low temperature, compared with dislocation slip. Such quasi-2D limitations, however, could
be validated in the systems where grain boundaries provides such geometrical confinement.
For example, the deformation twinning has been observed in experimental studies of
nonocrystalline Aluminum when the grain size is down to tens of nanometers[2, 20].

3. Quantum mechanical simulation of pure aluminum

The load-displacement curve is the typical observable for nanoindentation, and is widely used
in both experiment and theory, often serving as a link between the two. In particular, it is
conventional to identify the onset of plasticity with the first jump in the load-displacement
curve during indentation [4, 10, 11, 13, 17, 33, 35, 39, 46]. In the present work, the loads are
given in N/m, normalized by the length of the indenter in the out-of-plane direction.
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Let us first discuss the QC results with the rescaled EAM potential. The load-displacement
(P − d) curve shows a linear relation followed by a discrete drop at d = 9.4 Å, shown by the
dashed line in Fig. (8). The drop corresponds to the homogeneous nucleation of dislocations
beneath the indenter - the onset of plasticity. A pair of straight edge dislocations is nucleated
at x=±13 Å, and y=-49 Å. In Fig. (9), we present the out-of-plane (or screw) displacement uz

of the nonlocal repatoms. The nonzero screw displacement of edge dislocations suggests that
each dislocation is dissociated into two 1/6 <112> Shockley partials bound by a stacking fault
with a width of about 14 Å. An earlier EAM-QC calculation [39] which has the same geometry
as the present model but with a thinner sample (the thickness was ten times smaller than the
present case), yields a separation distance of 13.5 Å. The activated slip planes are those {111}
planes that are adjacent to the side surfaces of the indenter. The linear relation in the P − d
curve is due to: (1) the elastic response of the material before the onset of plasticity and (2) the
particular choice of the rectangular indenter; a spherical indenter would have given rise to a
parabolic P − d curve [11, 13]. The slope for the linear part of the curve is 20.8 GPa, which
is less than the shear modulus and C44. The critical load, Pcr for homogeneous dislocation
nucleation is 18.4 N/m, corresponding to a hardness of 7.3 GPa. Earlier EAM-QC calculations
predicted the hardness to be 9.8 GPa [39]. The drop in applied load due to the nucleation of
dislocations is ∆P = 3.4 N/m. The value of ∆P from the previous EAM-QC calculation is 10
N/m [39], which is three times of the present result. Using the same sample size as in [39], we
found ∆P = 9.02 N/m, which is very close to the value reported in [39]. Thus, the discrepancy
of ∆P is mainly due to the different sample sizes used in the two calculations indicating the
importance of simulations at length scales relevant to experiments.

For QCDFT calculations, the load-displacement curve shows a linear relation up to a depth
of 9.2 Å, followed by a drop at d = 9.4 Å, shown by the solid line in Fig. (8). The slope of
initial linear part of the load-displacement curve is 23.9 GPa, rather close to the corresponding
EAM value. The maximum load in linear region is Pcr = 21.4 N/m, corresponding to a
hardness of 8.6 GPa. The fact that OFDFT predicts a larger Pcr than EAM is consistent with
the results of Hayes et al. using local QC simulations for the same Al surface [13]. A pair
of edge dislocations is nucleated at x=±13 Å, and y=-50 Å. The partial separation distance is
about 19 Å, larger than the corresponding EAM value. The drop in the applied load due to
dislocations nucleation is 7.8 N/m, which is more than twice of the corresponding EAM value.
The large difference in ∆P between QCDFT and EAM-QC is interesting. It may suggest that
although OFDFT and EAM produce rather similar results before the onset of plasticity, they
differ significantly in describing certain aspects of defect properties. In particular, although
both methods predict almost the same location for dislocation nucleation, they yield sizeable
differences in partial dislocation width and ∆P. This result justifies the use of more accurate
quantum simulations such as KS-DFT for nonlocal region where defects are present. Overall,
we find that QCDFT gives very reasonable results comparing to the conventional EAM-QC.
Although more validations are underway, we are optimistic that the QCDFT method is indeed
reliable and offers a new route for quantum simulation of materials at large length scales.

4. Random distributed magnesium impurities in aluminum thin film

The effect of Mg impurities on the ideal strength and incipient plasticity of the Al thin
film. In the calculations, five Mg impurities are introduced randomly below the indenter,
as schematically shown in Fig. (5). The results of the randomly distributed Mg impurities are
referred as random, distinguishing from the results of the pure system, referred as pure. At
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Figure 3. Load-displacement curve for nanoindentation of an Al thin film with a rigid rectangular
indenter: with QCDFT (red solid line) and rescaled EAM-QC (green dashed line). The red squares are
actual QCDFT data points and the solid line is the best fit to the data points. All EAM-QC data points are
on the dashed line.

QCDFTEAM-QC

Figure 4. The out-of-plane displacement uz obtained from the rescaled EAM-QC (left) and QCDFT
(right) calculations. The circles represent the repatoms and the displacement ranges from -0.4 (blue) to
0.4 (red) Å.
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d = 3.0, 6.0, 7.5 Å, the random results are obtained after full relaxations of the pure Al system.
The QCDFT loading is carried out after d = 7.5 Å starting from the full relaxed configuration
of a previous loading step, until the onset of the plasticity occurs at d = 8.1 Å.

Figure 5. Schematic diagram of the randomly distributed Mg impurities in the Al thin film. The red
spheres and blue pentagons represent nonlocal Al and Mg atoms, respectively. The green triangle
represents Al buffer atoms. The dimensions are given in Å .

The load-displacement curve is the typical observable for nanoindentation, and is widely
used in both experiment and theory, often serving as a link between the two. In particular,
it is conventional to identify the onset of incipient plasticity with the first drop in the
load-displacement curve during indentation [4, 10, 11, 13, 17, 30, 33, 35, 39, 46]. In the present
work, the load is given in N/m, normalized by the length of the indenter in the out-of-plane
direction.

For pure Al, the load-displacement (P − d) curve shows a linear relation followed by a drop
at d = 8.2 Å, shown by the dashed line in Fig. (8). The drop corresponds to the homogeneous
nucleation of dislocations beneath the indenter - the onset of plasticity. A pair of straight edge
dislocations are nucleated at x=±13 Å, and y=-50 Å. In Fig. (9), we present the out-of-plane
(or screw) displacement uz of the nonlocal repatoms. The non-zero screw displacement of the
edge dislocations suggests that each dislocation is dissociated into two 1/6 <112> Shockley
partials bound by a stacking fault with a width of about 19 Å. The activated slip planes are
those {111} planes that are adjacent to the edges of the indenter. The slope for the linear part of
the curve is 27.1 GPa, which is less than the shear modulus μ=33.0 GPa and C44 = 29.8 GPa.
The critical load, Pcr for the homogeneous dislocation nucleation is 18.4 N/m, corresponding
to a hardness of 7.3 GPa (the critical load normalized by the area of the indenter), which is 0.22
μ . The drop in applied load due to the nucleation of dislocations is ∆P = 6.8 N/m, agreeing
with the load drop estimated by the elastic model[39] which is ∆P = 7.7 N/m.

For randomly distributed impurities in the Al thin film, the load-displacement curve shows
a linear relation up to a depth of 8.0 Å, followed by a drop at d = 8.1 Å, as shown by the
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Figure 6. Load-displacement plot for the nanoindentation of the Al thin film with a rigid rectangular
indenter: pure Al (red squares) and randomly distributed Mg impurity system (green circles). The
corresponding lines are the best fit to the data points.

solid line in Fig. (8). The slope of initial linear part of the load-displacement curve is 26.7
GPa, rather close to the corresponding pure Al value. The maximum load in linear region is
Pim

cr = 19.2 N/m, corresponding to a hardness of 7.6 GPa, which is 0.3 GPa greater than the
pure Al system. A pair of Shockley partial dislocations is nucleated at x=-13 Å , y=-25 Å and
x=13 Å , y=-22 Å respectively as shown in the right panel of Fig. (9). The drop in the applied
load due to the dislocation nucleation is 5.9 N/m. The estimated load drop by the elastic
model is ∆P = 7.6 N/m. The smaller drop of the load for the random case than the elastic
model is probably due to the presence of the Mg impurities, which is not accounted for in
the elastic model [39]. The fact that the critical load and the hardness of the Al-Mg alloy are
greater than that of the pure Al system demonstrates that the Mg impurities are responsible
for the solid solution strengthening of the Al thin film. The presence of Mg impurities also
hinders the formation of full edge dislocations and as a result, only partial dislocations are
nucleated and they are pinned near the surface as shown in Fig. (9).

Finally we point out the possibility that the emitted dislocations may be somewhat
constrained by the local/nonlocal interface from going further into the bulk. Because the
critical stress to move an edge dislocation in Al is vanishingly small ( 10−5μ) comparing
to that to nucleate a dislocation (10−1μ), a small numerical error in stress could easily lead
to a large difference in the equilibrium dislocation position. The four-order-of-magnitude
disparity poses a significant challenge to all atomistic simulations in predicting dislocation
nucleation site, QCDFT method included. One can only hope to obtain a reliable critical load
for the incipient plasticity, rather than for the equilibrium position of dislocations. The same
problem has been observed and discussed by others [38]. However, despite the problem, the
dramatic difference observed in the two panels of Fig. 7 unambiguously demonstrates the
strengthening effect of Mg impurities. Therefore the conclusion is still valid.
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Figure 7. The out-of-plane displacement uz obtained from the pure (left) and with Mg impurities (right)
QCDFT calculations. The circles represent the repatoms and the displacement ranges from -0.4 (blue) to
0.4 (red) Å.

5. Solid solution effects on dislocation nucleation during nanoindentation

The load-displacement curve is the typical observable for nanoindentation, and is widely
used in both experiment and theory, often serving as a link between the two. In particular,
it is conventional to identify the onset of incipient plasticity with the first drop in the
load-displacement curve during indentation [4, 10, 11, 13, 17, 30, 33, 35, 39, 46]. In the present
work, the load is given in N/m, normalized by the length of the indenter in the out-of-plane
direction.

For pure Al, the load-displacement (P − d) curve shows a linear relation initially, followed
by a drop at d = 8.2 Åin Fig. (8). The drop corresponds to the homogeneous nucleation
of dislocations beneath the indenter - the onset of plasticity. A pair of edge dislocations
are nucleated at x=±13 Å, and y=-45 Å. In Fig. (9), we present the out-of-plane (or screw)
displacement uz of the nonlocal repatoms. The non-zero screw displacement of the edge
dislocations suggests that each dislocation is dissociated into two 1/6 <112> Shockley
partials bound by a stacking fault with a width of about 20 Å. The activated slip planes are
{111} type and adjacent to the edges of the indenter. The slope for the linear part of the curve
is 27.1 GPa, which is greater than the shear modulus μ=24.6 GPa but less than C44 = 30.1 GPa.
The critical load, Pcr for the homogeneous dislocation nucleation is 18.4 N/m, corresponding
to a hardness of 7.2 GPa. The drop in the applied load due to the nucleation of dislocations is
∆P = 6.8 N/m, similar to the value estimated by an elasticity model[39], which is ∆P = 7.7
N/m.

For randomly distributed impurities, the load-displacement curve shows a linear relation up
to a depth of 8.0 Å, followed by a drop at d = 8.1 Åin Fig. (8). The slope of the initial linear
part of the load-displacement curve is 26.7 GPa, rather close to the corresponding pure Al
value. The maximum load in linear region is Pim

cr = 19.2 N/m, corresponding to a hardness
of 7.5 GPa, which is 0.3 GPa or 4% greater than that of the pure Al. A pair of Shockley partial
dislocations is nucleated at x=-13 Å , y=-40 Å and x=13 Å , y=-38 Å respectively as shown in
Fig. (9). The fact that the hardness of the Al-Mg alloy is greater than that of the pure Al is
an indication of solid solution strengthening. However, the magnitude of the strengthening
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pure
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compression

Figure 8. Load-displacement plot for the nanoindentation of the Al thin film with a rigid rectangular
indenter: pure (solid line), random (dashed line), tension (dotted line), compression (dash-dotted line)
obtained from QCDFT calculations. The lines are the best fit to the corresponding simulation data points.

is insignificant, and is on the order of the changes in the shear modulus. This finding is
consistent to an experimental study on Cu-Ni solid solution alloys [1] the nanoindentation
measurements demonstrated the effects of solute impurities on the formation of dislocations
in a previously dislocation-free region to be minimal. Moreover, the experimental study
suggested that overall dislocation nucleation is strongly related to shear modulus in this
system. It is clear from our results that the origin of the strengthening is not due to the
propagation of dislocations, but rather the nucleation of the dislocations. The presence of
randomly distributed Mg impurities hinders the nucleation of dislocations. In fact, only the
leading partial dislocations are nucleated trailing by stacking faults as shown in Fig. (9)b.
This result is in contrast to the pure system where full dislocations are nucleated at a larger
distance below the surface. The drop in the applied load due to incipient plasticity is 5.9 N/m,
less than that of the pure system (6.8 N/m). The smaller drop of the load in the random case
is due to the fact that the partial dislocations are nucleated instead of full dislocations as in the
pure system. We expect that the critical load/hardness corresponding to the nucleation of full
dislocations in this case will be higher because of work hardening.

The reason why partial dislocations are nucleated as opposed to full dislocations in the
presence of random impurities can be understood from the following energetic consideration.
The total energy of the system can be approximated by the dislocation elastic energy and
the stacking fault energy. The former is given by μ

2π(1−ν)
b2 where μ, ν and b are the shear

modulus, Poisson’s ratio and Burgers vector, respectively. The latter energy can be expressed
as γ × w where γ is the ISF energy and w is the width of the stacking fault. Because μ is
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pure random compression tension
μ [GPa] 24.55 25.08 25.07 25.07

γisf [J/m2] 0.12 0.11 0.11 0.11
b 2.85 1.65 1.65 1.65

w [Å] 20,20 32,30 28 7
Etot [eV] 3.94 3.03 1.37 0.67

Table 2. The shear modulus μ, intrinsic stacking fault energy γisf, Burgers vector, stacking fault width
and the approximate total energy for the dislocations, corresponding to the pure, random, compression,
and tension cases.

increased in the presence of the impurities, the system could lower its energy by reducing
b, i.e., dissociation into partials. Of course, it is energetic favorable only if the γ and w are
not too large. The fact the γ value is slightly reduced in the presence of Mg impurities helps
the dissociation. Using the quantities tabulated in Table II, we find that the total energy of the
random impurities system (with two partial dislocations) is 0.91 eV lower than that of the pure
system (two full dislocations). In Table II, the Burgers vectors for full and partial dislocation
are determined to be 2.85 Å and 1.65 Å respectively. The width of the stacking fault (w) has
two entries for the pure and random cases since there are two dislocations nucleated.

For Mg impurities below the slip plane as in the tension case, the load-displacement curve
shows a linear relation up to a depth of 7.1 Å, followed by a drop at d = 7.2 Å(dotted line in
Fig. (8). The maximum load in linear region is Pim

cr = 17.8 N/m, corresponding to a hardness
of 6.5 GPa, which is 0.7 GPa or 10 % smaller than the pure Al system. A single Shockley partial
dislocation is nucleated at x=-13 Å , y=-14 Å as shown in Fig. (9). The drop in the applied load
due to the dislocation nucleation is 2.3 N/m.

Similarly, for Mg impurities above the slip plane as in the compression case, the
load-displacement curve is linear up to a depth of 7.8 Å, followed by a drop at d = 7.9 Å,
as shown by the dot-dashed line in Fig. (8). The maximum load in linear region is Pim

cr = 18.3
N/m, corresponding to a hardness of 7.1 GPa, which is 0.1 GPa smaller than the pure Al
system. A single Shockley partial dislocation is nucleated at x=-13 Å , y=-35 Å in Fig. (9). The
drop in the applied load due to the dislocation nucleation is 4.2 N/m.

From the above results, we conclude that the linear distribution of Mg impurities can actually
soften the material and render dislocation nucleation easier than the pure system. In other
words, the solid solution strengthening effect depends sensitively on the local configuration
of the impurities. In the three cases (of the same Mg concentration) studied here, the hardness
of the alloys varies and the impurities can either increase or decrease the hardness, depending
on their configuration. It should be emphasized that the change in hardness is associated
with dislocation nucleation, not with dislocation propagation. Although it is well-known
that dislocation propagation (or dislocation-impurity interaction) depends sensitively on the
impurity configuration, it is less recognized that the impurities configuration is important for
dislocation nucleation.

The reason that the hardness in the tension case is less than that in the compression case
can be understood from the atomic size consideration. The atomic or ionic radius of Al is
0.54 Å, which is less than that of Mg (0.86 Å). In the compression case, since smaller Al
atoms are replaced by larger Mg atoms in a compression region, the substitution increases
the compressive stress, and makes it more difficult to form edge dislocations, thus a higher

20 Nanoindentation in Materials Science



First-Principles Quantum Simulations of Nanoindentation 19

hardness. On the other hand, the replacement of smaller Al atoms by larger Mg atoms in a
tension region reduces the tension and makes it easier to form the dislocations, hence a lower
hardness. Because the impurities are located on one side of the indenter - the symmetry is
broken, dislocation is also nucleated at one side of the thin film. Because only one partial
dislocation is nucleated in the compression and tension cases, the energy of the two cases is
much smaller as shown Table II.

(a) (b)

(d)

(c)

Figure 9. The out-of-plane displacement uz corresponding to (a) pure, (b) random, (c) tension, (d)
compression cases obtained from QCDFT calculations. The the displacement ranges from -0.5 (blue) to 0.5
(red) Å. The black dots indicate the position of the Mg impurities. All distances are given in Å.

6. Conclusions

We presented a concurrent multiscale method that makes it possible to simulate multi-million
atoms based on density functional theory. The method - QCDFT - is formulated within the
framework of the QC method, with OFDFT as its sole input, i.e., there is only one underlying
energy functional (OFDFT) involved. Full-blown OFDFT and OFDFT-based elasticity theory
are the two limiting cases corresponding to a fully nonlocal or a fully local version of QCDFT.
The QC ghost force at the local-nonlocal interface is corrected by a dead load approximation.
The QCDFT method is applied for a nanoindentation study of an Al thin film. The QCDFT
results are validated by comparing against conventional QC with a OFDFT-refined EAM
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potential. The results suggest that QCDFT is an excellent method for quantum simulation
of materials properties at length scales relevant to experiments.

For the study of the nanoindentation of an Al thin film in the presence and absence
of randomly distributed Mg impurities, the Mg impurities are found to strengthen the
hardness of Al and hinder the dislocation nucleation. The results suggest that QCDFT is a
promising method for quantum simulation of materials properties at length scales relevant to
experiments.

We also find that the solid solution effect depends sensitively on the local configuration of
the impurities. Although a random distribution of the impurities increases the hardness
of the material, linear distributions of the impurities actually lower the hardness. In both
cases, the effects are entirely due to dislocation nucleation; the solid solution strengthening
owing to dislocation motion is not considered here. Consistent to the experimental results on
Ni/Cu alloys, the extent of the solid solution strengthening is found to be insignificant - in the
same order of magnitude of the change in shear modulus. On the other hand, the incipient
plasticity is observed to be quite different among the different cases. In the pure material,
two full dislocations are nucleated under the indenter with the opposite sign. For the random
distribution of the impurities, two partial dislocations are nucleated instead. For the linear
distributions of the impurities, only one partial dislocation is nucleated.

The QCDFT method could be used for other FCC materials, such as gold and copper.
Besides materials with FCC lattice, QCDFT method could be directly used to study the BCC
(body-centered-cubic) materials, iron and its alloys for example. It will be also applicable for
complex lattice structrues, such as hexagonal close-packed (hcp) structures, magnesium and
its alloys for example.
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