
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 8 

 

 

 
 

© 2012 Signorelli and Bertinetti, licensee InTech. This is an open access chapter distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Self-Consistent Homogenization Methods for 

Predicting Forming Limits of Sheet Metal  

Javier W. Signorelli and María de los Angeles Bertinetti 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/50662 

1. Introduction 

Formability of sheet metals can be characterized by the forming-limit diagram (FLD). This 

concept has proved to be extremely useful for representing conditions leading to the onset 

of sheet necking (Hecker, 1975), and now is one of the best tools available to metallurgical 

engineers to assess a particular steel sheet’s ability to be drawn or stretched. In a single 

diagram, the FLD represents all combinations of critical-limit surface strains corresponding 

to failure. Within the FLD, a line called forming-limit curve (FLC) separates the region of 

uniform sheet deformation from the region of slightly greater deformation, where the sheet 

will likely develop a local deformation instability or neck. Experimental measurement of the 

FLD is not an easy task, requiring a wide range of sample geometries and even more than one 

type of mechanical test. Also, many test factors measurably affect the limit-strain 

determination: friction conditions, small deviations in loading paths due bending effects, and 

strain-measurement procedures. Similarly, several physical factors related to material 

properties (e.g. plastic anisotropy, work hardening and strain-rate sensitivity) have an 

important influence in the development of localized necking or failure. Numerical simulation 

promotes a better understanding of deformation and failure in polycrystal sheet metal 

aggregates, by examining issues related to crystal anisotropy and stress / strain heterogeneity. 

Considerable effort has recently been made to develop theoretical models for predicting the 

FLD behavior. Most of them are based either on a bifurcation analysis (Storen & Rice, 1975) 

or a model where the strain instability appears in the deformation process due to an 

imperfection already present in the material (Marciniak & Kuczynski, 1967). The latter, MK 

from now on, has probably been the most widely used of the two techniques. Within the 

MK framework, the influence of various constitutive features on FLDs has been explored 

using phenomenological plasticity models and crystal plasticity. In recent years, research 

has shown that the localization of plastic flow is influenced by deformation anisotropy 

(Asaro & Needleman, 1985; Tóth et al., 1996; Wu et al., 2004a; Lee & Wen, 2006). Thus, 
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crystal-plasticity models should provide a framework for better understanding the relation 

between flow localization and material microstructure. Issues such as yield-surface shape – 

changes of sharpness – material anisotropy – crystal reorientation – are directly addressed 

within a polycrystalline model. It is widely recognized that the crystallographic texture 

strongly affects forming-limit diagrams and the macroscopic anisotropy of polycrystalline 

sheet metals. Numerous authors have adopted the MK model in conjunction with a crystal 

plasticity model to describe strain localization in rolled sheets (Kuroda & Tvergaard, 2000; 

Knockaert et al., 2002; Wu et al., 2004a; Inal et al., 2005; Yoshida et al., 2007; Neil & Agnew, 

2009). Based on this strategy, the authors have examined how plastic anisotropy influences 

limit strains (Signorelli et al., 2009). For the FLD simulations, crystallographic effects were 

taken into account by combining the MK approach with a viscoplastic (VP) self-consistent 

(SC) and a Full-Constraint (FC) crystal-plasticity model, MK-VPSC and MK-FC respectively.  

In this chapter we will analyze the influence that the numerous microstructural factors 

characterizing metals have on forming-limit strains. Moreover, we will focus on the 

consequences that selecting either a FC or SC type grain-interaction model has on numerical 

results. We will start, in the following section, with a brief description of the texture and 

anisotropy of cubic metals. The representation of crystallographic texture and the 

determination of the polycrystal texture are addressed. The material´s plastic deformation as 

a result of crystallographic dislocation motion on the active slip systems is discussed at the 

end of the section. The single crystal properties and the way in which grains interact in a 

polycrystal are the subject of Section 3. An outline of the implementation of the VPSC 

formulation in conjunction with the well-known MK approach for modeling localized necking 

closes the section. A parametric analysis of the influence of the initial-imperfection intensity 

and orientation, strain-rate sensitivity and hardening on the limit strains is the content of 

Section 4. In Section 5 the MK-FC and MK-VPSC approaches will be examined in detail. FLDs 

will be predicted for different materials in order to clearly illustrate the differences between 

the FC or the VPSC homogenization schemes, particularly in biaxial stretching. 

2. Texture and anisotropy of cubic metals 

Plastic anisotropy of polycrystals arises from crystallographic texture. In a material with a 

plasticity-induced texture, anisotropy at the microscopic level is determined by the different 

ways in which the material is deformed. In metals, plastic deformation occurs by 

crystallographic slip, due to the movement of dislocations within the lattice. In general, slip 

takes place on the planes which possess the highest atomic density, slip planes, and in the 

most densely packed directions, slip directions. The slip plane is characterized by the unit 

vector n, which is normal to the plane, and the slip direction, represented by the unit vector 

b (Burger’s vector). The combination of both vectors, which are perpendicular to each other, 

defines a slip system.  

Since crystallographic slip is limited to certain planes and directions, the applied stress 

required to initiate plastic flow depends on the orientation of the stress relative to the 

crystallographic axis of the crystal. If the plane is either normal or parallel to the applied 

stress, the shear stress on the plane is zero and no plastic deformation is possible. Slip begins 
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when the shear stress on a slip system reaches a critical value cτ . This yield criterion is 

called Schmid´s Law. In most crystals slip can occur either in the b or –b direction. 

Figure 1 shows a slip system represented by the vectors n and b. Suppose that the crystal has a 

general state of stress ijσ  acting on it referenced to the coordinate system S (S is fixed to the 

sample). The shear stress 12σ′  acting on the slip system can be obtained by transforming the 

stress tensor ijσ  from the S to the S’ system (S’ is fixed to the slip system). Using the typical 

equations for tensor transformation, the resolved shear stress acting on the slip system is: 

 r 12 i j ijτ σ b n σ′= =  (1) 

If the crystal is loaded in tension along the X3 axis, the shear stress acting on the slip plane is 

 r ,τ σ cos cosλ φ=  (2) 

where λ is the angle between the slip direction and the tensile axis, and φ is the angle 

between the tensile axis and the normal to the slip plane.  

 

Figure 1. A schematic diagram of slip in the direction b occurring on a plane with the normal n. 

In FCC materials, the crystallography of slip is simple, it takes place on the most densely 

packed planes {111} and in the most densely packed directions <110>. In BCC metals, the 

most common mode of deformation is {110}<111>, but these materials also slip on other 

planes: {112} and {123} with the same slip direction. Plastic deformation occurs by 12 

crystallographic slip systems of the type {111}<110> for FCC metals and 48 slip systems of 

the type {110}<111>, {112}<111> and {123}<111> for the BCCs (see Table 1). A slip line is the 

result of a displacement of the material along a single lattice plane through a distance of 

about a thousand atomic diameters. The slip lines are visible traces of slip planes on the 

surface, and they can be observed when a metal with a polished surface is deformed 

plastically. As an example, in the optical micrograph shown in Figure 2, the slip bands 

appear as long steps on the surface. The terraced appearance is produced when the slip 

planes meet the crystal surface.  
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Table 1. Slip systems of FCC and BCC cubic metals.  
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2.1. Crystal orientation 

A polycrystal is composed of crystals, each with a particular crystallographic orientation. 

Several parameters are involved in characterizing a polycrystal, such as the shape, size, 

crystallographic orientation and position of each grain inside the sample. The orientation of 

each crystal in the polycrystal can be defined by a rotation from the sample coordinate 

system to the crystal coordinate system. The sample coordinate system is referenced to the 

sample, and it can be chosen arbitrarily. For an example, the Rolling Direction (RD), the 

Transverse Direction (TD) and the Normal Direction (ND) are typically chosen as sample 

coordinate system for a rolled sheet. The orientation relation between a single crystal and 

the sample coordinate systems may be thought of as rotating one frame into the other. Euler 

angles are useful for describing one frame in term of the other, or vice versa. Several 

different notations have been used to define these angles, but that of Bunge is most common 

and will be used in this chapter (Bunge, 1982). These three angles represent three 

consecutive rotations that must be given to each grain to bring its crystallographic <100> 

axes into coincidence with the sample axes. This is equivalent to saying that any orientation 

can be obtained by conducting three elemental rotations (rotations around a single axis). 

Consequently, any rotation matrix can be decomposed into a product of three elemental 

rotation matrices. The matrix rotation (Eq. 3), written in terms of Euler angles ( )1 2, ,ϕ φ ϕ , is 

obtained by multiplication of the elementary matrices defining the three successive Euler 

rotations: i) a rotation about the Z-axis through the angle 1ϕ , ii) a rotation about the new X-

axis through the angle φ  and iii) a rotation about the last Z-axis through an angle 2ϕ  . This 

gives the crystal coordinate system (see Figure 3). 

 
1 2 1 2 1 2 1 2 2

1 2 1 2 1 2 1 2 2

1 1

cos cos sin sin cos sin cos cos sin cos sin sin

cos sin sin cos cos sin sin cos cos cos cos sin

sin sin cos sin cos

ϕ ϕ ϕ ϕ φ ϕ ϕ ϕ ϕ φ ϕ φ

ϕ ϕ ϕ ϕ φ ϕ ϕ ϕ ϕ φ ϕ φ

ϕ φ ϕ φ φ

 − +
 

− − − + 
 − 

  (3) 

 

 

Figure 3. Definition and sequence of rotation through the different Euler angles. 
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2.2. Crystallographic texture 

Texture refers to a non-uniform distribution of crystallographic orientations in a polycrystal. 

The textures of rolled or rolled and recrystallized sheets have been most widely investigated 

in metallurgy. Crystallographic orientations in rolled sheets are generally represented as 

being of the type {hkl}<uvw>, where {hkl} are the grain planes that lie parallel to the plane of 

the sheet. On the other hand, the <uvw> directions lie parallel to the rolling direction. 

Conventionally, the standard method of representing textures was by means of pole figures. 

However, while pole figures provide a useful description of texture, the information they 

contain is incomplete. A complete description can be obtained by the Orientation 

Distribution Function (ODF), which describes the orientation of all individual grains in the 

aggregate. 

2.2.1. Pole figures 

Texture measurements are used to determine the orientation distribution of crystalline 

grains in a polycrystalline sample. There are several experimental methods that can be used 

to measure texture. The most popular is X-ray diffraction. A pole figure – which is a 

projection that shows how the specified crystallographic directions of grains are distributed 

in the sample reference frame – results from an X-ray diffraction texture measurement. This 

representation must contain some reference directions that relate to the material itself. 

Generally these directions refer to the forming process.  

The inverse pole figure is a particularly useful way to describe textures produced from 

deformation processes. In this case only a single axis needs to be specified. An inverse pole 

figure shows how the selected direction in the sample reference frame is distributed in the 

reference frame of the crystal. The frequency with which a particular crystallographic 

direction coincides with the sample axis is plotted in a single triangle of the stereographic 

projection. 

2.2.2. ODF and Euler space 

The ODF specifies the probability density for the occurrence of particular orientations in the 

Euler space. This space is defined by the three Euler angles, which are required to fully 

describe a single orientation. Mathematical methods have been developed that allow an 

ODF to be calculated from the numerical data obtained from several pole figures. The most 

widely adopted notations employed for these description were those proposed 

independently by Bunge and Roe. They used generalized spherical harmonic functions to 

represent crystallite distributions (A detailed description of the mathematics involved can 

be found in Bunge, 1982). ODF analysis was developed originally for materials with cubic 

crystallography and orthorhombic sample symmetry, i.e. for sheet products. In the Bunge 

notation, for cubic/orthotropic crystal/sample symmetry, a three dimensional orientation 

volume may be defined by using three orthogonal axes for 1ϕ , φ  and 2ϕ , with each 

ranging from 0º to 90º. The value of the orientation density at each point in Euler space is the 

strength or intensity of that orientation in multiples of random units.  
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Most of the texture data available in the literature and almost all of the ODF data refer to 

rolled materials. The information contained in a three-dimensional ODF can be expressed in 

terms of typical components and fibers for cubic symmetry materials. A fiber is a range of 

orientations limited to a single degree of freedom about a fixed axis, which appears as a line 

that may or may not lie entirely in one section of ODF. The ideal components and fibers are 

associated with more or less constant intensity for a group of orientations related to one 

another by rotations around a particular crystallographic direction.  

During cold rolling of FCC metals, two crystallographic fibers arise: the α-fiber containing 

<110>//ND orientations and extending from Goss {110}<001> to Brass {110}<112>; and the β-

fiber which starts at Brass, runs through S {123}<634>, and finally  reaches Copper {112}<111>. 

The β-fiber contains the most stable components of the rolling texture (Humphreys & 

Hatherly, 2004). Considering recrystallized rather than rolled material, the typical texture 

components are Cube {001}<100> and Goss. Table 2 shows a schematic representation of the 

rolling texture characteristic of the {111} pole figure (left) and the main texture components 

for FCC (right). The nature of the FCC rolling texture is such that the data are best displayed 

in 2ϕ  sections, while the typical {100} and {111} pole figures best represent these 

orientations.  

 

 Cube

 Goss

 Brass

 S

 Copper

TD

RD

{111} Pole figure 

Typical texture components in rolled FCC metals 

Component {hkl} <uvw> 1ϕ  φ  2ϕ  

Copper 112 111 90º 35º 45º 

S 123 634 59º 37º 63º 

Goss 011 100 0º 45º 0/90º 

Brass 011 211 35º 45º 0/90º 

Cube 001 100 0º 0º 0º 

Table 2. FCC rolling components.  

Cold rolling and recrystallization textures in BCC metals are commonly described in terms 

of five ideal orientations: {001}<110>, {112}<110>, {111}<110>, {111}<112> and {554}<225>. The 

positions of theses orientations in the {100} pole figure are shown at the left in Table 3. In 

general, BCC metals and alloys tend to form fiber textures. That is most orientations are 

assembled along two characteristic fibers that run through orientation space: the α-fiber and 

the γ-fiber. The RD or α-fiber runs from {001}<110> to {111}<110>, containing orientations 

with the <110> axis parallel to RD, and the γ-fiber runs from {111}<110> to {111}<112>, 

gathering orientations with a <111> axis parallel to ND. The two fibers intersect at the 
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{111}<110> component (Ray et al., 1994). The data are best displayed by sections at constant 

values of 1ϕ , but the most important texture features can all be found in the 2ϕ = 45º section 

(right in Table 3). Table 3 also gives the Miller indices and Euler angles of the typical BCC 

texture components. The {100} and {110} pole figures best represent the ideal BCC material 

orientations.  

 

 

 

Table 3. BCC rolling components. 

3. Plasticity framework 

We begin this section with the kinematic definitions of crystal-plasticity theory, citing the 

basic equations. The kinematic development of a single-crystal plasticity model has been 

well documented by several authors and is the subject of recent works (Kocks et al., 1998; 

Roters et al., 2010). Here we assume that, during plastic forming operations, it is possible to 

neglect the elastic contribution to deformation. Consequently, we will restrict ourselves to a 

rate-dependent plastic response at the single-crystal level.  

3.1. Viscoplastic crystal plasticity 

The velocity-gradient tensor, using a dot to indicate the time derivative, is given by   

 p1 * *T * *T: : : : .−= = +L F F R R R L R   (4)  

In this expression, R* represents the crystallographic rotation, F  corresponds to the effect of 

dislocation slip on the crystal deformation and p p p 1: −=L F F is the plastic velocity gradient 

resulting from dislocation motion along specific planes and directions in the crystal (all 

potentially activated slip systems are labeled with the superscript s): 

  ( ) p ,s s s

s

γ= ⊗L n b   (5) 
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here sγ represents the dislocation slip rates, sn  and sb are the normal to the system´s or 

systems´ glide plane and the Burgers’ vector, respectively. They define the symmetric sm  

and the screw-symmetric sq  parts of the Schmid orientation tensor: 

 ( )1
,

2
s s s s s= ⊗ + ⊗m n b n b  (6) 

 ( )1
.

2
s s s s s= ⊗ − ⊗q n b n b  (7) 

The dislocation slip rates are derived using a viscoplastic exponential law (Hutchinson, 

1976): 

 

1/

s
c

:
( : ).

m
s

s s
0γ γ sign

τ
=

m S
m S   (8) 

where 0γ  is the reference slip rate, s
cτ  is the critical resolved shear stress on the slip system 

labeled s, S is the deviatoric tensor stress and m is the strain-rate sensitivity exponent. The 

rate sensitivity m is typically quite small, a large value of 1/m tends to be almost a rate 

independent case, ~ 50. As 1/m  ∝, the plastic constitutive formulation becomes formally 

rate-independent.  

The velocity gradient can be additively decomposed into symmetric and skew-symmetric 

parts 

 ,= +L D W  (9) 

where D  is the distortion rate tensor and W is the rotation rate tensor. They can be 

obtained by evaluating the symmetric and screw-symmetric parts of equation (4), 

respectively: 

 p* *T: : ,=D R D R  (10)  

 p* *T: : .= +W Ω R W R  (11) 

The rotation rate contains an extra contribution, the lattice spin tensor, defined as 
* *T:≡Ω R R . Rearranging Eq. (11) allows us to obtain the rate of change of the crystal 

orientation matrix: 

 p* *T: : ,= −Ω W R W R  (12) 

which is used to determine the re-orientation of the crystal and consequently, to follow the 

texture evolution. The orientation change during plastic deformation can be described by a 

list of the Euler angle change rates, ( )1 2, ,ϕ φ ϕ  , related to the lattice spin as follows: 
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2 13 23 21

sin cos

sin sin

cos sin

cos sin
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ϕ
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φ ϕ ϕ

ϕ ϕ
ϕ φ

φ φ
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= −Ω − Ω

 
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 







 (13) 

3.2. The 1-site VPSC-TGT formulation 

For simulating the material response, a rate-dependent polycrystalline model is employed. 

In what follows, we present some features of the 1-site tangent VPSC-TGT formulation. For 

a more detailed description, the reader is referred to Lebensohn & Tomé (1993). This model 

is based on the viscoplastic behavior of a single crystal and uses a SC homogenization 

scheme for the transition to the polycrystal. Unlike the FC model, for which the local strain 

in each grain is considered to be equal to the macroscopic strain applied to the polycrystal, 

the SC formulation allows each grain to deform differently, according to its directional 

properties and the strength of the interaction between the grain and its surroundings. In this 

sense, each grain is in turn considered to be an ellipsoidal inclusion surrounded by a 

homogeneous effective medium, HEM, which has the average properties of the polycrystal. 

The interaction between the inclusion and the HEM is solved by means of the Eshelby 

formalism (Mura, 1987). The HEM properties are not known in advance; rather, they have to 

be calculated as the average of the individual grain behaviors, once a convergence is 

achieved. In what follows, we will only present the main equations of the VPSC model. 

The deviatoric part of the viscoplastic constitutive behavior of the material at a local level is 

described by means of the non-linear rate-sensitivity equation: 

 

1 1
#

s s
1 c c

: :
: ,

sys s s m
s

0
s

γ
τ τ

−

=

= =
m S m S

D m M S  (14) 

where M  is the visco-plastic grain  compliance. The interaction equation, which relates the 

differences between the micro and the macro strain rates ( ),D D  and deviatoric stresses 

( ),S S , can be written as follows: 

 ( ):α− = − −D D Μ S S  . (15) 

The interaction tensor M , which is a function of the overall modulus and the shape and 

orientation of the ellipsoid that represents the embedded grain, is given by: 

 ( )
1
: :esh esh

−
= −M I S S M  , (16) 

where eshS is the Eshelby tensor; I is the 4th order identity tensor, and M  is the macroscopic 

visco-plastic compliance. The parameter α  tunes the strength of the interaction tensor. In 

the present models, the standard TGT approach is used ( 1α = ). 



 
Self-Consistent Homogenization Methods for Predicting Forming Limits of Sheet Metal  185 

The macroscopic compliance can be adjusted iteratively using the following self-consistent 

equation: 

 ( ) ( )
1

: , : ,
−

= = + +M M B B M M M M   (17) 

where  denotes a weighted average over all the grains in the polycrystal, and B  is the 

accommodation tensor defined for each single crystal. The solution is reached using an 

iterative procedure that involves Eqs. (14), (15) and (17). It gives the stress in each crystal, 

the local compliance tensor and the corresponding polycrystal tensor, which is consistent 

with the impose boundary conditions. 

3.3. Marciniak and Kuczynski technique 

For simulating formability behavior, we implemented the VPSC formulation described 

above in conjunction with the well-known MK approach. As originally proposed, the 

analysis assumes the existence of a material imperfection such as a groove or a narrow band 

across the width of the sheet. In the approach´s modified form, developed by Hutchinson & 

Neale (1978), an angle ψ0 with respect to the principal axis determines the band’s orientation 

(Fig. 4). Tensor components are taken with respect to the Cartesian iX  coordinate system, 

and quantities inside the band are denoted by the subscript b. 

The thickness along the minimum section in the band is denoted as ( )b th , with an initial 

value ( )b
0h , while an imperfection factor f0 is given by an initial thickness ratio inside and 

outside the band: 

 
( )

( )
b

0

0
,

0

h
f

h
=  (18) 

with ( )0h  being the initial sheet thickness outside the groove. 

Equilibrium and compatibility conditions must be fulfilled at the interface with the band. 

Following the formulation developed by Wu et al. (1997), the compatibility condition at the 

band interface is given in terms of the differences between the velocity gradients ( )b,L L  

inside and outside the band respectively: 

 b .= + ⊗L L c n  (19) 

Eq. (19) is decomposed into the symmetric, D  , and screw-symmetric, W  , parts:  

 ( )b 1
2

,= + ⊗ + ⊗D D c n n c   (20) 

 ( )b 1
2

= + ⊗ − ⊗W W c n n c   (21) 
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Here, n  is the unit normal to the band, and c  is a vector to be determined. The equilibrium 

conditions required at the band interface are given by 

 b
b. . ,h h=n σ n σ   (22) 

where σ  denotes the Cauchy stress. Noting that ijδ  is the Kronecker symbol, the boundary 

condition 33 0σ =  is applied as follows 

 ij ij 33 ijS S (i 1,2,3) .σ δ= − =  (23) 

The integration of the polycrystalline model inside and outside the band is performed in 

two steps. First, an increment of strain is applied to the material outside the band, tΔD , 

while the imposed strain path on the edges of the sheet is assumed to be 

 22 22

11 11

L D
const.

L D
ρ = = =  (24) 

It is assumed that 13 23 13 23D D W W 0= = = =  outside and inside the band. The instability 

appears in a narrow zone inclined at an angle ψ0 with respect to the major strain axis. The 

equilibrium condition, Eq. (22), can be expressed in the set of axes referenced to the groove 

,n t  (see Fig. 4): 

 
b
nn b nn

b
nt b nt .

σ h σ h

σ h σ h

=

=
 (25) 

The compatibility condition requires equality of elongation in the direction t , 

 b
tt ttD D=  . (26) 

Because, we are considering thin sheets with the orthotropic symmetries in the plane of the 

sheet in this research,  in-plane stretching results in a plane-stress state. As discussed by 

Kuroda & Tveergard (2000), when an orthotropic material is loaded along directions not 

aligned with the axes of orthotropy, it is necessary to compute the 12L  component by 

imposing the requirement that 12 0σ = . After solving each incremental step, the evolution of 

the groove orientation ψ  is given by 

 
0 0

11 1 12 2

0 02 2
21 1 22 21 2

F F1
 ;

F F

t t

t tt t

 − −
 =
 ++  

n  (27) 

where F is the deformation gradient tensor. 

The system of Eqs. (19) and (22, 23) can be solved to obtain c  . This is done by substituting 

the macroscopic analogous Eq. (14) into the incremental form of Eq. (22) and using Eq. (20) 

to eliminate the strain increments in the band. At any increment of strain along the 
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prescribed strain path, the non-linear system of two equations is solved (Signorelli et al., 

2009). More recently, in Serenelli et al. (2011), Eqs. (25) and (26) were used after obtaining 

the state ( L , σ ) in the homogeneous zone, in order to solve the groove state avoiding the 

2x2 set of non-linear equations mentioned above. In this case, the remaining unknowns 
b b b
11 12 33L , L , L  and b b b

22 13 23, ,σ σ σ  are obtained by solving a mixed boundary-condition in the 

VPSC module, with the logic time benefits.  

 

Figure 4. A thin sheet in the plane x1-x2 with an imperfection band. 

To analyze the development of deformation localization during proportional straining, the 

calculations were performed over different strain paths. They were defined in terms of the 

strain-rate ratios 22 11D / Dρ =  over the range -0.5 ≤ ρ ≤ 1 (step = 0.1).  The possible variations 

of the FLD for each ρ are obtained by performing calculations every 5 degrees of 0Ψ  to a 

maximum of 90 degrees. The failure strains *
11ε , *

22ε  outside the band and the critical failure 

angle *Ψ  are obtained after minimizing the curve *
11ε  versus 0Ψ . In the present work, 

failure is assumed when b
33 33D 20 D> . 

4. Effects of the main model´s parameters on the FLDs 

In this section, we analyze the influences on the limit strains of the initial-imperfection 

intensity and orientation, the strain-rate sensitivity and the hardening to determine MK-

VPSC performance. The sensitivity of the MK-VPSC model to the initial grain-shape and to 

texture and textural evolution is also addressed, by showing results obtained from sheets 

with rolling and random initial textures. In this section, the material inside and outside of 

the groove is taken to be a polycrystal described by 1000 equiaxed grains, except where 

noted otherwise. Each grain is assumed to be a single crystal with a FCC crystal structure. 

Plastic deformation occurs on 12 crystallographic slip systems of the type {111}<110>. We 

constructed the initial texture in both zones to be the same, and assumed a reference plastic 

shearing rate of 0γ  = 0.001 s-1. In order to account for the strain hardening between slip 

systems, we adopted isotropic hardening. In this case the evolution of the critical shear 

stresses is given by 
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  (28) 

where sh  are the hardening moduli behaviors, which depend on Γ  (accumulated sum of 

the single-slip contributions to sγ ). These moduli can be written using the initial hardening 

rate, 0h , and the hardening exponent, n: 
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The strain-induced hardening law prescribed above is applied to all slip systems. 

4.1. Initial imperfection 

The MK approach predicts the FLD based on the growth of an initial imperfection. 

However, the strength of the imperfection cannot be directly measured by physical 

experiments. Zhou & Neale (1995) analytically predicted the effect of the initial imperfection 

parameter f0 on the FLD and demonstrated, as expected, that the forming-limit strain 

decreases with increasing depth of the initial imperfection. Using the MK-VPSC approach, 

we too determined that the limit strains are greatly affected by the value of f0. In addition, 

we found, as did Zhou & Neale, that the smaller the imperfection the larger the limit strain. 

The calculations plotted in Fig. 5 were performed using a random initial texture.  
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(m = 0.01, n = 0.23, h0 = 1410 MPa, c
sτ  = 47 MPa). 

Figure 5. Influence of the initial imperfection f0 on the FLD  

All three curves show the minimum limit strain close to the in-plane plane-strain path. 

Although the limit strains are different for the different values of the initial imperfection, the 

profiles of the simulated cases are equivalent over the range -0.5 ≤ ρ ≤ 0.3. For ρ > 0.3, the 
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profiles of the FLD curves remain insensitive to defect severity, except for paths 

approaching equal-biaxial deformation. In this case, the largest value of f0 gives a more 

pronounced fall in the limit strain. Our results compare favorable to those of Wu et al. 

(1997), but these authors predict a more noticeable decrease of the limit-strains as the strain 

path approaches ρ = 1.0. It is possible that the FC homogenization scheme used by Wu et al., 

rather than the SC scheme of the present work, produced these differences. Also, we 

assumed a greater strain-rate sensitivity than did Wu and his co-authors. As we will see in 

the next section, larger rate sensitivities produce higher limit-strain profiles near ρ = 1.0. 

4.2. Strain-rate sensitivity 

The influence of the material’s rate sensitivity m on the FLDs is addressed. Fig. 6 shows the 

calculated limit-strains assuming a random initial texture and an initial imperfection of f0 = 

0.99. Depending on the m value, not only are the limit strains different, but the FLD profiles 

vary as well. The limit-strains decrease with decreasing m, for m-values of 0.05, 0.02 and 

0.01, while the FLD profiles in the negative minor-strain range (ρ < 0) continue to exhibit a 

nearly linear behavior. For biaxial paths (ρ > 0) near plane strain, the forming-limit strain 

increases rapidly for low values of m, while for high m, m = 0.05, the major limit-strain is 

nearly constant. As illustrated by the curves shown in Fig. 6, high values of m also displace 

the ending of the steep-slope profile towards an equi-biaxial path. Analyzing the results for 

m = 0.01 in the neighborhood of ρ = 1.0, we find decreasing limit-strains, indicating that 

lowering the strain-rate sensitivity produces a similar effect to that found using a Taylor 

model. 
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(f0 = 0.99, n = 0.23, h0 = 1410 MPa, c
sτ  = 47 MPa). 

Figure 6. Influence of the rate sensitivity m on the FLD 

The effects produced by the different strain-rate sensitivities are consistent with the 

relationship between the hardening behavior and m, described by Eqs. (28) and (29). The 



 
Metal Forming – Process, Tools, Design 190 

parameter m in the viscoplastic law controls the accumulated shear, which in turn drives the 

hardening. It is also known that as the m value increases textural sharpness decreases, 

though this behavior depends on the imposed strain path, too. The calculated average 

number of slip systems associated with the main strain paths and several additional 

material sensitivities are presented in Table 4. It is interesting to note that, as expected, the 

fewer the number of slip systems and the sharper the texture the lower the limit curve. 

 

 m = 0.05 m = 0.02 m = 0.01 

ρ = -0.5 4.5 2.8 2.3 

ρ =  0.0 2.8 2.2 1.9 

ρ =  1.0 3.3 3.1 2.8 

Table 4. Calculated average number of active slip systems as a function of the deformation path and 

strain-rate sensitivity. 

As opposed to the results for the limit-strain values, the critical angles at failure are almost 

insensitive to the strain-rate sensitivity. The predicted final angles rise to between *Ψ  = 34°- 

37° for a uniaxial path and decrease to zero degrees for ρ ≥ 0. If we restrict the model 

interaction to the FC hypothesis, as done by Wu et al. (1997), our calculated values equal theirs. 

4.3. Hardening coefficients 

Slip induced hardening is another important factor influencing the limit strains. From Eqs. 

(28) and (29) it is easy to see that the parameters h0 and n govern the strain hardening. We 

investigated the effect produced by different values of the hardening coefficient n (0.16, 0.19 

and 0.23) while fixing the other material properties. The calculated FLDs are shown in Fig. 7, 

where it is clear that the slip hardening coefficient n does not affect the shape of the forming 

limit curves. However, it can be seen that the largest value of n produces the highest limit 

strains. Also, no noticeable dependence with ρ is observed. Because we use isotropic 

hardening in these calculations, the n parameter only guides the stress level, producing 

these simple behaviors. This will not be the case when latent hardening and other kinematic 

effects are included in the calculations. 

4.4. Grain shape 

It is important for the reader to note that the VPSC model has the capability to account for 

the grain-shape and its evolution. The influence of different elongated grain-shapes on the 

limit strains is shown in Fig. 8 for a non-textured material. Generally, the calculated FLDs 

decrease when increasingly elongated grains are considered. In the negative minor-strain 

range, no appreciable changes are noted in the FLD’s behavior for different aspect ratio 

grains. To the contrary, in the biaxial-stretching zone, differences are observed, especially 

when the aspect ratio is more pronounced. For initially equiaxed grains and grains 

elongated up to an aspect ratios of (3:1:1), the profiles of the simulated limit strains show no 

significant changes. However, for a (10:1:1) grain aspect ratio, we found a noticeable 

decrease of the limit-strains moving from plane-strain to equi-biaxial tension. This result can 
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be correlated with the final textures predicted for each grain-shape morphology. The {111} 

pole figures calculated for the homogeneous deformation zone at the end of the equi-biaxial 

loading path are shown on the right in Fig. 8. 
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Figure 7. Influence of the slip-induced hardening n on the FLD 
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 (f0 = 0.99, m = 0.02, n = 0.16, h0 = 4000 MPa, c
sτ  = 22 MPa). 

Figure 8. Influence of the initial grain shape on the limit-strains for a non-textured material 

4.5. Effects of texture 

A crystallographic texture develops during metal forming and it is a key component of the 

material’s microstructure. It is generally accepted that this microstructural feature 
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significantly affects forming-limit strains. To investigate these texture effects, we carried out 

simulations using two initial textures: one a random distribution of orientations (R) and the 

other a rolling texture (S). Two {111} pole figures illustrating these textures are shown in Fig. 

9. To construct the S texture we first fixed the ideal component volume fractions, 10% 

{001}<100>, 15% {011}<100>, 30% {123}<634>, 10% {112}<111> and 35% {011}<211>, and then 

spread the distribution by assigning each grain a misorientation angle of θ < 15° with respect 

to the ideal component. 

TD

RD

 

Figure 9. Grain orientation distributions represented by {111} pole figures: material R (left) and material 

S (right). 

These different initial textures strongly affected the forming-limit curves as plotted in Fig. 

10. In the negative minor-strain range (ρ < 0) of the FLD, the shapes are nearly straight lines 

with the maximum values at ρ = - 0.5. The predictions, however, begin to diverge at ρ = 0, 

and the differences increase continuously, reaching a maximum for a biaxial deformation 

path. The S textured material develops a much stronger anisotropy than the R, likely 

producing the observed results. The S material’s forming-limit curve slopes downwards 

from plane-strain to equi-biaxial tension, and over the whole range ρ > 0 the predicted 

forming limits for the R case are larger than those for the S. Fig. 10 includes a plot of the final 

textures of each sample at the end of the equi-biaxial loading path. Clearly, the R and S 

textures evolve to different states producing the strong effects observed in the FLD 

behavior.  

Our calculations also show that the influence of crystallographic texture evolution is at least 

as important as effects of the initial grain distributions. Evolution effects have been 

previously discussed by several authors. Tóth et al. (1996) performed simulations with a rate 

independent Taylor model, showing that crystal rotations decrease the limit strains. Tang & 

Tai (2000), using the MK analysis together with continuum damage mechanics (CDM) and 

the Taylor model, found the same behavior for the limit strains. They claim that the 

development of texture causes deterioration of the material. On the other hand, Wu et al. 

(2004b) use a mesoscopic approach and a Taylor homogenization scheme to show that 

texture evolution increases the limit-strains in the biaxial zone. Finally, Inal et al. (2005) 

recently analyzed these two studies and their opposite conclusions, adding a study of how 

texture evolution in BCC materials affects the FLD. In the work of Inal et al., the simulations 

show that texture development does not have a significant influence on the FLD. Actually 

based on our simulations, we found it necessary to analyze the development of material 
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anisotropy in a more complex way in order to determine the effect of texture updating on 

the limit strains. This in turn is captured more or less realistically by the different 

homogenization schemes. 
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(f0 = 0.99, m = 0.02, n = 0.16, h0 = 4000 MPa, c
sτ  = 22 MPa). 

Figure 10. Influence of the initial texture on the FLD 

Such an analysis can explain the opposite trends in limit strains reported by previous 

researchers, which cannot be understood based only on initial-material textures. In our 

opinion, the differences in the forming-limit strains are related to material anisotropy and its 

evolution along the deformation path. This produces an increase or decrease of the FLD 

profile. Many previous investigations have proven that the VPSC model gives a more 

realistic description of the anisotropic behavior of polycrystalline materials. We believe that 

results of the MK-VPSC strategy presented here are a better way to explain and justify the 

different effects of the material parameters. 

To assess the influence of the texture evolution on the limit strains, we repeated the 

calculations shown in Fig. 10 but without texture evolution (Fig. 11). In negative strain space 

(ρ < 0) the FLDs have practically identical shapes, although the calculated values are slightly 

lower when the initial texture is not updated. However, in the biaxial zone, the tendency is 

quite different. The FLDs for both materials now approach each other, and a certain 

matching is observed. For the R texture, the limit-strain values reflect texture evolution. 

Texture and hence anisotropy evolution produces greater limit strains. In the case of the S 

material, when texture updating is off, the limit strains in the biaxial zone increase 

continuously, showing a different behavior than when the texture is updated. We attribute 

this behavior to the sharpness of the material yield locus and consequently, to the slip 

systems selected to accommodate the imposed deformation. The corresponding yield-loci 

after equi-biaxial stretching for both materials are displayed in Fig. 12 in 11 22σ σ−  space. 

Following Barlat’s work (1989), the parameter p quantifies the effect of yield-surface shape 
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on limit strains for the last four cases (Table 5). It should be noted that the trends of p and 

the predicted limit-strain values are consistent, as Hiwatashi et al. (1998) and Friedman & 

Pan (2000) have noted. 
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Figure 11. Influence of texture evolution on the FLD 
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Figure 12. Calculated yield loci for materials R and S with (solid lines) and without (dotted lines) 

texture evolution. The equi work-rate surface is normalized to the work rate for uniaxial stretching, as 

calculated with the FC model. 
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Material Texture evolution p 

R Yes 1.159 

S No 1.072 

R Yes 1.131 

S No 1.087 

Table 5. p-parameter for the R and S equi-biaxial stretching cases. 

5. Discussions about MK–FC and MK–VPSC approaches 

A comparison between the FC and the VPSC interaction models is the subject of this section. 

For this purpose, we calculate forming-limit strains using both homogenization schemes 

together with the MK approach. The numerical procedure, previously applied to a FCC 

structure, is extended to include the slip-system families of BCC polycrystals. The 

consequences of the FCC and BCC crystallographic-slip assumptions, coupled with the 

selection of either FC or SC type grain-interactions, are investigated in detail. Then, we focus 

on the effect of the cube texture on the forming-limit behavior, and seek to explain why a 

spread about cube exhibits unexpectedly high limit strains close to equi-biaxial stretching 

when the MK-FC is used. Finally, we explore the right-hand side of the FLD for a BCC 

material considering either 24 or 48 active slip systems for crystal-plasticity simulations. The 

advantages of using the VPSC material model in the MK approach are discussed at the end 

of this section. For all calculations in this section, and as was pointed out in Section 4, the 

strain hardening between slip systems is taken into account by adopting isotropic 

hardening.  

In what follows, we apply the MK-VPSC and MK-FC approaches for predicting FLDs to 

both FCC and BCC materials. We assume that plastic deformation occurs by 12 

crystallographic slip systems of the type {111} <110> for the FCC material and 48 slip 

systems of the type {110} <111>, {112} <111> and {123} <111> for the BCC. The crystal level 

properties listed in Table 6 are determined by imposing the same uniaxial behaviors for all 

simulations. An initially random texture, described by 1000 equiaxed grains is assumed. The 

slip resistances c
sτ  of all slip systems are taken equal, the rate sensitivity is m = 0.02, and a 

reference slip rate of 0γ  = 0.001 s-1 is assumed.  

 

Material FCC-FC FCC-SC BCC-FC BCC-SC 

h0 (MPa) 1950 2720 1850 3100 

n 0.250 0.224 0.250 0.265 

c
sτ  (MPa) 31.5 47.0 37.0 45.0 

Table 6. Material parameters used in the simulations. 

To analyze the development of deformation localization during proportional straining, the 

calculations are performed assuming an initial imperfection of f0 = 0.99 over the different 

strain paths. The predicted limit strains are presented in Fig. 13. For each homogenization 

method, both materials have about the same profile from uniaxial tension (ρ = -0.5) to in-
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plane plane-strain tension (ρ = 0). Over this entire range, the major limit strains decrease 

with increasing ρ. It can be seen that, for the BCC-SC material, the largest value of the 

parameter n results in the highest limit values. Also, it is interesting to note that MK-FC 

simulations using the same n value predict similar limit strains for the in-plane plane strain 

condition.  

Predictions begin to diverge in the biaxial-stretching range. Here, results clearly illustrate 

large differences between the homogenization schemes and between materials. These 

differences reach a maximum for the equi-biaxial deformation path. The MK-FC framework 

predicts both the highest and lowest limit strains, for the BCC and FCC materials 

respectively. The MK-FC FCC material calculation leads to a remarkably low limit curve. 

Completely the opposite behavior is observed within the MK-VPSC scheme. In this case, the 

FCC material shows better formability than the BCC for ρ ≥ 0.3, and for both materials, the 

calculated limit-strain curves remain between those calculated with the MK-FC scheme near 

the equi-biaxial zone. In the case of the FCC material, the MK-VPSC approach predicts a 

noticeable increase of the limit strains over the whole right side of the diagram, while the 

BCC material only shows that behavior in the region 0 ≤ ρ ≤ 0.6. For ρ ≥ 0.6, the MK-VPSC 

limit-strain values are nearly constant. Fig. 13 also includes the {100} stereographic pole 

figures of each material at the end of the equi-biaxial stretching path. As can be seen, FCC 

and BCC material textures evolve differently depending on the model assumption. For a 

FCC material, the FC model develops a weaker texture than that produced by the VPSC 

calculation. For the BCC case, the final textures are qualitatively similar but quantitatively 

different in their degree of intensity.  

-0,4 -0,2 0,0 0,2 0,4 0,6 0,8
0,0

0,2

0,4

0,6

0,8

 

 FCC-FC    FCC-SC

 BCC-FC    BCC-SC

 

*ε
22

*ε
11

 

Figure 13. Influence of the slip microstructure and interaction model on the FLD. 

According to Lian et al. (1989), the yield-surface shape has a tremendous effect on the FLD, 

and Neale & Chater (1980) demonstrated that a decrease in the sharpness of the stress 

potentials in equi-biaxial stretching promotes larger limit strains. A sharp curvature allows 

the material to quickly select a deformation path approaching plane strain, and this results 
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in the prediction of a relatively low limit strain. The yield potentials of the materials were 

calculated by imposing different plastic strain-rate tensors under a state of plane stress in 

11 22σ σ−  space. With the simulation, we deformed the material in equi-biaxial stretching up 

to a given plastic strain and then performed the yield-locus calculations. For the purpose of 

comparing polycrystal yield surfaces, all work-rates were normalized to that of FCC-FC 

uniaxial stretching. We calculated the yield loci corresponding to each of the necking limit 

strains, in order to highlight the link between the yield-surface shape and the forming-limit 

behavior. Shapes and curvatures predicted by the FC and VPSC models are shown in Fig. 14.  
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Figure 14. Calculated yield loci at equi-biaxial failure for all tested materials. 

As expected, the curvature of the yield locus of the FCC-FC material in the equi-biaxial 

stretching zone is much sharper than those of the other materials, which is consistent with 

its limit-strain value, lowest among the cases considered, shown in Fig. 13. Similarly, the 

curvature of the BCC-FC yield locus is rounder than the others, which is again in agreement 

with the predicted limit strains. We also calculated the parameter p for our materials finding 

that the values of p for the FCC-FC and BCC-FC materials are the lowest and the highest, 

respectively. 

The FLD results depend on the homogenization scheme, and the differences are explained 

in terms of the sharpness of the yield-loci and texture development. The MK-FC framework 

predicts both the highest and lowest limit strains, for the BCC and FCC materials 

respectively. 

5.1. Influence of cube texture on sheet-metal formability 

As mentioned in section 2.2, in rolled FCC sheets, crystallographic textures are frequently 

classified in terms of the ideal rolling and recrystallization components. Such classifications 

are well suited for theoretical modeling where mathematical descriptions of particular 
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components can be input into simulations. In particular, we focus on how the strength of the 

cube texture affects localized necking. To investigate this effect, we modeled variations of 

the cube texture. The variations were constructed with different spreads of grain 

orientations around the ideal cube component. The procedure for modeling textures is the 

same as that used in Signorelli & Bertinetti (2009). As an example, the cube-15° texture is one 

whose grains have a misorientation with respect to the ideal cube orientation {100}<001> of 

less than 15°, uniformly distributed over that area. Fig. 15 shows the {111} stereographic pole 

figures for cube-3°, cube-7°, cube-11° and cube-15° distributions. For the cube set of textures, 

the number of individual orientations was set in order to obtain an adequate representation 

of a uniform distribution. 

 

 

 

Figure 15. {111} pole figures used in the simulations for cube-3°, cube-7°, cube-11° and cube-15° 

distributions. 

In the following FLD simulations, in both the homogeneous and MK band zones, standard 

FCC {111}<110> crystal slip is used, and the initial textures are assumed to be the same. Fig. 

16 shows the predicted limit strains for the cube set of texture distributions using the MK-

FC and MK-VPSC approaches. The simulations clearly show that there are differences 

between the VPSC and FC homogenization schemes, although the shapes and levels of the 

predicted FLDs are similar in the uniaxial range. No significant differences were found 

between the ideal cube and the cube-3° textures, since for this case the HEM nearly 

corresponds that of a single crystal. In these cases, both models closely predict shape and 

tendency. In the negative minor-strain range (ρ < 0) of the FLD, the shapes are nearly 

straight lines with the maximum values at ρ = - 0.5. For both textures, the FLD curves slope 

downwards from plane-strain tension to equi-biaxial stretching, with the minimum limit-

strain values at ρ = 1. These values are far below that of the random texture.  

We would expect that a spread around the ideal orientation would give greater formability 

and higher limit strains. The FLD calculated from the random texture should be above all 

others, with the FLDs of particular spreads lying between those of the ideal cube and the 

random cases. Wu et al.’s (2004a) results do not show this expected behavior; their 

calculated forming-limit curves for cube-11° and cube-15° are significantly higher than that 

of the random texture near equi-biaxial stretching. These results were confirmed by Yoshida 

et al. (2007) using the same modeling hypothesis. Our simulations are similar to those 

reported by Wu et al. when the MK-FC approach is used. To the contrary, FLDs calculated 

with the MK-VPSC approach behave as expected. For 0 < ρ ≤ 1, the limit strains move 

upwards with an increase in the dispersion cut-off angle, and the strain-limit values never 

reach those of the random case. 
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 (f0 = 0.99, m = 0.02, n = 0.24, h0 = 1218 MPa, c
sτ  = 42 MPa). 

Figure 16. Calculated FLDs for MK-FC (left) and MK-VPSC (right) models  

In order to assess the effect of the yield-surface shape on the forming-limit behavior close to 

the balanced-biaxial stretching zone, ρ = 1.0, we prestrained the texture sets along the equi-

biaxial path. The amounts of equi-biaxial strain corresponded to the necking-limit strains. 

Then, we calculate the yield-loci for cube-11°, cube-15° and random cases, using FC and 

VPSC models. The corresponding 11 22σ σ−  projections are shown in Fig. 17. The equi work-

rate surfaces are normalized to the work rate for uniaxial stretching as calculated with the 

FC model. As expected, the yield loci are quite different. The curvatures of the VPSC yield 

loci are blunter than those of FC model, particularly for the random texture. This explains 

the higher limit-strains predicted by the MK-VPSC model as shown in Fig. 16. For the cube-

11° and cube-15° initial textures, the FC yield loci are sharper and larger. As other 

researchers concluded and our simulations confirm, regions of reduced yield-locus 

curvature correspond to lower FLD values.  

Fig. 18 shows the initial and final (at failure) inverse pole figures of the cube-15º for both 

constitutive-model approaches at ρ = 1.0. We found that the behavior of certain 

crystallographic orientations depends on the interaction model used. Particularly, near the 

<100> orientation, results of the models diverge. Using the VPSC approach, no grains remain 

close to <100> (Θ < 5º), but for the FC simulations this is not the case, and the grains rotate in 

widely different directions. In both cases, one can trace an imaginary line that delineates a 

zone containing a high density of orientations and one vacant of orientations. The grain 

orientations tend to rotate and accumulate in the region approximately defined by <115> - 

<114> and <104> - <102> for FC and by <116> - <115> and <104> - <305> for VPSC, 

respectively. In addition, we found that the FC final orientations are distributed rather 

uniformly in the inhabited region. Interestingly, for the VPSC calculations, there is a 

preference to rotate half-way up the <104> - <305> segment line. Similar behavior can be 

found for the cube-11º distribution.  
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Figure 17. Calculated yield loci for VPSC and FC models. The equi work-rate surfaces are normalized 

to the work rate for uniaxial stretching, as calculated with the FC model. 
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Figure 18. Stereographic triangles showing the initial cube-15° texture (left) and predicted final 

orientations after equi-biaxial stretching to failure by FC (center) and VPSC (right) models. 

Simulations of FLDs show that the MK-FC strategy leads to unrealistic results, since an 

increasing spread about the cube texture produces unexpectedly high limit strains. 

However, results with the MK-VPSC approach successfully predict a smooth transition in 

the limit strains from the ideal-cube texture, through dispersions around the cube texture 

with increasing cut-off angles, ending with a random texture.  

5.2. Influence of the dislocation slip assumption on the formability of BCC sheet 

metals 

The identification of the active slip systems is a widely discussed issue in the plastic 

deformation of BCC crystals. The most common deformation mode is {110}<111>, but BCC 

materials also slip on other planes, {112} and {123}, with the same slip direction. In the 

literature, it is common for two sets of possible slip systems describing BCC plastic behavior 

to be considered: {110}<111>, {112}<111> (BCC24); or {110}<111>, {112}<111>, {123}<111> 

(BCC48). In what follows, we explore the right-hand side of the FLD for a BCC material 

using the proposed MK-FC and MK-VPSC approaches, and test the crystallographic slip 

assumption. 
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The crystal level properties are determined, by imposing same uniaxial behaviors for all the 

cases: BCC48-FC, BCC24-FC, BCC48-SC and BCC24-SC. Accordingly, the hardening 

parameters are chosen to give an identical uniaxial-stress response. They are listed in Table 

7. The initial texture, the reference plastic shearing rate and shear strain-rate sensitivity are 

the same as used in the previous section. 

 

Material BCC48-FC BCC48-SC BCC24-FC BCC24-SC 

h0 (MPa) 808 808 795 980 

n 0.23 0.26 0.23 0.26 

c
sτ  (MPa) 30.5 40.0 30.0 37.0 

Table 7. Material parameters used in the simulations. 

The predicted limit strains are shown in Fig. 19. Large differences are between the MK-FC 

and MK-VPSC results, particularly near equi-biaxial stretching, regardless of the material. 

For each homogenization method, both materials have about the same forming limit in 

plane strain. At ρ = 0, we found no difference in the predicted limit-strains values given by 

either the BCC24 or BCC48 approach, but a discrepancy appears between the FC and SC 

polycrystal models. Within the MK-VPSC framework, the profiles of the BCC48 and BCC24 

simulations are very close for the strain ratios ρ ≤ 0.6, and differences can be seen near equi-

biaxial stretching. The MK-FC limit strains are similar as ρ increases up to 0.8, but for ρ > 0.8, 

the critical values calculated with the BCC24 deformation model increase to an unrealistic 

high value at ρ = 1. Our simulations clearly show that in equi-biaxial stretching the exclusion 

of {123}<111> crystallographic slip as a potential active deformation mode promotes higher 

limit strains for both models. For MK-VPSC this gap is only an increase in the limit strain 

from 0.37 to 0.39; whereas for MK-FC the value changes from 0.53 to 0.97. 
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Figure 19. Influence of the slip microstructure and interaction model on the FLD.  
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The yield potentials of the materials were calculated by imposing different plastic strain-rate 

tensors under a state of plane stress in the 11 22σ σ−  section. With the simulation, we 

deformed the material in equi-biaxial stretching up to a given plastic strain and then 

performed the yield-locus calculations. For the purpose of comparing polycrystal yield 

surfaces, all work-rates were normalized to the case of BCC48-FC uniaxial stretching. We 

calculated the yield loci corresponding to each of the necking limit strains, in order to 

highlight the effect of the yield-surface shape on the forming-limit behavior. Particular 

attention must be paid to the surface’s curvature near the balanced-biaxial stretching zone. 

The shapes and curvatures predicted by the FC and VPSC models are quite different (Fig. 20 

left). Within the VPSC framework, the yield loci are sharper, and only small differences can 

be found between the BCC48 and BCC24 based simulations. This is consistent with the 

similar limit-strain values predicted by the MK-VPSC model, as shown in Fig. 19. The 

differences are more pronounced for the MK-FC calculations. The curvature of the BCC24 

yield locus is more gradual than that of the BCC48 material, again in agreement with the 

predicted limit strains. Fig. 20b presents the stress potential in a different but qualitatively 

similar way, based on the direction of plastic-strain rate and loading direction. In the 

Cauchy stress reference frame, the directions at different points along the predicted yield 

surfaces are characterized by two angles, θ and ϕ, as shown in Fig. 20 (right). These angles 

are taken to be zero along the horizontal axis and assumed positive in a counterclockwise 

sense. Differences in the sharpness of the stress potentials in equi-biaxial stretching, 

reflected in the slope of the plots, are clearly illustrated. For the BCC24-FC case, the 

direction of the plastic-strain rate D , or θ, seems nearly invariant in the vicinity of ϕ=45º 

(equi-biaxial strain-rate states), whereas for BCC48-FC the values of θ increase steadily with 

ϕ over this range. The curves calculated with the FC theory, in accordance with the observed 

yield loci, are not steep and clearly different for the two materials. For the BCC48-SC and 

BCC24-SC materials, the slight changes observed in the predicted critical-strain values 

correlate to almost identical profiles in Fig. 20b. In the vicinity of ϕ=45º, the sharpness of 

both yield loci are characterized by an abrupt change of θ. Over the range 42º ≤ ϕ ≤ 47º, θ 

varies linearly from 23º to 63º. This allows the material to quickly approach a plane-strain 

state with minor variations of stress state. We verified that this behavior can be mainly 

attributed to the ability of the VPSC model to distribute the imposed deformation according 

to the relative hardness of the grains. In addition, we note that a large majority of the grains, 

approximately 80 percent, shows a similar local-states solution (i.e. stress / strain-rate states, 

plastic dissipation and accumulated shear), but built from different sets of active slip 

systems when the simulations were carried out with either BCC48 or BCC24 slip 

assumptions. Consequently, MK-VPSC predicts very similar limit strains for both 

microstructural slip assumptions, though this result is specifically dependent on the initial 

material texture.  

In summary, although it is normally accepted that a BCC material can be represented using 

24 or 48 slip systems, we found that the MK-FC FLD calculations are sensitive to the 

material plasticity assumption in the vicinity of equi-biaxial stretching. However, this is not 
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the case when we follow the MK-VPSC procedure, at least for a nontextured material. For 

these calculations, we found that either BCC24 or BCC48 materials give similar FLD curves, 

over the whole range of deformations. 
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Figure 20. Yield loci at equi-biaxial failure for all tested materials (left); directions of the plastic strain-

rate vectors (right).  

Finally, we evaluated the MK-VPSC capability comparing the predictions of our model with 

recently published experimental and numerical results. Data and predictions for two low-

carbon steel, LCS, sheets are analyzed. The limit-strain calculations performed with MK-FC 

and MK-VPSC are analyzed and discussed in terms of the crystallographic- slip assumption, 

and compared with the measured data. All experimental tests were conducted at room 

temperature. 

For a first verification, experimental data are taken from Serenelli et al. (2010). The initial 

texture of the steel sheet was measured by using a Phillips X’Pert X-ray diffractometer. 

Incomplete pole figures for the {110}, {200} and {112} diffraction peaks were obtained. From 

these data, the ODF was determined, and the completed {110} and {100} pole figures were 

calculated (Fig. 21). The texture was discretized into 1000 orientations of equal volume 

fraction. Due to the annealing process, the texture contains a slight α-fiber ({001}<110> 1.2%, 

{112}<110> 9.6%), a more intense γ-fiber ({111}<110> 18.7%, {111}<112> 9.0%), and {554}<225> 

11.7%. Optical micrographs of the LCS annealed microstructure show oblate spherical 

grains, with an approximate aspect ratio of 1.0:1.0:0.4. 

Equi-biaxial bulge tests with different elliptical die rings were conducted in order to obtain 

three biaxial paths in strain space. The die ring masks had a major diameter of 125 mm and 

aspect ratios of 0.5, 0.7 and 1.0. The die rings and a corresponding tested circle-gridded 

specimens are shown in Fig. 22. A grid pattern of 2.5 mm diameter circles was electro-

chemically etched on the surface of specimens. Details of the experimental procedure can be 

found in Serenelli et al. (2010). 
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Figure 21. Experimental {110} and {100} stereographic pole figures (lines are multiples of a half-random 

distribution). Reference frame: X1 top (RD), X2 right (TD), X3 center (ND). 

 

Figure 22. Die-ring masks (top) and photograph of the gridded specimens after the tests (bottom) with 

ratios of 0.5 (a), 0.7 (b) and 1.0 (c) between the major and minor diameters. The marked points where the 

grid was measured can be observed in the photographs. 

The alloy’s hardening parameters were estimated in order to fit tensile test data. The 

coefficients for the BCC48-FC, BCC24-FC, BCC48-SC and BCC24-SC materials are listed in 

Table 8.  

 

Material BCC48-FC BCC48-SC BCC24-FC BCC24-SC 

h0 (MPa) 1680 2900 1770 2900 

n 0.203 0.212 0.201 0.212 

c
sτ  (MPa) 49.0 60.0 47.5 59.0 

Table 8. Material parameters used in the simulations for the LCS sheet. 

The initial value of the imperfection factor, f0, was taken to be 0.996. The FLD predictions are 

shown in Fig. 23 together with the bulge-test data. The BCC48-SC predicted limit-strains agree 
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well with the measured points. The plane strain behavior is similar to that predicted for an 

initial non-textured material, and no influence from the crystallographic slip assumption is 

found. However, the differences between the interaction models remain. In these calculations, 

the MK-VPSC results showed a sensibility to the addition of {123}<111> slip as a potentially 

active deformation mode; only BCC48-SC predicts a realistic strain-limit profile.  
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Figure 23. Influence of the slip microstructure and interaction model on limit strains for the LCS rolled 

sheet. 

For a second verification, we consider data – experimental FLD and material´s properties – 

from Signorelli et al. (2012) for an electro-galvanized DQ-type steel sheet 0.67 mm thick. 

Texture measurements were conducted using X-Ray diffraction in a Phillips X´Pert Pro-

MPD system equipped with a texture goniometer, CuK alpha radiation and an X-ray lens. 

The initial pole figures obtained for the {110}, {112} and {100} diffraction peaks are shown in 

Fig. 24 (left). From these data the ODF was calculated. The measured texture represented by 

the ϕ2 = 45° section is also presented in Fig. 24 (right). It shows a high concentration of 

orientations with {111} planes lying parallel to the sample (sheet) surface together with the 

{554}<225> orientations. This is typical of a cold-rolled and annealed steel. 

 

Figure 24. Experimental equal-area pole figures {110}, {112} and {100} (left); ϕ2 = 45° section of the ODF 

(right). 

 RD

TD
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The forming-limit diagrams were determined by following an experimental procedure 

involving three stages: applying a circle grid to the samples, punch stretching to maximum 

load, and measuring strains. As we are not focused on the experimental methods and 

techniques, we will not present experimental details here. Readers are referred to 

Signorelli et al. (2012) for a completed description of the specific techniques for measuring 

the FLDs. 

Simulations were performed following the methodology described in previous sections. The 

measured initial texture was discretized into 1000 orientations of equal volume fraction. In 

this case, we assumed that plastic deformation occurred by slip on the {110}, {112} and {123} 

planes with a <111> slip direction for each case (BCC48). The hardening parameters were 

established by numerically fitting the uniaxial tensile data taken parallel to the rolling 

direction with the following results: c
sτ  = 62 MPa, h0 = 2275 MPa and n = 0.222 for VPSC 

simulations; and c
sτ  = 55 MPa, h0 = 1100 MPa and n = 0.209 for the FC calculations. For the 

calculations, the initial slip resistances, c
sτ , of all slip systems are assumed equal, the 

strain-rate sensitivity and the reference slip rate at the crystal level were taken to be m = 

0.02 and 0
sγ = 1 s-1, respectively. The simulated and the experimental curves are shown in 

Fig. 25. 

Before performing simulations, we adjusted f0 such that the predicted limit strains matched 

the experimental results in plane strain. For the MK-FC and MK-VPSC simulations these 

values of f0 were 0.999 and 0.996 respectively. Together with the experimental data, the 

simulated FLDs for both the MK-FC and MK-VPSC schemes are shown in Fig. 26. The open 

symbols define a safe zone of uniform deformation for metal forming. The solid symbols 

correspond to measured circles that experienced local necking or fracture, specifying an 

insecure zone for metal forming.  
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Figure 25. Experimental and simulated uniaxial tests parallel to the rolling direction. 
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The shapes and levels of the predicted FLDs for both models are similar in the tension-

compression range, and the trends between measured and simulated limit strains are close, 

except near uniaxial tension. In this region, simulations show that there are differences 

between the MK-VPSC and MK-FC schemes. MK-FC predictions are more conservative and 

this curve lies below the region of localized flow. Examining the calculated FLDs in the 

biaxial quadrant of strain space, we found that the limit values predicted by MK-VPSC 

model accurately separate the regions of safe (uniform) and insecure (localized) 

deformation. On the other hand, the critical values calculated with the MK-FC approach, are 

only accurate for strain-path values to 0.3. These differences reach a maximum for the equi-

biaxial deformation path. Our simulations clearly show that limit values calculated with the 

MK-FC approach increase unrealistically as ρ increases. It is clear that the VPSC scheme 

together with the MK approach provides accurate predictions of the DQ-type steel behavior 

over the entire biaxial range. 
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Figure 26. Experimental data and simulated FLDs for both MK-FC and MK-VPSC schemes for the DQ-

type steel. 

5.3. Summary 

From the results presented in this chapter it can generally be concluded that the calculation 

of the FLD is strongly influenced by the selected constitutive description. In the present 

work we highlight the important role that the assumed homogenization scheme plays, 

which cannot be omitted in the discussion of the simulation’s results. The predicative 

capability of a particular crystal-plasticity model is then assessed by comparing its 

predictions with those experimental data not used for the fitting. In our case, the 

discussion is framed in terms of the predicted FLD, texture evolution and polycrystal 

yield surface. 
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The emphasis in this chapter has been on cubic metals, and all calculations were carried out 

using either Full-Contraint or Self-Consistent models. All simulations clearly show that 

there are differences between the MK-VPSC and MK-FC assumptions, although the shapes 

and levels of the predicted FLDs are similar in the tension-compression range. Some 

examples were analyzed in order to highlight these differences: 

• Non-textured FCC and BCC materials were investigated, imposing the same uniaxial 

behaviors for all simulations. The FLDs clearly depended on the homogenization 

scheme, and those differences were interpreted in terms of the sharpness of the yield-

loci and texture development.  

• For FCC texture materials, the MK-VPSC approach successfully predicts a smooth 

transition in the limit strains from the ideal cube texture, through dispersions around 

the cube texture with increasing cut-off angles, ending with a random texture. 

Important differences that increase with an increasing spread in texture distribution, 

particularly near equibiaxial strain-path, were found between the MK-FC and the MK-

VPSC models.  

• In order to verify the capability of the MK-VPSC model for predicting actual 

experimental limit strains for BCC textured materials, we carried out simulations for 

two different LCS steel sheets. The simulations gave good predictions of the steel’s 

behavior over the complete biaxial range. To the contrary, the MK-FC model predicts 

extremely high limit strains as pure biaxial tension is approached, though both MK-

FC and MK-VPSC predictions appear to be accurate on the tensile side of the plane 

strain.  
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