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1. Introduction

Ionic liquids are salts in a liquid state, combinations of cations and anions that are liquid at
temperatures below 100 oC. Thus, they have been called Room-Temperature Ionic Liquids
(RTILs, or just ILs) in order to differentiate them from traditional salts, which melt at much
higher temperatures and receive the name of “molten salts”. In contrast to conventional or‐
ganic solvents, ILs usually have extremely low volatility. Indeed, vapor pressures for ILs are
scarce in the literature exactly because they are extremely low (< 1 Pa) and have to be ob‐
tained at high temperatures (400-500 K) [1]. For this ”negligible” vapor pressure, ILs are of‐
ten said to be “green“ solvents when compared to traditional, environmentally harmful
volatile organic compounds (VOCs). A big goal in the use of ILs in enzymatic reactions is
the replacement of VOCs by ILs. In addition, ILs have other potential advantageous proper‐
ties such as reasonable thermal stability; ability to dissolve a wide range of organic, inorgan‐
ic and organometallic compounds; controlled miscibility with organic solvents (which is
relevant for applications in biphasic systems) among others. All these properties make them
very attractive non-aqueous solvents for biocatalysis. As they have been extensively descri‐
bed, ILs offer new possibilities for the application of solvent engineering to enzymatic reac‐
tions. Biocatalysis with ILs as reaction medium was first showed in the beginning of 2000
[2-4]. During the last decade, ILs have fast increased their attention as reaction media for en‐
zymes with some remarkable results [2-4]. The advantage of using ILs in enzymatic biocatal‐
ysis, as compared to VOCs, is the enhancement in the solubility of substrates or products
without inactivation of the enzymes, high conversion rates and high activity and stability
[5]. ILs are also being used as co-solvents in aqueous biocatalytic reactions, since ILs help to
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dissolve nonpolar substrates, while avoiding enzyme inactivation like water-miscible organ‐
ic solvents, as DMSO or acetonitrile, often do [6].

Another mentioned characteristic of ILs is the possibility of obtaining the desired physico-
chemical properties by selecting combinations of cations and anions (“tunability”), which
makes them “designer solvents”. For example, ILs can be produced to be water-miscible,
partially miscible or totally immiscible, and can also be synthesized with different viscosi‐
ties. These interesting properties make them a very important reaction media for enzyme
stabilization and reaction. The use of organic solvents in bioprocess presents a number of
further problems. The main concerns are the toxicity of the organic solvents to both the
process operators and the environment (eco-toxicity), and also the volatile and flammable
nature of these solvents, which make them a potential explosion hazard [7]. Thus, ILs have
emerged as a potential replacement for organic solvents in biocatalytic processes at both lab‐
oratory and industrial scale. The negligible vapor pressure means that they emit no volatile
compounds, and also introduces the additional possibility of removal of products by distil‐
lation without further contamination by the solvent. It also facilitates the recycling of ILs,
decreasing operation costs. All these properties make ILs very important for the stabilization
and activation of enzymes; therefore, numerous enzymatic reactions have been investigated
in different types of ILs as will be shown in the next sections. Several topics about biocataly‐
sis in ILs will be reviewed: their effect on the activity and stability of enzymes, toxicity of
ILs, new generation of ILs and methods to stabilize enzymes will be discussed.

2. Enzymatic activity and stability in ionic liquids

The most important criteria for selecting an enzyme-IL system are the activity and stability
of the enzyme within the reaction medium. ILs have been reported to be an appropriated
medium to increase the stability and activity of enzymes, as opposed to common organic
solvents [8-11]. However, depending on the enzyme nature, the IL can be or not suitable for
the reaction [12].

2.1. Lipases

Lipases, and Candida Antarctica Lipase B (CALB) in particular, are the most studied enzymes
in ILs. Most of these reactions in ILs are carried out with, no or low content of water as co-
solvent. Therefore, hydrophobic ILs are used and the enzyme activity and stability is de‐
pendent on the IL. Several studies in the literature show that enzymes, majority lipases,
exhibit greater stability in pure ILs than in traditional organic solvents [13, 14]. A review of
Zhao 2005 [15] shows that ILs with larger cations are better for enzyme activity than smaller
cations. The reasons for that are the longer hydrophobic alkyl chains in the cation presents
less tendency to take away the essential water molecules from the enzyme. In fact, one of the
most interest conclusions of Zhao is that hydrophobic ILs maintain lipase activity and stabil‐
ity better than hydrophilic ILs, as the latter will take water molecules away from enzyme
structure. According to Diego et al. [16] the enzyme stabilization by water immiscible ILs
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(such as [(CF3SO2)2N]− types) can be explained by a more compact enzyme conformation/
confinement formed from the evolution of α-helix to β-sheet secondary structure of the en‐
zyme. On the other hand, hydrophobic ILs may decrease the stability and activity of the en‐
zyme due to: (1) the interaction with the substrates or products, as organic solvents [17]; (2)
interaction by electrostatic forces [18] and (3) removing essential water molecules from the
enzyme [17]. Lau et al. [19] observed that enzyme activity in ILs was related with the confor‐
mation of enzyme; the hydrogen bonding could be the key to understanding the interactions
of enzymes and ILs. Another work of Lozano et al. [20] showed that lipase and α-chymo‐
trypsin were strongly stabilized in two ILs ([btma][NTf2] and [emim][NTf2]) due to the
maintenance of the native structure of the enzymes, as observed by both fluorescence and
circular dichroism spectroscopy.

2.2. Cellulases

ILs are also used in the pretreatment of cellulose hydrolysis by cellulase for production of
biofuels and other products. However, cellulases can be inactivated in the presence of ILs,
even when present at low concentrations. In order to explore these ILs abilities, it is impor‐
tant to find a compatible cellulose-IL system [10]. The IL must solubilize the lignocellulosic
biomass and at the same time, keep the enzyme active. It was shown that pretreatment of
cellulose with ILs such as [bmim][Cl], [mmim][Cl], and [HEMA] resulted in faster conver‐
sion to glucose and thermostability than hydrolysis with cellulose that was not pretreated
[22, 23]. A similar behavior was found for cellulases from different sources with imidazoli‐
um-based ILs, which enhanced the enzyme and thermal stability [24]. The stability of cellu‐
lases from Penicillium janthinellum mutants was evaluated in 10-50% (v/v) of [bmim][Cl] and
the enzymes were significantly stable in 10% (v/v) of IL [25]. Another work investigated the
stability and activity of commercial cellulases in aqueous solutions of 1-ethyl-3-methylimi‐
dazolium acetate [emim][OAc]. Cellulases retained 77% of their original activity in 15% and
20% (w/v) of IL and presented an avicel (a model substrate for cellulose) conversion efficien‐
cy of 91% [26].

2.3. Oxidoreductases

Several oxidoreductases, such as laccase, peroxidase, chloroperoxidase, D-amino acid oxi‐
dase and alcohol dehydrogenases, have been reported as active enzymes in aqueous solu‐
tion with ILs [27]. When compared to organic solvents, these enzymes are more active and
stable in the presence of ILs [27].

Laccases and peroxidases are the most effective enzymes capable to catalyze the degrada‐
tion of phenolic compounds. Phenolics such as hydroquinone, catechols, guaiacol, and 2,6-
dimethoxyphenol are good substrates for these enzymes in either aqueous and non-aqueous
media. Recent reports have been addressing the activity and stability of both enzymes in ILs
[6, 28-31]. For example, laccase activity and stability was well maintained in the presence of
several imidazolium-based ILs [31] such as [C4mim][Cl], [emim][MDEGSO4], [emim][EtSO4]
and [emim][MeSO3] [6], but are inactivated in the presence of [C10mim][Cl] [29]. Peroxidase
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was also described to mantain its activitiy and stability in imidazolium-based ILs for con‐
centrations up to 25 % v/v [30].

Alcohol dehydrogenases are enzymes that catalyze the reduction of ketones. Due to the vast
field of aplication of alcohol dehydrogenases, the study of this enzyme in ILs is promising.
A recent work presented the effect of 10 different ILs (with either imidazolium or ammoni‐
um cations) on the enzyme stability. Improved storage stabilities and improved enzyme ac‐
tivities were found in the most promising, ammonium-based, AMMOENGTM 101 IL [32].
Later, the same group [33] proved the feasibility of continuous production using the previ‐
ously recommended IL, combined with product separation using a membrane bioreactor
(the so-called process integration). Hussain and co-workers [34] showed that the use of 10%
(v/v) [bmp][NTf2] facilitated the conversion of ketone to the chiral alcohol. Dabirmanesh et
al. [21], showed the influence of different imidazolium based ILs on the structure and stabili‐
ty of alcohol dehydrogenase and the results exhibited that the ILs could affected the enzyme
stability, but not the tertiary structure, suggesting that the enzyme was reversibly inhibited.

There are only few reports investigating the enzyme activity of D-amino acid oxidase in ILs.
This enzyme catalyzes the deamination of various d-amino acids into imino acids. The activ‐
ity and stability of free and immobilized d-amino acid oxidase in five imidazolium ILs were
evaluated, and the most promising ILs were [bmim][BF4] and [mmim][MMPO4]. Total con‐
version of substrate in presence of 20% [mmim][MMPO4] was obtained [35].

3. Factors affecting enzymes in ionic liquids

The section before showed the stabilization and activation of enzymes in ILs. However, it is
also very important to understand the factors affecting the enzymes activity and stability in
IL media. It has been reported that enzyme reactions in ILs can be affected by several factors
such as the water activity, pH, excipients and impurities [36]. Several properties of ILs have
also been related to the activity and stability of enzymes. The most important include: polar‐
ity, hydrogen-bonding capacity, viscosity, kosmotropicity/chaotropicity and hydrophobici‐
ty, among others. It is clear from this set of properties that the type and strength of
interactions ILs can establish with enzyme molecules will certainly influence their 3D struc‐
ture. Such influence may produce or not changes in enzyme activity.

A few works have related the ILs polarity with the activity of enzymes. Lozano and co-
workers [37] observed that in less polar IL, lower activities of α-chymotrypsin were ob‐
tained. The same behavior was obtained for lipase, the enzyme activity increased with the
increase in IL polarity during the acetylation of racemic 1-phenylethanol with vinyl acetate
[38] and for the synthesis of methylglucose fatty acid esters [39].

The negative effect of hydrogen-bonding on the enzyme activity in the presence of ILs can
be associated with the anions effect and their action as hydrogen-bonding acceptors for the
protein (lipase) [40]. Another work suggested a similar reasoning for the effect of anions: the
decrease of lipase activity in [bmim][lactate] was caused by secondary structure changes of
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the protein, due to hydrogen-bonding interactions between lactate anions and peptide
chains [19]. However, due to the limited number of ILs and enzymes investigated, deeper
studies are required for a better understanding of this interaction.

As the majority of ILs are viscous fluids, the mass transfer limitations should be considered
when the reaction is rapid and the IL is relatively viscous. Many enzymatic reactions in pure
ILs can be heterogeneous due to the low solubility of the enzymes in ILs. Some studies have
reported that the activity of enzymes is dependent on the IL viscosity: Bose et al. [23] attrib‐
uted the lower activity of cellulase to the high IL ([HEMA]) viscosity. Lozano et al. [37] indi‐
cated that the activity of α-chymotrypsin was dependent on the IL viscosity, and thus higher
enzyme activities were observed in less viscous ILs. On the other hand, the work of Zhao et
al. [41] suggested that IL viscosity was not directly related to the lipase activity, but mass
transfer limitations. The high viscosity may reduce the reaction rate, however the IL struc‐
ture was responsible for lipase stabilization. So the author concludes that IL viscosity could
influence the enzymatic reaction rates, however it is not the principal factor for the enzyme
stabilization. Basso et al. [42] suggested that in the reactions for amide synthesis by immobi‐
lized penicillin G amidase, the high viscosities of the ILs did not affect the initial rates. Con‐
cluding, the effect of IL viscosity can affect the reaction rate, but this behavior is not the
same for all enzymatic reactions in ILs, specially when reaction rates are measured in equili‐
brium instead of kinetics [42].

The kosmotropicity/chaotropicity (Hofmeister series) is related with the effect of water
structure (and thus, protein salting in/out). There are reports in the literature that try to cor‐
relate the ion kosmotropicity with the enzyme behavior in aqueous solutions of ILs [43-48].
The reviews by Zhao et al. [15] and by Yang [49] discuss the probable mechanisms of Hof‐
meister effects of ILs. Kosmotropic anions (PO4

3-, CO3
2-, SO4

2-, …) and chaotropic cations (Cs
+, Rb+, K+, NH4+, …) stabilize enzymes, while chaotropic anions (NO3

-, I-, BF4
-, PF6

-,...) and
kosmotropic cations ((C4H9)N+, (C3H7)4N+, (C2H5)4N+,…) destabilize it [15].

Attending to the solubility of ILs in water, they can be divided into hydrophobic (water im‐
miscible) and hydrophilic (water miscible). Most often, water miscibility depends on the ILs
anions rather than the cations [50]. The hydrophobicity in ILs is generally determined by the
log P scale, based on the partition coefficient of ILs between 1-octanol and water [51]. The
stablility of enzymes can also be related to the log P. Usually, enzymes are more stable in
solvents with a larger log P (>3) [106]. Many works from literature have reported that for
lipases, activity increases with the increase in the IL hydrophobicity [13, 51-55]. Neverthe‐
less, this conclusion is in contradiction with the polarity effect mentioned at the beggining of
the section (more polar ILs promote enzyme stability). In our opinion, the vast pool of ILs
and enzymes, and the large differences in their chemical structure, make it very difficult to
extract general trends and conclusions. Just as an example, several authors [37] have proved
that hydrophobic ILs (thus, less polar) maintain better immobilized lipase activity in the
pure IL (low water content). At the same time, our group has shown that laccase and peroxi‐
dase activities are best maintained in more polar (less hydrophobic, more hydrophilic) ILs,
when used in aqueous solutions [6; 29]. Both statements are correct, because the reaction
conditions are completely different: very low water content in the former study, and water
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excess in the latter. Thus, the IL affinity for water will be dramatic at low water content, but
not when there is plenty of water.

4. Green aspects of ionic liquids

The interest in the development of biocatalytic processes in ILs media is desired to obtain
green technologies and unconventional properties to replace organic solvents (namely
VOCs). ILs appear free of many problems associated with the use of VOCs due to their non-
volatility, non-flammable character and both high thermal and chemical stability. However,
the use of certain ILs raises some concerns regarding environmental impact, attending to
their potential toxicity and biodegradability. As the use of ILs has been increasing in differ‐
ent fields from biology to electrochemistry, the assessment of their environmental, health
and safety impact is highly required. In recent years, environmental aspects related to ILs
have been strongly addressed, stating that many ILs commonly used cannot be regarded as
‘green solvents’. In general, ILs used in biocatalysis have not been designed for biocompati‐
bility and harmless. There are some recent reports showing that the ecotoxicity of alkylme‐
thylimidazolium cations (the most used in biocatalysis) is undesirable, and ecotoxicity
increases with the length of alkyl chains in cation [56-58]. Thus, for future applications it is
necessary to improve the green aspects of ILs. These improvements are currently going on.
The best examples are the choline-derived cations (which are based on food grade choline
chloride) or imidazolium derivatives designed for biodegradability (e.g., adding ether
groups in the alkyl side chains) [59], and ILs based on amino acids [60-61]. It is expected that
much improved and green ILs will become available soon. Currently, three different genera‐
tions of ILs can be identified, as described below.

4.1. First generation of ionic liquids

The first IL known was ethylammonium nitrate, reported in 1914 by Walden [62], but at‐
tracted little interest. The first generation of ILs with widespread utilization was mainly
composed of cations like dialkylimidazolium and alkylpyridinium derivatives, and anions
like chloroaluminate and other metal halides which have been described as toxic and non-
biodegradable [57]. The most common anions are chloroaluminate or other metal halide
anions that react with water and thus are not suitable for biotransformations. This genera‐
tion of ILs was also oxygen-sensitive [63] and can only be handled under inert-gas atmos‐
phere due to the hygroscopic nature of AlCl3 [64]. In the 1980s, Wilkes et al. started the
extensive research on first generation ILs [65]. However, due to these limitations, the prog‐
ress in their use was limited. For this reason, research was directed towards the synthesis of
air- and water-stable ILs, the second generation of ILs.
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4.2. Second generation of ionic liquids

After one decade the second generation of ILs [66] appeared. The water- and oxygen-reac‐
tive anions were replaced by halides (Cl-, Br-, I-) or anions such as BF4

-, PF6
- and C6H5CO2,

which are stable to water and air. Cations such as dialkylimidazolium or alkylpyridinium
were maintained, and ammonium and phosphonium were added. These ILs present inter‐
esting properties such as lower melting points, different solubilities in classic organic sol‐
vents, viscosities, etc. Due to these properties, the second generation attracted a great
interest in various fields, and research in ILs experienced an important boost from the
1990’s. The first reports of biocatalysis with ILs were published in the beginning of 2000´s [2,
4, 38, 67]. One of the disadvantages of these ILs is the high cost. According to Gorke et al.
[66], the high costs are related to starting materials (namely fluorinated components) and
purification of final product required in the preparation. The most important disadvantage
of the second generation is the toxicity, which in general is similar to those of chlorinated
and aromatic solvents [56]. However, this second generation of ILs attracted the attention of
the wide scientific community and has been providing interesting and novel applications in
differents areas. This generation of ILs is the most studied and a great number of applica‐
tions in biocatalysis have been published. The activity, stability, kinetic and thermal stability
of different enzymes such as oxidases, lipases or cellulases has been studied, and sinthesis of
various products has been carried out.

4.3. Third generation of ionic liquids

The third generation of ILs (advanced ILs) is based on more hydrophobic and stable anions
such as [(CF3SO2)2N-], sugars, amino or organic acids, alkylsulfates, or alkylphosphates and
cations such as choline. The cations and/or anions used are biodegradable, readily available,
and present lower toxicities. Besides, a new class of solvent systems, called deep eutectic sol‐
vents (DES), is more hydrophilic than the second generation, and in general is water-misci‐
ble [66]. DES are mixtures of salts (in general they are not liquids at room temperature) such
as choline chloride, and uncharged hydrogen bond donors such as amines, amides, alcohols,
carboxylic acids, urea, or glycerol [28]. A typical example is the choline chloride/urea mix‐
ture, which produces a DES with a melting point of 12°C at concentrations around 50% [66]

The advantages of the third generation are: lower costs (similar to organic solvents), simple
to prepare, biodegradable, do not require purification, the purity of the starting materials
determines the final purity and uses anions and cations with low toxicity. As this generation
is recent, few works have been published [68, 69]. The transesterification of ethyl valerate
with 1-butanol, showed good activity in DES, and in choline chloride: glycine the activity
was similar to activity in toluene for all lipases [69]. The third generation will reach the com‐
mercial level soon [70].
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5. Methods for stabilization of enzymes in ionic liquids

Stabilization of enzymes in ILs is one of the keys for the development of more efficient
biocatalytical  processes for industrial,  environmental,  or biomedical applications.  As dis‐
cussed in previous sections, stabilization of enzymes in ILs is one of the keys for the de‐
velopment  of  more  efficient  biocatalytic  processes  for  industrial,  environmental,  or
biomedical  applications.  The use  of  enzymes in  ILs  presents  different  advantages  when
compared to conventional organic solvents.  On the other hand, in some cases the appli‐
cation of  enzymes  can be  limited by  the  low solubility,  activity  or  stability  in  ILs.  The
improvement  of  enzyme  functionality  is  crucial  for  large-scale  applications  in  order  to
be economically viable. The methods to stabilize and activate enzymes in ILs can be div‐
ided  into  two different  strategies:  the  modification  of  enzymes  and/or  the  modification
of the solvent (ILs).  The modification of  enzymes includes lyophilization (to change the
morphology  of  the  solid  enzyme),  chemical  modification  (for  the  chemical  addition  of
functionalities  into  the  enzyme  biomolecule)  and  immobilization  in  a  suitable  support.
The second strategy includes the modification of the IL reaction media, such as IL coat‐
ing,  additives  or  use  of  microemulsions  with ILs.  These  methodologies  have been used
with promissory results [5].

5.1. Modification of solvent media

In order to avoid the enzyme insolubility, some works have reported the introduction of
functional  groups  in  IL  structure  such  as  hydroxyl,  ether,  and  amide  (which  present
high affinity for enzymes) [19].  For enzymes that are active in pure solvents,  such as li‐
pases,  the most hydrophilic ILs can remove enzyme-bound water molecules that are es‐
sential  to  maintain  protein  structure  and  active  function.  In  such  case,  these  ILs
(hydrophilic) are not adequate.

Another strategy is the addition of water in IL (co-solvent), but the enzyme may present
low  catalytic  activity  due  to  a  changed  conformation  in  ILs  [71].  Several  researchers
have  reported  enzymatic  reactions,  especially  for  oxidative  enzymes,  in  hydrophilic  ILs
with a  high concentration of  water  (in the range 5  –  50%) and promissory results  have
been found [6, 29-31].

Water-in-IL microemulsions, or reverse micelles, have been used as a very efficient techni‐
que for solubilizing enzymes in hydrophobic ILs. The advantage of this approach is that the
enzyme is protected of the contact with the solvent by a layer of water and surfactant mole‐
cules. As an example, the use of water-in-IL microemulsions was reported by Moniruzza‐
man et al. [50] as a new medium for dissolving various enzymes and proteins. Additionally,
several authors have reported the use of different microemulsions systems with good results
for enzyme stability [72-74].
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5.2. Modification of the enzyme

The most common methodology for enzyme modification is immobilization. It is well
known that immobilization of enzymes presents excellent advantages for biocatalysis,
namely in the recovery of the enzyme for reutilization, product separation and recovery
from the reaction media, application in continuous systems, and for enzyme stabilization.
Indeed, enzyme immobilization increases thermal and operational stability of the biocata‐
lysts compared to the free enzyme.

The use of immobilized enzymes in IL media has been reported by many research groups,
using different methods of immobilization and supports. The most frequently used enzyme
immobilization techniques are: physical adsorption, covalent attachment, entrapment in pol‐
ymeric matrixes and cross-linking of enzyme molecules. For lipases, it was found that reac‐
tion rates in ILs were comparable or higher than in organic solvents and also immobilized
lipase was more active than its free form [75-79]. The same behavior was found for protei‐
nase [80], papain [81] and for heme-containing proteins [82].

The chemical modification of enzymes with poly(ethylene glycol) (PEG) is a well-known
method (the so-called PEGylation) for enzyme stabilization in denaturing environments.
PEG presents both hydrophilic and hydrophobic properties, so the modified enzymes can
increase their solubility in some ILs [83]. Turner et al. [84] also reported higher activity of
PEGylated cellulase than free cellulase in IL solutions.

Another method for activating and stabilizing enzymes in non-aqueous media is co-lyophili‐
zation of the enzyme. Maruyama et al. [85] lyophilized lipase with poly(ethylene glycol)
(PEG) to prepare PEG–lipase complexes, finding that the activity of lipase in ILs increased
more than 14-fold. Wang and Mei [86] also lyophilized lipase with cyclodextrins, and the ac‐
tivity of lipase in ILs ([bmim][PF6] and [bmim][BF4]) was improved.

6. Applications of ionic liquids in biocatalysis

The use of ILs as solvents or co-solvents for reaction media of enzymes is well recognized in
biocatalysis. Examples available in the open literature include: polymerizations, biosensors,
production of biofuels, synthesis of sugar- and ester-derivatives, among many others.

A large number of examples of the use of ILs for the enzymatic production of esters by li‐
pase have been published [87]. The common esters synthetized in ILs are aliphatic and aro‐
matic esters, for applications in polymers, biodiesel, and in the perfume, flavour and
pharmaceutical industries. The synthesis of a wide range of aliphatic organic esters was car‐
ried out by transesterification from vinyl esters and alcohols and catalyzed by lipase in dif‐
ferent 1,3-dialkylimidazolium ILs [88, 89]. Aromatic esters have also been synthetized with
lipase in two ILs, [bmim][PF6] and [bmim][BF4] [90]. The esterification of 2-substituted-prop‐
anoic acids with 1-butanol was catalyzed by lipase in ILs [bmim][PF6] and [omim][PF6] [91].
Yuan et al. [92] studied the enantioselective esterification of menthol with propionic anhy‐
dride using lipase in [bmim][PF6] and [bmim][BF4]. The resolution of (R,S)-ibuprofen by es‐
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terification with lipases in the same ILs is another interesting example [93]. The aliphatic
polyester synthesis by lipase, also in [bmim][PF6], was reported by Nara et al. [94]. Later, the
enzymatic preparation of polyesters by ring-opening polymerization and by polycondensa‐
tion with lipase in [bmim][Tf2N], [bmim][PF6] and [bmim][BF4] was also investigated [95].
According to these authors, the use of ILs could be an advantage in the polymerization of
highly polar monomers with low solubility in organic solvents.

The production of biofuels, such as biodiesel (fatty acid methyl esters) has been also investi‐
gated in ILs through the transesterification of a triglyceride with methanol. Biodiesel is a re‐
newable and environmentally-friendly fuel. Several ILs have been utilized for biodiesel
production. Most often, the synthesis of biodiesel by enzymatic reactions in ILs is based on a
short-chain 1,3-dialkylimidazolium cation, such as [bmim][PF6] or [bmim][NTf2], and the re‐
action is carried out in a biphasic system with lipase and using an adequate substrate (e.g.,
soybean oil) [96]. For homogeneous one-phase systems, imidazolium ILs with long alkyl
chains such as [C16mim][NTf2] and [C18mim][NTf2] have been used [97,98]. These long chain,
lipophilic ILs create a nonaqueous system suitable for oil transesterification. Ha et al. [99]
studied the biodiesel production using immobilized lipase in 23 ILs. Among the ILs tested, it
was found that highest biodiesel production yield was obtained in [emim][TfO]. But it is im‐
portant to highlight that several works have been published for biodiesel production by li‐
pases [100-102].

In recent years, a significant number of publications have showed the direct electron-trans‐
fer reaction between redox proteins or enzymes and IL-based composite electrodes. Biosen‐
sors are small devices which convert the biological recognition event into an electrical
signal, so it can be used for selective analysis [103]. Several composite electrodes based on
ILs have been prepared. Many of them can be found in a recent review by Shiddiky and Tor‐
riero[104], such as: hemoglobin biosensor; myoglobin and cytochrome c biosensors; catalase
biosensors; glucose oxidase biosensors; horseradish peroxidase biosensors.

Sugar-based compounds are widely used in pharmaceuticals, cosmetics, detergents and
food. A recent review by Galonde et al. [105] shows the synthesis of glycosylated com‐
pounds in ILs.

7. Conclusion

Ionic liquids have demonstrated to be suitable solvents for enzymatic reactions. They can be
beneficial regarding to activity, (enantio)selectivity and stability of enzymes. The use of en‐
zymes in ILs opens new possibilities for non-aqueous enzymology with high efficiency in
several areas. Here, it was shown that a large variety of enzymes tolerate ILs or aqueous-IL
mixtures as reaction medium. Moreover, the development of green and biodegradable ILs is
reinforcing enzymatic applications of ILs, as stated in this work. Indeed, it is expected to be‐
come a standard in biotransformations, thus contributing to a greener chemical and bio‐
chemical industries.

Ionic Liquids - New Aspects for the Future546



Nomenclature

tris-(2-hydroxyethyl)-methylammonium methylsulfate [HEMA]

Cations:

[mmim] = 1,3-dimethylimidazolium

[emim] = 1-ethyl-3-methylimidazolium

[bmim] or [C4mim] = 1-butyl-3-methylimidazolium

[bmp] = butylmethylpyrrolidinium

[btma] = butyl-trimethylammonium

[omim] = 1-octyl-3-methylimidazolium

[C10mim] = 1-decyl-3-methylimidazolium

[C16mim] = 1-hexadecyl-3-methylimidazolium

[C18mim] = 1-octadecyl-3-methyl- imidazolium

Anions

[OAc] = acetate

[MDEGSO4] = 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy)

[MeSO3] = methanesulfonate

[TfO] = trifluoromethanesulfonate

[BF4] = tetrafluoroborate

[MMPO4] = dimethylphosphate

[Cl] = chloride

[EtSO4] = ethyl sulfate

[(CF3SO2)2N-] = bis(trifluoromethylsulfonyl)amide

[MeSO4] = methyl sulfate

[PF6] = hexafluorophosphate

[NTf2] = bis(trifluoromethylsulfonyl)imide
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