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1. Introduction 

As Integrated Circuit (IC) technology scales down into the nanotechnology regime, it allows 

millions of active components to be fabricated on a single chip in accordance with the 

historical trend of Moore’s law. Integration of all these active elements on a single IC, 

multilevel on-chip interconnect system must be developed in BEOL (Back End of the Line) 

technology [1]. Accordingly, to meet the industry requirements of scaling for improved 

performance, semiconductor technologies are forced to move from well-established Al/SiO2 

interconnect technology to Cu/low-k (Copper/low dielectric constant) technology [2-3]. The 

main objective of this transition is to reduce cross talk noise between metal lines, 

propagation delays and power dissipation from RC delay. Copper and low-k inter metal 

dielectric layers are used as multilevel interconnects to enhance the speed of logic devices. 

Amongst the available low-k materials, Black diamond TM (BD, low-k, SiOC:H) has been 

considered as potential inter metal dielectric material for integration in ULSI (Ultra Large 

Scale Integration) due to its better electrical and dielectric properties. But in dielectric 

material processing the key issue is the trade-off between dielectric property and mechanical 

strength. Hence it is very important to study the mechanical properties of BD films and 

Cu/BD stacks. 

There are four interdependent properties which are responsible for the mechanical 

reliability of thin film structures and they are elastic modulus, hardness, fracture toughness 

and interfacial adhesion [4]. Both theoretical and experimental studies recommend that 

hardness and elastic modulus are the two key material characteristics affecting the CMP 

process [5]. Generally, mechanical properties of thin films differ from those of the bulk 

materials. This is mainly attributed to their microstructure, interfacial mismatch stresses and 

molecular restructuring of the films. Parameters used to characterize the mechanical 
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strength of BEOL interconnect materials include hardness, elastic modulus and 

adhesion/cohesion strength. Interfacial adhesion is the most important property to ensure 

the thermo-mechanical integrity of Cu/low-k stacks. Interfacial adhesive failure may occur 

during fabrication processes such as CMP and high temperature curing steps. In addition, 

delamination or cracking can also be observed during electronic packaging processes like 

reflow process, flip-chip bonding and back grinding due to thermo-mechanical stresses. This 

chapter further discusses on mechanical behavior of BD thin films of different thicknesses, 

single and dual dielectric stacks with Ta & TaN barriers. Nanoindentation experiments with 

continuous stiffness measurement (CSM) attachment have been performed on different BD 

film stacks to assess the multi-layer effect on the mechanical behavior of BD films. Effect of 

wafer backgrinding on the active side of the low-k structures have been studied using the 

Nanoindentation method as wafer backgrinding is one of the key technologies paving way 

to high performance three-dimensional (3D) microelectronic packages. 

2. Low-K dielectric materials for BEOL (Back End of the Line) multilevel 

interconnect and 3D Integration applications 

The contribution of the R-C delay by conventional multilevel interconnects scheme increases 

as the IC fabrication technology moving into further miniaturization. The introduction of 

Cu/low-k interconnect technology into BEOL, has progressively enhanced this condition 

when compared to the conventional Al/SiO2 technology by reducing R-C delay in between 

interconnect lines. [6-7]. In addition to migrating to Cu/low-k multilevel interconnects at 

chip level, microelectronic industry is more focused on 3D IC integration and 3D packaging 

of chips at system level. In recent times, three-dimensional (3D) IC integration and 

packaging is gaining more attention because of its innovativeness, high performance, high 

functionality, and ability to reduce size of the final product. The major applications of the 3-

D packaging include digital and mixed-signal electronics, wireless, electro-optical, MEMS 

and other integration technologies. At this juncture, the key technologies supporting the 3-D 

packaging, are as: through silicon vias (TSVs), wafer thinning or back grinding, precision 

alignment of wafer to wafer or chip to wafer, and wafer to wafer or chip to wafer bonding 

[8]. Among these key technologies, wafer thinning plays a vital role in the 3D packaging 

integration, as it allows to accommodate or stack more dies in one package and ultimately 

results in the reduction of package size. Besides the reduction of package size, the stacking 

of thin chips provides many other advantages, such as, more functionality per package and 

improved heat dissipation. Electronic packaging industry has to put a lot of R&D efforts and 

spend millions of dollars on the wafer thinning technologies as there is no manufacturing 

technology available for directly producing the ultra-thin wafers [9]. That is why in the past 

years, many wafer thinning methods, such as mechanical grinding, chemical mechanical 

polishing (CMP), wet etching and atmospheric downstream plasma (ADP), dry chemical 

etching (DCE) have been evolved. So far many researchers have extensively studied wafer 

thinning/back grinding processes in terms of die strength by assessing the quality of the 

grinded surface [10]. 
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In the recent years, many researchers have extensively assessed the quality of back grinding 

process with the help of die strength evaluation. Die strength of the thinned wafer can be 

evaluated by using the different mechanical testing techniques such as three point bend test, 

four point bend test, ball on ring test, ball breaker tests and ring-on-ring tests. The 

mechanical tests are greatly influenced by several processes and material parameters such as 

surface roughness or finish, degree of thinning, stress relief process, quality of the dicing 

edge [11-15]. However the literature available related to the effect of grinding processes on 

the active side of the die/chip is limited, and this necessitates a focused study on the effect of 

wafer back grinding on the active side of chip. For the first time we have studied the effect 

of back grinding processes on the active side of low-k stack by using Nanoindentation 

method. Usually active side of the chip is a few microns in thickness, and it cannot be 

studied using those methods which are being used for conventional die strength evaluation. 

Therefore, we have chosen sophisticated method like nanoindentation technique for 

mechanical characterization of low-k films. 

2.1. Different types of low-k materials 

In the recent past, many low-k materials have been developed, and they can be broadly 

classified into Si-based and non-Si based. Si-based materials can be further classified into Si-

based and silsesquioxane (SSQ) based, which include hydrogen-SSQ (HSSQ) and methyl-

SSQ (MSSQ). Non-Si based low-k materials can be further divided into two groups, polymer 

based and amorphous carbon. Several types of low-k materials with varied low-k values 

and different deposition methods are being used in the IC fabrication technology. Table 1 

lists the contemporary deposition techniques together with the k value of various silicon 

based, non-silicon based and polymer dielectric material candidates for the 0.13μm and 

0.1μm technology nodes. 

In silica based dielectric materials, usually tetrahedral silica is the elementary unit. Each 

silicon atom is at the center of the tetrahedron of oxygen atoms as shown in Fig. 1 (a). 

Typically Si based dielectric materials are dense structures with higher chemical and 

thermal stability. In silica based materials, dielectric constant (k) value can be lowered by 

replacing the Si-O bonds with Si-F bond, producing fluorinated silica glasses (FSG) or 

doping with C by introducing CH3 groups [7].  

Black diamond (BD) is one of the popular low-k materials and it is a trade mark of CVD 

processed dielectric material, introduced by Applied Materials Inc. [17]. It is silica based 

dielectric material, obtained by doping of silica with -CH3 groups as shown in figure Fig. 1 

(b) and it has chemical formula SiOC:H. It is also called hybrid dielectric material as it 

contains both organic (-CH3) and inorganic (Si-O) constituents. The dielectric constant (k) 

value of silica based dielectrics ranges from 2.6 to 3. Typically BD thin films are fabricated 

by using the Chemical Vapor Deposition (CVD) method near room temperature using 

organosilane precursor in the presence of oxygen as oxidant. The lower density of the BD 

films is achieved by introducing network terminating species (-CH3) into the Si-O matrix 

[19]. The density and dielectric value of the BD films can be altered by the selection of 
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terminating groups in silica network. Empirically, a larger terminating group gives lower 

density, because it acts as a network terminating group only and it is not part of the Si-O 

network. Therefore BD films retain many of the useful thermo-mechanical properties of 

silicon oxide. The summary of properties of BD films is given in Table 2. BD films can 

achieve bulk dielectric constant of around 2.5 to 2.7, and integrated ILD stack dielectric 

constant of <3 [20]. The glass transition temperature of the BD is well above 450°C. The 

dielectric constant of the BD films can be lowered mainly by introducing constitutive 

porosity into the microstructure [21]. By proper selection of the compatible barriers layers, 

thermal and mechanical properties of BD films provide evolutionary pathway to Cu/low-k 

interconnect technology. 

 

Dielectric Materials 
Fabrication 

Technique 
K value 

SiO2 CVD 3.9 – 4.5 

Fluorosilicate glass (FSG) CVD 3.2 – 4.0 

Polyimides Spin-on 3.1 – 3.4 

Hydrogen silsesquioxane(HSQ) Spin-on 2.9 – 3.2 

Diamond-like Carbon (DLC) CVD 2.7 – 3.4 

Black Diamond™ (SiCOH) CVD 2.7 – 3.3 

Parylene-N CVD 2.7 

B-staged Polymers (CYCLOTENE™ and SiLK™) Spin-on 2.6 – 2.7 

Fluorinated Polyimides Spin-on 2.5 – 2.9 

Methyl silsesquioxane (MSQ) Spin-on 2.6 – 2.8 

Poly(arylene ether) (PAE) Spin-on 2.6 – 2.8 

Fluorinated DLC CVD 2.4 – 2.8 

Parylene-F CVD 2.4 – 2.5 

PTFE Spin-on 1.9 

Aerogels/Xerogels (porous silica) Spin-on 1.1 – 2.2 

Porous HSQ Spin-on 1.7 – 2.2 

Porous SiLK Spin-on 1.5 – 2.0 

Porous MSQ Spin-on 1.8 – 2.2 

Porous PAE Spin-on 1.8 – 2.2 

Air Gaps - 1.0 

Table 1. Dielectric constants of various contemporary low-k materials are the interest of 0.13μm and 

0.1μm technology nodes [7, 16-18]. 
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Figure 1. Elementary units of (a) SiO2 (b) carbon doped Silica, called as Black Diamond (SiOC:H) (c) C 

doped silica without cross linking (d) with cross linking [7] 

 

Property Value of the Blanket film 

Dielectric Constant-Bulk film(Hg Probe) 2.5-2.7 @ 1 MHz 

Uniformity (%, 1σ) <1.5 

Stress (MPa) 40-60 Tensile 

Stress Hysteresis (MPa) <20 (RT-450ºC) 

Cracking Threshold (μm; blanket film ) >1.5 

ASTM scratch tape test on SiN, SiON, Ta, TaN Passed 

Leakage Current (Amps/cm≤) 10-9 @ 1MV/cm 

Glass transition temperature >450ºC 

Hardness (GPa) 1.5 – 3.0 

Modulus (GPa) 10 - 20 

Table 2. Summary of Black Diamond TM film properties [17,21] 

2.2. Required properties of low-k materials for integration 

For successful integration of low-k materials into the BEOL interconnects, besides having 

low dielectric constant it should be chemically, mechanically and thermally stable in the 

system. Every IC fabrication node technology demands low-k materials with lower 

dielectric values and with optimum physical properties as summarized in Table 3. Choosing 

a new low-k material with optimal electrical, thermal and mechanical properties for current 
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interconnects and IC fabrication technology is very crucial. As mentioned earlier, lower 

dielectric constants are obtained by modifying of the molecular structure of the materials, 

which ultimately affects the mechanical and thermal properties of the low-k materials. Good 

thermal stability and low coefficient of thermal expansion is needed to prevent both, 

damage to the film and, property changes during subsequent thermal processing. The bulk 

dielectric constant of the ILD stack, when low-k film is stacked with barrier layers and liners 

(SiC and SiN) should be less than 3.0.  

 

Electrical 

isotropic k < 3 @ 

1MHz 

Chemical 

No material change 

when exposed to acids, 

bases and strippers 

 

Mechanical

Thickness 

uniformity <10% 

within and <5% 

wafer to wafer for 8” 

wafer at 3σ 

Thermal 

Tg >400 °C 

Low Dissipation 
Etch rate and selectivity 

better than oxide 

Good adhesion to 

metal and other 

dielectrics 

Coefficient of thermal 

expansion 

<50ppm/°C 

Low leakage current

<1% moisture 

absorption at 100% 

relative humidity 

Residual stress 

<(+)100MPa 

Low thermal 

shrinkage 

Low charge trapping Low solubility in H2O High hardness < 1% weight loss 

High electric field 

strength 
Low gas permeability Low shrinkage 

High thermal 

conductivity 

High reliability High purity Crack resistance  

High dielectric 

breakdown voltage >

2-3 MV/cm 

No metal corrosion 
Tensile modulus 

>1GPa 
 

 Long shelf life 
Elongation at break 

>5% 
 

 Low cost of ownership
Compatible with 

CMP 
 

 Commercially available   

 Environmentally safe   

Table 3. Summary of required properties of low-k materials [16] 

2.3. Barriers and adhesion promoters for Cu/low-k structures 

BEOL multilevel interconnect structures comprise varieties of materials, such as Cu, low-k 

materials, oxides and nitrides. Copper interconnects in BEOL technology have some 

challenges such as, poor adhesion to dielectric materials and diffusion of copper into silicon 

substrates. Copper easily reacts with silicon and forms copper silicide at low temperatures 
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[22-23]. Traces of copper in silicon substrate will cause adverse effect on device operation. 

Most of the Interconnect metals (e.g. Cu, Ag, Au and W) except Al; do not bond well to 

underlying substrate and ILD. Therefore, the use of diffusion barrier layers and adhesion 

promoters between copper and underlying silicon substrate in ICs is mandatory. An ideal 

diffusion barrier material should also act as good diffusion barrier and adhesion promoters. 

Diffusion barriers under consideration are metal nitrides, carbides and borides, and metals 

such as Ti, Ta, and W. Diffusion barrier should be immiscible and non-reactive with copper. 

As stated by the studies, sputtered Ta and TaN films act as excellent diffusion barrier layers 

in Cu/low-k multilevel interconnects [24-25]. In the present investigation Ta, TaN, SiC and 

SiN are studied as barrier layers/cap layers in Cu/low-k stacks. SiC and SiN diffusion cap 

layers also acts as etch stops during the BEOL processes. Silicon nitride is widely used as 

cap layer; first, because it acts as an excellent barrier to copper and second, because of its 

etch selectivity to oxides. 

3. Mechanical characterization of low-k structures by using 

nanoindentation 

Currently most of IC fabrication technology has been migrated to Cu/low-k interconnect 

technology, as there is an increase of RC delay associated with the conventional Al/SiO2 

interconnects used in the miniaturization of IC technology. This technology transition brings 

several integration challenges for the Cu/low-k interconnects because of poor thermal 

and/or mechanical properties of low-k thin films and Cu/low-k stacks [1]. Hence, it is very 

important to study the mechanical properties of different Cu/low-k structures to evaluate 

the device reliability. In the present investigation, mechanical properties of various Cu/low-

k structures are studied by using nanoindentation technique. 

The desired ‘k’ value of the low-k films can be attained by modifying the molecular 

structure of the low-k film or by introduction of organic or inorganic groups into the base 

structure [7]. Mechanical reliability and dielectric constant of the low-k materials are 

mutually dependent and have inverse relation. In case of SiO2 based low-k materials, 

dielectric constant strongly depends on the density of the material, which in turn also 

depends upon the amount of porosity introduced, as shown in Fig 2 [27]. In chemical vapor 

deposition (CVD) based low-k materials, dielectric constant is decreased by the introduction 

of terminal methyl (-CH3) groups, that will break the Si-O network and create nanopores. As 

the concentration of Si-O bonds decreases, percentage of pores and density non-uniformity 

increases, ultimately increasing the probability of mechanical failure of low-k films.  

In IC fabrication technology, low-k material selection and its integration into BEOL is very 

crucial and it should withstand chemical mechanical polishing (CMP) without any failures. 

In microelectronic industry many researchers have been actively working toward finding 

threshold values of hardness and elastic modulus that can provide Cu/low-k system the 

ability to withstand CMP and wire bonding processes [28-30]. Researchers at Motorola [43] 

have concluded that passing the CMP process of low-k material is not a simple factor of 

modulus, hardness, adhesion or toughness, but a combination of all of these properties. As  
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Figure 2. Dielectric constant dependence on low-k material density [27] 

 

Dielectric thin films Thickness 

(nm) 

Elastic 

Modulus 

(GPa) 

Hardness 

(GPa) 

Researcher 

Organo Silicate Glass 

(OSG) 

2000 6.6-8.4 1.2-1.7 A.A. Volinsky et al [4] 

USG  

(undoped silicate glass) 

200-1000 79.06-80.66 5.65-7.52 Lu Shen et al [51] 

SiLK TM 600 0.4 6.65 Lu Shen et al [55] 

Porous SiLK TM 600 0.26 5.34 

MSQ –Hard 500-1000 12.5 0.936 S. Y. Chang et al [56] 

MSQ-Soft 500-1000 2.7 0.19 

Low-k/barrier/Si 

(Anonymous) 

1000 0.5 0.05 I. S. Adhihetty et al [57] 

Porous low-k  

(carbon base) 

250-540 4 0.15 Y. H. Wang et al [58] 

Porous low-k  

(silica base) 

250-540 0.35 0.45 

Table 4. Mechanical properties of various low-k materials studied by nanoindentation technique. 

stated before, the mechanical properties of low-k films depends on chemical structure, 

amount of porosity and composition, Elastic modulus and hardness values of the different 

dielectric thin films varies from 2 to 14 GPa and 0.5 to 7 GPa respectively [41-45]. Volinsky et 

al [1] have found a linear relationship between hardness and elastic modulus for silicate 

low-k dielectric films in nanoindentation testing with continuous stiffness measurement 

(CSM) attachment. In nanoindentation testing, mechanical response of low-k films is 
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different from the metallic films and usually exhibits little or no plasticity [27]. Hardness 

and elastic modulus values of various low-k films and Cu/low-k stacks were tested with 

nanoindentation technique by many researchers and some of those results have been 

summarized in table 4. Based on the extensive literature survey and the present work, it is 

observed that the mechanical properties of various films and Cu/low-k stacks depend on 

many factors, more importantly the amount of porosity (Constitutive and Subtractive), 

composition, molecular structure, thickness, type of stack and diffusion barrier. 

3.1. Sample preparation 

Materials used in the present work include BD thin films, oxide, nitride and barrier layers. 

Black diamond, oxide, SiC and SiN films were prepared by using PECVD technique. 

Sputtering technique was employed to deposit the copper seed (150 nm), Ta and TaN layers. 

Copper film of 1μm thickness was deposited by electroplating process. Different stacks of 

these layers were deposited by different experimental techniques. All thin film samples 

were prepared on 8” Si (100) wafer in semiconductor fabrication plant of class 1000 clean 

room environment. A thin oxide layer of thickness about 5 nm is deposited on the surface of 

silicon substrates to improve the adhesion between the substrate and the low-k thin films.    

3.2. Continuous Stiffness Measurements (CSM) 

This technique was introduced in the year 1989 by Oliver and Pethica [36-37]. The CSM 

technique developed over the last decade by researchers offers numerous advantages. It has 

the unique advantage of providing mechanical properties as a function of penetration depth. 

Calibration and testing procedure take very less time as there is no need for multiple 

loading and unloading. At high frequencies it allows to avoid obscure effects of the samples 

like creep, viscoelasticity and thermal drift, which cause much problem in the conventional 

calibration method. It allows us to measure the effect of contact stiffness changes and damping 

changes at the point of initial contact [38]. In CSM nanoindentation technique the contact 

stiffness is measured during loading of the indentation test and there is no need for separate 

unloading cycles. This is an ideal method to determine contact stiffness and it can measure at 

very small penetration depths. Hence this method is unique to measure mechanical properties 

of thin films of few tens of nanometers. It has an additional advantage that if the specimen 

shows viscoelastic behavior, the phase difference between the force and displacement signals 

gives idea about the storage and loss modulus of the specimen [26]. 

In nanoindentation experiment, the CSM technique is carried out by applying a harmonic 

force at relatively high frequency (69.3 Hz), which is added to increasing load, P, on the 

loading coil of the indenter as shown in Fig. 3. The applied current that determines the 

nominal load of the indenter is very small, which results oscillations to the indenter with a 

frequency related contact area and stiffness of the sample [39].  

This technique accurately measures displacements as small as 0.001 nm using frequency 

specific amplification. To determine the contact stiffness of the sample, the dynamic 
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response of the nanoindenter has to be determined. A dynamic model which is used in CSM 

system is shown in Fig. 4. Major components of the dynamic model are the mass of the 

indenter, the spring constant of the leaf springs that support the indenter, the stiffness of the 

indenter frame and the damping constant due to the air in the gaps of the capacitor 

displacement sensing system. 

 

Figure 3. Schematic of nanoindentation CSM load-displacement curve [39;82]. 

 

Figure 4. Schematic of components of dynamic model for the indentation CSM system [32] 

By analyzing this model, the contact, S, can be calculated from the amplitude of the 

displacement signal from [39; 82], 

 _1 1 2 2 2 2{( ) }
( )
OS

f S

P
S C K m D

h
ω ω

ω

−
= + + − +   (1) 

And the phase angle, φ  between the driving force and the displacement response is 
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1 1 2

tan( )
( )f s

D

S C K m

ω
φ

ω− −
=

+ + −
   (2) 

Where 

Cf= the compliance of the load frame (~1.13 m/MN) 

Ks= the stiffness of the column support springs (~60 N/m) 

D= the damping coefficient (~54 N s/m) 

Pos= the magnitude of the force oscillation 

h(ω)= the magnitude of the resulting displacement oscillation 

ω= frequency of the oscillation 

φ = the phase angle between the force and displacement signals 

m= mass (~4.7 gm) 

4. Mechanical characterization of BD thin films with varying thickness 

Thickness of the thin film structures used in the BEOL interconnects continue to decrease as 

the chip size decreases. Usually, thickness of the dielectric film has small effect on electrical 

properties [40], but it has significant influence on the mechanical properties of the film. 

Hence, it is very important to study the mechanical properties of these films of minute 

thicknesses.  For this study, BD thin films of six different thicknesses, 100, 300, 500, 700, 1000 

and 1200 nm have been prepared on 8” silicon substrate. Nanoindentation tests were 

performed on these films to study the effect of thickness on the nanomechanical behaviors.    

Fig.5 shows typical load-displacement curves of the BD thin films (100, 300, 500, 700, 1000 

and 1200 nm) using nanoindentation CSM technique. By using this CSM technique, 

hardness and modulus can be determined as a function of indentation penetration depth 

with a single nanoindentation load-unload cycle. Berkovich indenter was employed in all 

experiments and a series of ten indentation tests were performed on each sample. The 

Poisson’s ratio of the BD films of different thicknesses in nanoindentation experiment data is 

taken as 0.25, because the Poisson’s ratio has a negligible effect on the indentation results 

[41]. During indentation, almost all BD films exhibit pop-in events as indicated by arrows in 

Fig. 5 due to failures in the films and it is evident from the optical micrographs (Fig. 6) and 

the corresponding pop-in events are marked on hardness and modulus vs. displacement 

graphs in Fig. 7. As the thickness increases, the degree of failure or the extent of damage 

increases in nanoindentation testing and it can be observed from the optical images shown 

in Fig. 6, where cracks are indicated by arrows on the micrographs. Many researchers have 

observed this kind of fracture behavior (pop-in event) in various types of low-k materials, 

bulk glasses and silica foams [42-46] Table 5 gives the information about the BD films 

fracture/delamination during nanoindentation testing, in terms of threshold load, threshold 

indentation depth and % of thickness at which film cracking occurs. For 100 nm thick film, 

failure is observed when the indenter tip is in the substrate and it can be seen in Fig. 5. In 

case of BD films with thickness 300-1200 nm, failure is observed within the films at different 

loads and indentation depths as shown in Fig5 and Table 5. It is found that as the BD film 

thickness increases the threshold load of cracking and the threshold indentation depth 



 

Nanoindentation in Materials Science 240 

increases. One common trend observed in the fracture among BD films (300-1200 nm) is 

that, the film failure (crack or/and delmaination) occurs at around 60-65% of the film 

thickness in indentation testing. This data is very useful in conventional nanoindentation 

processes to determine the physical properties of BD films, i.e. the threshold load for the BD 

films without cracking, threshold loads in CMP process and to measure the fracture 

toughness of the BD films. 

 

Figure 5. Load-displacement curves for Black Diamond TM (BD) films of six different thicknesses under 

nanoindentation, (a) 100, (b) 300, (c) 500, (d) 700, (e) 1000 and (f) 1200 nm. Arrows on the curves indicate 

the pop-in events. 

 

BD sample thickness 

(nm) 

Threshold load of cracking 

(mN) 

Threshold 

indentation 

depth of 

cracking 

(nm) 

% of thickness at which 

cracking occurs (nm) 

100 2.17 142 142 

300 1.78 190.69 63.56 

500 4.28 312.84 62.57 

700 11.00 460.00 65.71 

1000 18.83 644.00 64.40 

1200 25.23 730.00 60.83 

Table 5. Summary of fracture behavior data for all BD samples in nanoindentation testing. 
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Figure 6. Optical images of residual nanoindentation impressions of (a) 500, (b) 700, (c) 1000 and 1200 

nm BD thin films. Radial cracks in the films observed for all thicknesses as shown by arrows. 

The hardness and elastic modulus as a function of displacement (indentation depth into the 

film thickness) of all BD samples are shown in Fig. 7. Results at the initial indentation depths 

show large fluctuations and high values of hardness and elastic modulus as the tip touches 

the film surface which might be due to the equipment noise and the inaccuracy of the 

indenter tip function at very shallow depth of indentation. As the depth of the indentation 

increases, both the hardness and elastic modulus reaches minima region as a property 

plateau and then tip starts sensing the effect of silicon substrate which results in higher 

hardness and elastic modulus. This phenomenon is observed only in the case of soft films on 

hard substrate. Usually, the initial part of the data is usually discarded in nanoindentation 

analysis and this kind of problem has been observed by other investigators [47-48]. Here, the 

averaged hardness and elastic modulus of this minima plateau region is used to define the 
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properties of the films. This phenomenon has been validated by comparing the properties at 

1/10th of the film thickness and properties at the minima property region as shown in Table 

6.  There are no significant differences observed in between properties of the films at 1/10th 

of the thickness and properties from minimum plateau region. Hence in this scenario 

computing properties from minimum plateau region can be more practicable.   Fig. 7 

compares the mechanical properties of six different thicknesses of BD samples. Hardness 

and elastic modulus of the BD films (100 to1200 nm) are in the range of 1.66 to 2.02 GPa and 

9.27 to16.48 GPa respectively. 

 

Figure 7. Hardness and (b) elastic modulus as functions of the displacement for BD films with six 

different thicknesses 
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Thickness of BD films 

(nm) 

Property at 10% of film 

thickness (GPa) 
Property at Plateau Region 

H E H E 

100 1.99±0.25 18.53±1.5 2.02±0.36 16.48±2.1 

300 1.83±0.32 13.76±1.3 1.85±0.12 11.54±1.2 

500 1.63±0.14 12.91±1.4 1.70±0.05 10.58±1.5 

700 1.58±0.24 11.62±1.5 1.78±0.02 9.93±1.1 

1000 1.76±0.35 13.52±1.3 1.73±0.07 10.41±1.4 

1200 1.62±0.84 12.72±1.5 1.66±0.09 9.27±1.7 

Table 6. Summary of mechanical properties of BD films of six different thicknesses 

As the indentation depth increases initially slight decrease in hardness and elastic modulus 

values are observed and as the indentation depth further increases these property values 

reach minima, then tip starts sensing the effect of the substrate which results in higher 

hardness and elastic modulus values. The initial decrease of properties as the indentation 

displacement increases is observed during nanoindentation of very thin films [49]. The 

averaged values of properties in minima plateau region are considered to be the real 

properties of the films and, in the present study, these values are used to define the 

properties of each film as shown table 6. The hardness values of all BD films are in the range 

of 1.66 to 2.02 GPa and the elastic modulus values are in the range of 9.27 to 16.48 GPa. Sharp 

deviations are observed in the property vs. displacement (see Fig. 7) graphs of all BD films, 

which corresponds to the pop-in events shown in Fig. 5, resulting from film cracking and/or 

delamination at the BD film-silicon substrate interface. Significant differences in mechanical 

properties are observed when the BD film thickness is less than 500 nm (100-500 nm), mainly 

in the case of elastic modulus. When the BD film thickness is greater than the 500 nm (500-1200 

nm) no significant variation in mechanical properties are observed and it can be assumed that 

these properties are representative of the bulk properties of the BD films.   

The minima plateau region for the hardness is considerably large and there is nearly no 

change with respect to different thicknesses, when compared with elastic modulus plateau 

region. The minima elastic modulus plateau region decreases as the BD film thickness 

decreases because the effect of substrate is more on elastic modulus for thinner films. In Fig. 

7, it is observed that the sharp increase in modulus from the minima plateau region, mainly 

due to the effect of substrate, is much more on the elastic modulus than on the hardness of 

the BD films. This is because the elastic modulus is associated with the elastic deformation 

during nanoindentation, and in contrast, the hardness response of the material is associated 

with plastic deformation. Extensive simulation studies show that, the effective elastic 

modulus of a film experiences greater substrate effect than the hardness value [44]. BD -100 

nm film shows significantly higher elastic modulus (E=16.48 GPa) when compared to higher 

thickness BD films and it is expected due to molecular restructuring in very thin BD films 

(≤100 nm), since the elastic modulus is an intrinsic material property, which largely depends 

on interatomic or molecular bonds [49]. Hence the higher elastic modulus of BD-100 nm film 

is probably expected due to stronger molecular bonding between organic (-CH3) and 

inorganic (Si-O) constituents. 
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5. Effect of diffusion barriers on BD stacks integrity 

For this study, four samples have been prepared with Ta and TaN barrier layers and dual 

stacks also have been prepared as BD/Ta/Si, BD/Ta/BD/Ta/Si, BD/TaN/Si and 

BD/TaN/BD/TaN/Si. Mechanical properties were assessed by nanoindentation technique. 

For single dielectric stack, the silicon substrate is first coated with Ta or TaN barrier layer of 

25 nm thickness by using self-ionized metal plasma (SIP) technique at room temperature 

followed by the deposition of BD film of 1000 nm thickness by PECVD (plasma Enhanced 

Chemical Vapor Deposition) technique. For the deposition of dual dielectric stack this 

procedure was repeated one more time with BD films and barrier deposition. The 

application of Ta and TaN barrier layers to BD films improves stiffness in addition to other 

mechanical properties.    

The thickness of single and dual dielectric stacks studied in the present work is 1025 and 

2050 nm respectively. Fig. 8 shows the typical load-displacement curves of single and dual 

dielectric stacks. Both single and dual dielectric stacks show pop-in events. From Fig. 9 

optical micrographs of residual nanoindentation impressions of single and double dielectric 

stacks reveal that massive failure of the films is more prominent in dual dielectric stacks. 

Dual dielectric stacks demonstrate massive failure which can be observed as more pop-in 

events in load-displacement curves especially at the interfaces, which are shown as dotted 

lines in Fig. 8. This can be confirmed by observing the residual nanoindentation marks as 

shown in Fig. 9. Hence, it is expected that crack formation and/or delamination may occur at 

the interfaces due to indenter penetration as observed by J. Vitiello [50]. In the current study, 

stacks having same barrier layer (Ta or TaN) are compared with respect to mechanical 

properties. Hardness and elastic modulus of single dielectric stacks are in the range of 1.43 

to 1.91 GPa and 8.35 to 10.03 GPa respectively. No significant difference is observed in the 

case of double dielectric stacks. Mechanical properties of both single and dual stacks are 

given in Table 7. 

5.1. Mechanical properties of the BD stacks with Ta barrier layer 

Hardness and elastic modulus of both single and dual dielectric stack with Ta barrier layer 

is shown in Fig. 10. High hardness values at the film surface for both stacks are observed 

mainly due to the inaccuracy of indenter tip functions and surface roughness [47]. Large 

fluctuations in hardness values throughout the film thickness measurements are observed 

due to the failure of stacks during the nanoindentation. Substrate effect is more prominent 

in single dielectric stack when compared with double dielectric stack, this is because the 

thickness of both the stacks are different and there is difference in the number of interfaces. 

The hardness and elastic modulus values of single dielectric stack is higher than the values 

for dual dielectric stack and these properties are consistent throughout the thickness of the 

stacks as shown in Fig. 10. The averaged minima property plateau is used to define the 

property of each stack and these values are given in Table 7. Single dielectric stack has 

hardness of 1.91 GPa and modulus of 10.03 GPa, whereas for dual stack, the values are 1.38 

and 7.98 GPa respectively. From Fig 10, sudden deviations in properties are observed 

mainly due to the film failure during nanoindentation process which corresponds to pop-in 
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events in load-displacement curves as discussed earlier. This mechanical property data of 

single and dual stacks are very useful in CMP performance, for example, single dielectric 

stack has slower removal rate when compared to dual stack for the same CMP pressure [51-

52]. This is mainly due to the higher hardness value of the single dielectric stack. This 

mechanical characterization data will be very helpful in deciding the CMP loads as per the 

dielectric stacks. 

 

Figure 8. Typical load-displacement curves of (a) BD/Ta/Si (b) BD/Ta/BD/Ta/Si, (c) BD/TaN/Si and (d) 

BD/TaN/BD/TaNs/Si stacks. Arrows indicate the pop-in events. 

 

Figure 9. Optical micrographs of residual nanoindentation impression on single and double dielectric 

stacks. 
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Figure 10. Hardness and elastic modulus as a function of displacement for BD/Ta/Si and 

BD/Ta/BD/Ta/Si stacks measured using the nanoindentation CSM technique. 

5.2. Mechanical properties of the BD stacks with TaN barrier layer 

The total thickness of these stacks are maintained same as in previous section, i.e. 1025 nm 

for single dielectric stack and 2050 nm for dual dielectric stack. Hardness and elastic 

modulus as a function of displacement of these stacks measured using the nanoindentation 

CSM technique is presented in Fig. 11. Single dielectric stacks have slightly higher 

mechanical properties when compared with dual dielectric stacks as summarized in table 7. 

In both cases, the performance of single dielectric stacks is better than that for the dual 
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dielectric stacks. By comparing the single dielectric stacks, BD/Ta/Si has higher hardness 

and elastic modulus than for BD/TaN/Si stack (Table 7). Thus barrier layer greatly affects the 

mechanical properties of the single stack. There is no significant difference observed in the 

case of BD/Ta/BD/Ta/Si and BD/TaN/BD/TaN/Si dual dielectric stacks. It is anticipated that 

the lower mechanical properties of dual stacks is mainly due to the presence of residual 

stresses. Usually, dual stacks have more residual stresses when compared with single 

dielectric stacks as dual-stacked samples are subjected to more processing steps. 

Compressive stresses in the stacks result in an increased hardness values but tensile stresses 

cause a decrease in hardness. Therefore, dual stacks are expected to have more tensile 

stresses when compared with single dielectric stacks. 

 

Figure 11. Hardness and elastic modulus as a function of displacement for BD/TaN/Si and 

BD/TaN/BD/TaN/Si stacks measured using the nanoindentation CSM technique 
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Multilayer Stack 
Stack Thickness 

(nm) 

Hardness

(GPa) 

Elastic Modulus 

(GPa) 

BD/Ta/Si 

(Single dielectric stack) 
1025 1.91±0.3 10.03±1.2 

BD/Ta/BD/Ta/Si (double dielectric 

stack) 
2050 1.38±0.1 7.98±1.5 

BD/TaN/Si 

(Single dielectric stack) 
1025 1.43±0.5 8.35±1.4 

BD/TaN/BD/TaN/Si (dual dielectric 

stack) 
2050 1.4±0.2 7.58±1.3 

Table 7. Summary of mechanical properties of single and double dielectric stacks. 

6. Effect of the wafer thinning/backgrinding on the integrity Low-k 

stacks 

For this study, multilayer low-k stack with fifteen different thin films comprising SiN, USG, 

Blok (SiC), BD (Black Diamond TM, low-k), has been fabricated as shown in Fig. 12 All thin 

film samples were prepared on 8” Si(100) wafer in a semiconductor processing clean room 

of class 1000 environment. Samples fabricated in this study are exclusively designed to 

study the BD (low-k) integrity in the BEOL interconnects and it resembles the Cu/low-k 

structure of the three metallizations. So the structure has three BD low-k layers at different 

levels according to the BEOL (Back End of the Line) interconnect design specifications. The 

total thickness of the multilayer low-k stack is around 3400 nm. Therefore present study 

gives an outlook about the response of the low-k test structures during back grinding 

process. To study the backgrinding/thinning effect on the Low-k stacks, all samples have 

been subjected to backgrinding process by using the commercial backgrinding system. 

Empirically backgrinding process involves, first coarse grinding using grit #300, then fine 

grinding using #2000 followed by dry polishing. A total five set of samples have been 

prepared for this study as, normal sample (without backgrinding), Back grinded samples of 

four different thicknesses (BG-500, 300, 150 & 75um). 

Failure loads, hardness (H) and elastic modulus (E) normal (no back grinding) and back 

grinded low-k stacks (BG-500, 300, 150 & 75 μm) are computed by analyzing the 

nanoindentation load-displacement curves as shown in Fig. 13. From Fig. 13, it is obvious 

that all stacks have shown pop-in event and this event can be taken as the failure 

load/fracture strength of the stack. These pop-in events in the nanoindentation curves are 

resulting from the film cracking and delamination of the stack in the form of blisters [53]. 

The normal stack shows pop-in event (failure load/fracture strength of the stack) at lower 

loads and indentation depths, as compared to the back grinded stacks. Normal stack failed 

at 456.25±21.22 mN load and 2422.41±58.53 nm indentation depth, whereas back grinded 

stacks failed in the range of 482 to 661mN load and 2405-2979 nm indentation depth. The 

failure load and depth values of all types of samples are summarized in the Table. 8 and. 

From the nanoindentation curves and optical imaging (from Fig.14), analysis it is clearly 



Mechanical Characterization of Black Diamond (Low-k)  
Structures for 3D Integrated Circuit and Packaging Applications 249 

evident that the nanoindentation response of the normal and back grinded stacks is different 

in terms of failure load depth and fracture behavior. Normal stack and BG-500μm show 

extensive delamination and chipping, whereas other back grinded stacks (BG 300, 150, 75 

μm) show delamination blister and this behavior is in good agreement with the 

nanoindentation pop-in event. BG-500μm exhibits the mixed response as it shows chipping-

off during nanoindentation and moderate pop-in failure load of 482.17 mN and this might 

be due to the moderate degree of back grinding. In case of the other back grinded stacks (BG 

300, 150, 75 μm), even higher nanoindentation loads are not able to damage/chip-off the 

low-k stack and cause interfacial delamination only. No significant difference in fracture 

strength (pop-in event) is observed among BG-300, 150, and 75 μm back grinded stacks and 

all these grinded stacks show higher facture strength/loads than the normal stack and BG-

500μm. Accordingly the increase in failure load depends on the degree of the back grinding, 

but not much difference is observed when the wafers are grinded to 300, 150 and 75 μm. 

After back grinding, the strength of the low-k stack is enhanced, mainly in terms of 

nanoindentation load and indentation depth and this increase is understood mainly due to 

the application of mechanical pressure and thermal stresses during back grinding action. 

The back grinding pressure or load may improve the adhesion, especially Vander walls 

forces at the multilayered interfaces and cause the densification of the individual films of the 

stack. It is being investigated by many researchers in the packaging field that the back 

grinding processes are deteriorating the die strength, but this is not the same phenomenon 

with the active side of the chip stack.  

 

Figure 12. Low-k stack with fifteen multilayers for wafer backgrinding study 
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Figure 13. Typical load-displacement curves of normal and back grinded samples and its comparison. 

BD samples 
Fracture Behavior 

Load (mN) Indentation Depth (nm) 

Normal stack 456.25+21.22 2422.41+58.53 

BG-500µm 482.17+25.25 2405.86+70.47 

BG-300µm 661.20+7.57 2979.79+21.58 

BG-150µm 658.45+4.74 2809.01+30.60 

BG-75µm 658.60+12.21 2942.52+71.20 

Table 8. Summary of nanomechanical properties of normal and back grinded samples 

Fig. 15 shows the hardness and elastic modulus as a function of the indentation depth for 

normal and back grinded stacks measured by using the nanoindentation CSM technique. 

Mechanical properties of all samples are not constant, but strongly influenced by the contact 

depth and this is mainly due to the presence of the different types of thin films with diverse 

physical properties and 15 interfaces. From Fig. 15, it is clear that initially all samples exhibit 

high hardness and modulus values due to the presence of the SiN layer on top of the stack. 

However, back grinded stacks show higher hardness values throughout the indentation 

depth and this difference is significant till ~1500 nm. Even though BG-500 μm samples 

shows moderate failure load values when compared to other back grinded stacks, it still 

shows higher mechanical properties than normal stack. There is no difference in hardness  
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Figure 14.  Optical images of residual nanoindentation impressions of normal and back grinded 

samples. 

values among the back grinded stacks. In case of the elastic modulus, the overall trend is 

mixed, in which initially back grinded stacks exhibit high values and from 1000 nm depth, 

BG-150 μm stack follows the trend of normal stack and BG-75 & 300 μm stacks show lower 

modulus values. The mixed trend of modulus values of all samples is mainly due to the fact 

that, the elastic modulus is highly sensitive and intrinsic property. Elastic modulus is greatly 
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influenced by layers beneath the testing films and substrate. In the case of hardness, the 

difference between normal stack and back grinded stacks is very clear when compared with 

the modulus values. As a whole, back grinded stacks exhibit the higher hardness and elastic 

modulus values, and this trend is quite clear in the low-k region. This might be due to back 

grinding loads or pressures influencing the interfaces and causing the densification of the 

films, especially in the low-k region. Sekhar Et al., have extensively studied the nanoscratch 

behavior on the backgrinded stacks by analyzing the fracture behavior by critical loads [54]. 

In this study the fracture or failure strength, hardness and elastic modulus of the normal 

and grinded stacks are analyzed and compared at overall level as the nanoindentation 

analysis is very complicated and not well established for the multilayered stacks. 

 

Figure 15. Hardness and elastic modulus as a function of displacement for normal and back grinded 

samples 
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7. Summary 

This chapter presents the systematic mechanical characterization of the BD thin films for 

BEOL interconnects and 3D IC/packaging applications. For this purpose several thin film 

systems have been chosen which comprises, Black diamond (SiOC:H), USG (SiO2),SiC, SiN 

and Ta & TaN thin films which have been prepared by using PECVD technique and 

sputtering technique respectively. Nanoindentation tests with continuous stiffness 

measurement (CSM) attachment have been performed on all samples to assess hardness (H) 

and elastic modulus (E) properties. The CSM attachment is preferable because it provides 

continuous measurement of the hardness and elastic modulus as a function of indentation 

depth. In this study several Low-k systems have been prepared and characterized as, 

mechanical characterization of low-k films with different thicknesses, influence of Ta & TaN 

barrier layers, and effect of wafer backgrinding/thinning on the complete low-k stack which is 

similar to actual BEOL with three metallization. In case of the thickness dependence of 

mechanical properties of BD films, hardness and elastic modulus values obtained of all BD 

films (100-1200 nm) are in the range of 2.02to 1.66 GPa and 16.48 to 9.27 GPa respectively. 

Considerable thickness dependence of the properties is observed when thickness is less than 

500 nm. To study the effect of barrier layers on low-k stack, single and dual dielectric stacks 

have been fabricated with Ta and TaN barrier layers. In nanoindentation testing, the 

performance of single dielectric stacks is better than the dual dielectric stacks is mainly 

attributed to differences in the number of interfaces, total film thickness and residual stresses. 

For the first time the effect of the back grinding process on active side of the low-k chip stack 

has been studied by using sophisticated nanoindentation technique. It is further investigated 

by analyzing the fracture or failure strength (pop-in event in nanoindentation), hardness, 

elastic modulus of the low-k stack for both normal and back grinded samples. After back 

grinding process, the overall integrity of low-k stack is enhanced and thus the back grinded 

stacks exhibit higher nanomechanical properties than the normal stacks. This can be 

attributed mainly to the straightening of the low-k interfaces and densification of the BD 

(low-k) layers during back grinding processes. Based on the results and their detail analysis 

it can be said that the thermo-mechanical stresses that applied and/or generated during 

wafer back grinding processes affect the interfaces and nanomechanical behavior of the low-

k stack, in turn enhances the overall integrity of the back grinding stacks. 
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