
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

683

Collision-Free Path Planning in Robot Cells
Using Virtual 3D Collision Sensors

Tomislav Reichenbach & Zdenko Kovacic

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784 , ARS / plV, July 2005

1. Introduction

In industrial robotic systems, it is crucial to avoid collision among the manipulators or
with other objects in the workspace. The problem is more complicated for manipulators
than for mobile robots, since not only the effector end must move without collision to the
desired location, but the links of the arm must also avoid collisions. The problem has been
addressed in various ways in literature (Lozano-Perez, 1986) and (Barraquand, Langlois &
Latombe, 1992). These methods can generally be divided into two methodologies: global
and local.
A global typical technique in collision avoidance consists of exploring a uniform grid in
configuration-space (C-space) or configuration time space (CT space) using a best-first
search algorithm guided by goal-oriented potential field (Barraquand & Latombe, 1991)
and (Hwang, & Ahuja, 1992). Two main problems exist, the obstacles must be mapped into
the configuration space (a very complex operation) and a path through the configuration
space must be found for the point representing the robot arm. Usage of this method in
dynamic complex environments, with more robots sharing the same space, is too time
demanding to be accomplished in real time.
A new idea proposed in this work is to detect possible collisions among robotic system
entities in a virtual world. Moreover, the idea is to use a collision detection engine, which
is extensively used in computer graphics and simulation, to test for possible collisions in
full 3D environment with objects consisting of thousands of polygons and modeled as
similar to the real ones as close as possible. A modification of manipulator kinematics is
proposed in order to control directly a colliding point, hence enforcing fastest collision
avoidance. This approach has some advantages of both global and local planning
methodologies, as the complete environment is considered in planning and fast collision
avoidance response suitable for on-line application in dynamic environments is achieved.
Motion planning for models with fairly complex geometry has been proposed in some
former papers (Cameron & Qin, 1997) with modified Gilbert, Johnson and Keerthi (GJK)
algorithm applied for distance computations and collision detection, but it differs in the
nature and use of the collision detection algorithm.
A software simulation package for virtual modeling of complex kinematic configurations
has been developed (C++ and OpenGL). Models are created in CAD software and then
imported into virtual environments described in the XML. Virtual models provide very
inexpensive and convenient way for design, analysis, control, dynamic simulation and
visualization of complex robotic systems. Given that virtual models are accurate, collisions O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.i-
te

ch
on

lin
e.

co
m

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.

684

in a virtual environment should occur in the same way as in the real world. The 3D
models used in this work are polygonal structured, i.e. polygons form a closed manifold,
hierarchical non-convex models (Lin & Gottschalk, 1998) undergoing series of rigid-body
transformations. Polygons are made entirely of triangles, as hardware accelerated
rendering of the triangles is commonly available in the graphic hardware. All the
parameters (link positions, link lengths) for a direct kinematics solution are extracted from
a 3D description.
This chapter is organized as follows. First, a brief introduction to kinematic models is
given, then a method for collision detection among objects in virtual environment is
explained along with an algorithm for determination and generation of new kinematic
parameters for the colliding objects. A modification of manipulator kinematics is proposed
in order to control directly a colliding point, hence enforcing fastest collision avoidance.
Following is the description of collision avoidance strategy and the results of simulations
of collision free trajectory planning in the experimental Flexible Manufacturing Systems
(FMS).

2. Kinematic Model

The endpoint position and orientation of a manipulator may be expressed as a nonlinear
function of the constants such as physical link parameters, and by joint angles or
displacements that are variables. To represent the spatial transformations between the
joints, several symbolic notations have been proposed. The most widely used notation is
the classic Denavit-Hartenberg (D-H) notation (Denavit & Hartenberg, 1955) or its Paul
(Paul, 1981) version. These notations however are only valid for the kinematic chains with
one branch (i.e. serial kinematic chains), and can lead to ambiguities when dealing with
kinematic chains with more then one branch (parallel kinematic chains). The Sheth-Uicker
(S-U) (Sheth & Uicker, 1971) notation extends D-H notation for multiple loop kinematic
chains in the general case, but is much more complicated because it introduces additional
coordinate systems. Another notation presented by Kleinfinger (Khalil & Kleinfinger,
1986), is usable for all serial, treelike or closed loop kinematic chains, and has fewer
parameters then the S-U notation, however, since all manipulators employed in this
chapter are serial kinematic chains, only D-H notation, albeit in a somewhat modified
form, is used.

3. Kinematic Parameters

Six parameters are needed to describe a complete relation between two independent
coordinate systems - frames. Like most of the other kinematic notations, D-H notation
requires following some rules when designating axes and orientations to the link frames.

3.1. Modified D-H Notation

Assuming that robot links have only one dimension, the length, the classic D-H notation
describes the complete relation between two adjacent link frames with only four kinematic

parameters []i i i ia d . The meaning of these parameters is the following: rotation

around a 1iz axis with an angle i , translation along a 1iz axis with a displacement id ,

translation along a 1i ix x= axis with a displacement ia , rotation around a 1ix axis with

an angle i .

For two coordinate systems having an arbitrary position and orientation in the 3D space,

685

the conversion between them can be described with a matrix iM given in the [4x4]

homogenous matrix form,

11 12 13 1

12 22 13 1

13 23 13 1

0 0 0 1

i i i

r r r p

r r r p

r r r p
M T R= = (1)

where

1 11 12 13

1 12 22 13

1 13 23 13

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 0 0 0 1

i i

p r r r

p r r r

p r r r
T R= =

To convert from matrix Mi, parameter ib representing a link length along the 1iy axis of

the ith coordinate system, has been added. Now, there are 5 independent parameters

[]i i i i ia b d used in modified D-H notation. Only one of these parameters is a

variable, joint position (i if the joint is rotational or id if the joint is prismatic) and the

other 4 (or 3 in the original D-H notation) are fixed parameters determined only by a
manipulator construction. In this way, the D-H transformation matrix between two
adjacent link frames has the following form:

1

cos cos sin sin sin cos sin

sin cos cos cos sin sin cos

0 sin cos

0 0 0 1

i i i i i i i i i

i i i i i i i i ii

i

i i i

a b

a b

d
T

+
= (2)

To get D-H parameters []i i i i ia b d for the ith link from a joint frame

transformation matrix 1i

iT written in the form as in eq. (2), a correct solution has to be

chosen from a solution set 1 2 3 1 2 3{ }i i i i i iS = , , , , , . Because of the ambiguity of solutions of

trigonometric equations, several possible solutions are available:

1 1 12((3 2) (3 3))i i

i i iatan= , , ,T T

2 1 12((2 3) (2 2))i i

i i iatan= , , ,T T

3 1 12((1 3) (1 2))i i

i i iatan= , , ,T T (3)
1 1 12((2 1) (11))i i

i i iatan= , , ,T T

2 1 12((1 2) (2 2))i i

i i iatan= , , ,T T

3 1 12((1 3) (2 3))i i

i i iatan= , , ,T T

4. Direct Kinematics

A transformation from the nth local frame to the global frame is defined as:

0

0

n

n k jk

k

T M M

=

= (4)

k k kM T R=

686

Where:

- kT is kth joint translation matrix.

- kR is kth joint rotation matrix.

- jkM is kth joint transformation matrix.

Matrix jkM is defined as:

1

2

3

cos cos sin sin

sin cos cos sin

sin sin cos cos

0 0 0 1

k k k k

k k k k

jk

k k k k

l

l

l
M = (5)

where k , k and k are the rotation angles around the respective kx , ky , kz axes, and 1l ,

2l , 3l are translations along the respective kx , ky , kz axes of the kth coordinate system. If

the system is using D-H notation, then all joint rotations and translations are done around

and along the local kz -axis, so the eq. (5) takes the following form:

3

sin 0 0 cos sin 0 0

sin cos 0 0 sin cos 0 0

0 0 1 0 0 1

0 0 0 1 0 0 0 1

k kk k

k kk k

jk qk

k

cos q q

q q

l q
M M= = = (6)

where kq is a joint variable defined as (1)k k k k kq d= + . If the joint is rotational then

1k = , else it is prismatic and 0k = . Due to high complexity of 3D models, there are more

coordinate systems than joints. All coordinate systems that do not undergo rigid-body

motion are considered static with matrix qkM equal to the unity matrix. A direct kinematic

solution, a tool position and an orientation, are easily extracted from eq. (4).

5. Collision Detection

Collision detection is a part of interference detection, which can be divided into three
portions: collision detection that detects whether objects are in collision, collision
determination that finds the exact collision point, and finally, collision avoidance that
determines what actions should be taken in response to the collision. There are numerous
approaches to a collision detection problem (Jimenez, Thomas & Torras, 2001), which can
be mainly grouped into; space-time volume intersection, swept volume interference,
multiple interference detection, and trajectory parameterization. A collision detection
algorithm used in this work belongs to a multiple interference detection category. This
implies that the algorithm reduces a general collision detection problem to multiple calls
to the static interference tests focused on detecting intersections among simple geometrical
entities; triangles and oriented bounding boxes (OBB) belonging to the objects being
tested. As the algorithm is static, i.e. collision detection occurs only at discrete times, it is
fast enough and effective from the computational point of view, thus it can provide real-
time collision detection in very complex (high polygon count) virtual environments.

5.1. Oriented Bounding Boxes (OBB)

An oriented bounding box (OBB) can be described by the center point of the box c
b , and a

center rotation vector r
b (or three normalized vectors u

b , v
b , w

b that represent the face

687

normals). To express the OBB dimensions the most compact representation is with the

half-lengths B

uh , B

vh , B

wh , which represent dimensions along the respective u v w, , axis.

z

x

y

h

h
h

b

b
b

w

u

v

B

B

B
u

v

w

Figure 1. Oriented bounding boxes

An intersection test between two OBBs A and B is accomplished with a fast routine
presented in (Gottschalk, Lin & Manocha, 1996). This routine is based on separating axis
theorem and is about an order of magnitude faster than methods that use linear
programming or closest features. According to the separating axis theorem, it is sufficient
to find one axis that separates objects A and B to determine they do not overlap. The total
number of tested axes is fifteen, three from the faces of A, three from the faces of B and
nine from combination of edges from both OBBs (3x3). The potential separating axes that
should be orthogonal to the faces of A and B so the simplest way is to use the normals to

the faces u
a , v

a , w
a and u

b , v
b and w

b . The remaining nine potential axes are formed by

one edge from each OBB, { }ij i jc a b i u v w= × , , , and { }j u v w, , . The OBBs are then

projected onto the axes to see if both projections overlap on all axes, i.e. if the OBB A and B
overlap. The maximum number of operations is reached when the two OBBs overlap, and
is around 180 (without the transform of B into A’s coordinate system) (Gottschalk, 2000).
However, in most cases without overlap, a separating axis is found earlier.

5.2. Triangle/triangle Intersection

After the intersection between the OBBs is determined, an exact collision point is found
with triangle/triangle intersection test (see Fig. 2). Often not only the information whether
two triangles intersect but also their exact intersection point is needed. Several methods
for triangle/triangle intersection test are available, with two of the fastest being the interval
overlap method developed by (Möller, 1997) and the triangle/triangle intersection method
found in ERIT package (Held, 1997).

The ERIT’s method of detecting whether two triangles 1T and 2T intersect, can be briefly

summarized as:

1. Compute 2 2:n x , the plane in which 2T lies.

2. Trivially reject if all points of 1T are on the same side of 2

3. Compute the intersection between 2 and 1T

4. If this line segment intersects or is totally contained in 2T , then 1T and 2T

 intersect; otherwise, they do not.

688

1

T1

Figure 2. Triangle/triangle intersection

In some occasions, it is not necessary to determine the exact collision point, but only to
check if objects are in collision. If the object is distant it can be approximated with just one
OBB (see Fig. 3) and consequently collision detection will be faster. The balance between
fast collision detection and exact collision point determination is the case shown in Fig. 4.
The 3rd hierarchy level OBBs are used for objects that are near each other (see Fig. 5).
Normally, a manipulator will not contain higher levels of OBBs hierarchies (4th, 5th, etc...),
since they would not provide computational advantage over a triangle/triangle
intersection test. Binary trees are often used for the hierarchy representation and different
strategies for hierarchy building are available, e.g. K-DOPTtree, OBBtree (Gottschalk, Lin
& Manocha, 1996). The OBBtree approach is the most similar to the one used here. A depth
of hierarchical tree, and a decision when the triangle/triangle test will be used instead of
OBB overlap check, can be conditioned by available computational time and the
complexity of the model.

Figure 3. 1st level of OBB hierarchy Figure 4. 2nd level of OBB hierarchy

Figure 5. 3
rd

 level of OBB hierarchy Figure 6. Manipulator prior to the collision

689

The next logical step is to use information about the intersection point (i.e. collision) and
try to prevent the collision by changing the path of one or both colliding objects. Assuming
that at least one colliding object is a robot, one must know kinematic parameters of the
robot to be able to prevent collisions and plan collision-free robot trajectories. For that
purpose regular kinematic parameters associated with positions and orientations of all
robot joints and end effectors are not sufficient for proper collision-free trajectory
planning. Namely, these parameters do not describe all points on the robot surface that
could collide with the environment. While in practice, determination of kinematic
parameters for an arbitrary collision point on the real robot surface is a very difficult goal,
in the virtual environment this may be resolved in an elegant way by using a kinematic
model of the robot derived from its virtual 3D model (Reichenbach & Kova i , 2003). Once
the triangle/triangle intersection test has established the exact collision point, the
determination of a link in the hierarchy where collision will take place is straightforward.
If more than one link is in the collision, the link that is higher in the object hierarchy is
preferred. A new D-H kinematic model is generated from eq. (3) with the collision point
serving now as a tool frame origin (see Figs. 6 and 7), so inverse kinematics for the
collision point may be calculated.

(a) (b)

 (c) (d)
Figure 7. Different kinematic chains determined by a collision point

The number of collision checks in one step is:

2

dyn

col dyn stat link

N
N N N N= + + , (7)

690

where dynN is a number of dynamic objects, statN is a number of static objects and linkN is

number of links in a manipulator. Further reduction in the number of collision checks can
be achieved by using a sweep and prune technique, which exploits the temporal coherence,
normally found in virtual environments (Klosowski, 1998) and (Möller & Rundberg, 1999).
Temporal coherence (or frame-to-frame coherence) means that objects undergo small
changes in their position and orientation between two consecutive frames.

6. Collision Avoidance

Oriented bounding boxes (OBB) are used to determine the distance and the collision
between different objects at the first hierarchical stage. As one moves down the generated
OBB hierarchy-tree a search for the collision point is narrowed, thus finally allowing the
exact collision point determination with triangle/triangle intersection test at the final
overlapping OBB nodes (see Fig. 8). How deep is the hierarchical tree, or when the
triangle/triangle test will be used instead of OBB overlap check, can be specified
depending on the computational time available and the complexity of the model.

(a) Prior to the collision (b) OBBs and triangles of the colliding link

(c) Close-up

Figure 8. Two KukaKr150 robots in collision

Required trajectory of a manipulator is checked against possible collisions and if a
collision is detected in some imminent manipulator position, the manipulator link is

691

moved away from the possible collision point. Newly found collision-free points are then
inserted into the previous trajectory and on-line re-planning of the trajectory is made. A
complete check for all points in the trajectory and a trajectory re-planning are considered
as one iteration of a collision avoidance algorithm. Iterative collision avoidance actions are
taken until trajectories become collision-free.
Different collision avoidance strategies are proposed and tested. One strategy iteratively
moves the first collision point for a predetermined displacement value while direction of
the displacement is calculated based on collision point. A value of the displacement is
predetermined according to the sparsity of objects in an environment, with larger
movements possible in sparser environments. The algorithm proceeds to the next iteration
until there are no collisions in the trajectory of the manipulator. Another possible strategy
is to move all collision points simultaneously in one iteration for a predetermined
displacement value. A strategy, that moves the middle1 collision point for a minimum
distance required to evade the collision, is presented in section 7. The avoidance
movement is made in a direction of the normal to the colliding surface (determined by a
collision detection algorithm) and the value of displacement is calculated as the distance
from the collision surface to the end of the link along the kinematic chain. In addition, the
amount of displacement may be incremented by the projection of the colliding link OBB to
the direction of collision avoidance movement and the direction of general movement
between the points in the trajectory (see Fig. 9).
Inverse kinematics calculus at this point is done with modified manipulator kinematics,
with the collision point serving as a tool position, and only links higher in a hierarchy
from the collision link are moved. In the environments with dynamic objects it is possible
to estimate the time interval when collision is likely to occur, by observing how far the
objects are and how rapidly they move. Collision tests are then focused on this interval. A
trajectory planning is done on-line, according to the algorithm proposed by (Ho & Cook,
1982) and (Taylor, 1979) taking into account maximum possible joint velocities and
accelerations.

w

w

n-1

n

n

t

x y

p

p

1

0

Figure 9. A displacement calculation

When a trajectory planning is made, a volume swept by robot is checked against possible
collisions. While the swept volume collision checks are made, an off-line trajectory planner
may normally operate with a deeper hierarchical OBB level, due to a different amount of
the computational time available, than an on-line trajectory planner. During an on-line

1 Point in the middle of a continuous collision stretch is referred as the middle point

692

search for a collision-free path, a progressive hierarchical OBB level approach is used.
Objects that are considered far from each other are tested only in the first level OBB tree
hierarchy. As objects are approaching to each other, deeper hierarchical OBB trees are
used to check against collisions. Further improvement of the search for a collision-free
path is made by reducing the number of checks for the moving objects. The projection of
object face normals to a relative velocity vector of the object must be positive, similarly to
what is proposed in (Kheddar, Coquillart & Redon 2002), otherwise the object is not
checked for collisions2.

7. FMS Control Application

A controlled environment is static in the sense that all positions, dimensions and velocities
of objects are known, but objects can be dynamic, i.e. they can undergo rigid-body
transformations. In a constantly changing and partially unpredictable environment on-line
trajectory planning must be used. In the FMS, trajectories are currently planned off-line,
which causes serious limitations in reassignments to new tasks and results in time-
consuming coordination rules. The FMS resources are required to move from a job before
it is completed (pre-emption property), and the process should not have to hold the
resources already allocated to it until it has all resources required to perform a task (hold
while waiting property).
A target FMS (see Figs. 10 and 11) contains two educational robots Rhino XR-3 and Rhino
XR-4. There could be the case where the Rhino XR-4 robot is requested to move from a
conveyer belt pickup/release place to one x-y table position. During this task, the Rhino
XR-4 robot can also hold some object in its gripper. In the regarded FMS testbed, one of
the obstacles is the gravitational buffer. In case of manipulator holding objects in its
gripper, other FMS elements could also become obstacles, as it is shown in section 7.4
where x-y table is the first obstacle RhinoXR4 robot could collide with during its
movement. The collision can be prevented by using the collision avoidance strategy in
which the distance from the collision point and the extremes of a colliding object is
calculated and directly used for the collision avoidance maneuver.
The idea is to use virtual models as a part of supervisory control of the target FMS. All
sensor data are processed in the way that the virtual objects can be moved exactly as the
real ones, while at the same time testing for possible collisions and employing the collision
avoidance strategies when necessary. The virtual supervisory control provides collision-
free trajectories generation having only the trajectory start position and the trajectory end
position, thus eliminating the need to specify additional way points in the trajectory
planning.
 The results of several different simulation experiments and their comparison are
presented in the following subsections. In addition, the influence of end-effector
construction and the influence of the conveyed object is discussed (section 7.5). Different
end-effectors, or different objects moved by the manipulator, produce different
trajectories. With a growing complexity in the construction of the end-effector of the
manipulator, the collision avoidance maneuver computational time and planned trajectory
complexity increase.

2

The approach is based on the following premise, that the objects that are moving away from each other are

 not checked for collisions

693

694

(a) Type-I (b) Type-II (c) Type-III (d) Type-IV

Figure 12. Tool configurations

7.1 Planning with End-Effector Type-I

In the first experiment a collision avoidance trajectory planning is done with the end-
effector type-I attached to a manipulator (see Fig. 12a). Joint values of the Rhino XR-4
robot are shown in Fig. 16. In the first iteration of collision avoidance trajectory planning,
collisions are continuous along the trajectory stretch where RhinoXR-4 robot is moving
near the gravitational buffer (see Figs. 16a and 17a). Actual manipulator positions can be
observed in Fig. 13 (complete system) and in Fig. 18a. In order to depart from the collision
point the manipulator is moved in a direction pointed by the normal to the colliding
surface of the gravitational buffer (detected in the collision stage).
A movement amount is calculated as a distance between a collision point and a tool tip, in
order that this point becomes collision-free in the next iteration of trajectory planning. A
newly inserted way point, determined by the direction of the normal and the calculated
movement amount, has significantly decreased a number of collision points. Joint values
of the manipulator in the 2nd trajectory planning iteration are shown in Fig. 16b.

Figure 13. RhinoXR4 robot in collision with gravitational buffer 1st iteration

695

Figure 14. RhinoXR4 robot in collision with gravitational buffer 2nd iteration

Figure 15. RhinoXR4 robot in collision with gravitational buffer 3rd iteration

Now, there are only two small trajectory stretches where the collision is still present.
Subsequent two iterations (see Figs. 16c and 16d) insert two additional way points and
eliminate all collision points from the trajectory. It may be valuable to observe that the 3rd

and the 4th iteration are necessary because of the position of the end-effector and its
construction. In Figs. 14 and 15, one can notice that only the pincers of the end-effector
(gripper tool) are colliding, but otherwise manipulator is outside the collision area. The
manipulator positions throughout the iterations of collision-free trajectory planning are

shown in Fig. 18. A complete trajectory evolution in the Euclidian space 3R can be seen in
Fig. 25a.

0 10 20 30 40 50 60 70 80 90 100
2.5

2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

scaled trajectory points

ra
d

q
1

q
2

q
3

q
4

q
5

0 10 20 30 40 50 60 70 80 90 100
2.5

2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

scaled trajectory points

ra
d

q
1

q
2

q
3

q
4

q
5

(a) 1st iteration of trajectory planning (b) 2nd iteration of trajectory planning

696

0 10 20 30 40 50 60 70 80 90 100
2.5

2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

scaled trajectory points

ra
d

q
1

q
2

q
3

q
4

q
5

0 10 20 30 40 50 60 70 80 90 100
2.5

2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

scaled trajectory points

ra
d

q
1

q
2

q
3

q
4

q
5

(c) 3rd iteration of trajectory planning (d) 4th iteration of trajectory planning

Figure 16. Joint values throughout the iteration in collision-free trajectory planning

1

0

1

2

3

4

5

4

6

8

10

0

1

2

3

4

5

x
y

z

1

0

1

2

3

4

5

4

6

8

10

0

1

2

3

4

5

x
y

z

(a) 1st iteration of trajectory planning (b) 2nd iteration of trajectory planning

1

0

1

2

3

4

5

4

6

8

10

0

1

2

3

4

5

x
y

z

1

0

1

2

3

4

5

4

6

8

10

0

1

2

3

4

5

x
y

z

 (c) 3rd iteration of trajectory planning (d) 4th iteration of trajectory planning

Figure 17. End-effector positions throughout the iteration in collision-free trajectory planning

697

2

4

6

4

3

2

1

0

1

0

1

2

3

4

5

6

7

8

Cutting Edge Robotics

Edited by Vedran Kordic, Aleksandar Lazinica and Munir Merdan

ISBN 3-86611-038-3

Hard cover, 784 pages

Publisher Pro Literatur Verlag, Germany

Published online 01, July, 2005

Published in print edition July, 2005

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is the result of inspirations and contributions from many researchers worldwide. It presents a

collection of wide range research results of robotics scientific community. Various aspects of current research

in robotics area are explored and discussed. The book begins with researches in robot modelling & design, in

which different approaches in kinematical, dynamical and other design issues of mobile robots are discussed.

Second chapter deals with various sensor systems, but the major part of the chapter is devoted to robotic

vision systems. Chapter III is devoted to robot navigation and presents different navigation architectures. The

chapter IV is devoted to research on adaptive and learning systems in mobile robots area. The chapter V

speaks about different application areas of multi-robot systems. Other emerging field is discussed in chapter VI

- the human- robot interaction. Chapter VII gives a great tutorial on legged robot systems and one research

overview on design of a humanoid robot.The different examples of service robots are showed in chapter VIII.

Chapter IX is oriented to industrial robots, i.e. robot manipulators. Different mechatronic systems oriented on

robotics are explored in the last chapter of the book.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Tomislav Reichenbach and Zdenko Kovacic (2005). Collision-Free Path Planning in Robot Cells Using Virtual

3D Collision Sensors, Cutting Edge Robotics, Vedran Kordic, Aleksandar Lazinica and Munir Merdan (Ed.),

ISBN: 3-86611-038-3, InTech, Available from:

http://www.intechopen.com/books/cutting_edge_robotics/collision-

free_path_planning_in_robot_cells_using_virtual_3d_collision_sensors

© 2005 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

