
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



683

Collision-Free Path Planning in Robot Cells 
Using Virtual 3D Collision Sensors 

Tomislav Reichenbach & Zdenko Kovacic

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784 , ARS / plV, July 2005

1. Introduction 

In industrial robotic systems, it is crucial to avoid collision among the manipulators or 
with other objects in the workspace. The problem is more complicated for manipulators 
than for mobile robots, since not only the effector end must move without collision to the 
desired location, but the links of the arm must also avoid collisions. The problem has been 
addressed in various ways in literature (Lozano-Perez, 1986) and (Barraquand, Langlois & 
Latombe, 1992). These methods can generally be divided into two methodologies: global 
and local. 
A global typical technique in collision avoidance consists of exploring a uniform grid in 
configuration-space (C-space) or configuration time space (CT space) using a best-first 
search algorithm guided by goal-oriented potential field (Barraquand & Latombe, 1991) 
and (Hwang, & Ahuja, 1992). Two main problems exist, the obstacles must be mapped into 
the configuration space (a very complex operation) and a path through the configuration 
space must be found for the point representing the robot arm. Usage of this method in 
dynamic complex environments, with more robots sharing the same space, is too time 
demanding to be accomplished in real time.
A new idea proposed in this work is to detect possible collisions among robotic system 
entities in a virtual world. Moreover, the idea is to use a collision detection engine, which 
is extensively used in computer graphics and simulation, to test for possible collisions in 
full 3D environment with objects consisting of thousands of polygons and modeled as 
similar to the real ones as close as possible. A modification of manipulator kinematics is 
proposed in order to control directly a colliding point, hence enforcing fastest collision 
avoidance. This approach has some advantages of both global and local planning 
methodologies, as the complete environment is considered in planning and fast collision 
avoidance response suitable for on-line application in dynamic environments is achieved. 
Motion planning for models with fairly complex geometry has been proposed in some 
former papers (Cameron & Qin, 1997) with modified Gilbert, Johnson and Keerthi (GJK) 
algorithm applied for distance computations and collision detection, but it differs in the 
nature and use of the collision detection algorithm. 
A software simulation package for virtual modeling of complex kinematic configurations 
has been developed (C++ and OpenGL). Models are created in CAD software and then 
imported into virtual environments described in the XML. Virtual models provide very 
inexpensive and convenient way for design, analysis, control, dynamic simulation and 
visualization of complex robotic systems. Given that virtual models are accurate, collisions O
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in a virtual environment should occur in the same way as in the real world. The 3D 
models used in this work are polygonal structured, i.e. polygons form a closed manifold, 
hierarchical non-convex models (Lin & Gottschalk, 1998) undergoing series of rigid-body 
transformations. Polygons are made entirely of triangles, as hardware accelerated 
rendering of the triangles is commonly available in the graphic hardware. All the 
parameters (link positions, link lengths) for a direct kinematics solution are extracted from 
a 3D description. 
This chapter is organized as follows. First, a brief introduction to kinematic models is 
given, then a method for collision detection among objects in virtual environment is 
explained along with an algorithm for determination and generation of new kinematic 
parameters for the colliding objects. A modification of manipulator kinematics is proposed 
in order to control directly a colliding point, hence enforcing fastest collision avoidance. 
Following is the description of collision avoidance strategy and the results of simulations 
of collision free trajectory planning in the experimental Flexible Manufacturing Systems 
(FMS).

2. Kinematic Model 

The endpoint position and orientation of a manipulator may be expressed as a nonlinear 
function of the constants such as physical link parameters, and by joint angles or 
displacements that are variables. To represent the spatial transformations between the 
joints, several symbolic notations have been proposed. The most widely used notation is 
the classic Denavit-Hartenberg (D-H) notation (Denavit & Hartenberg, 1955) or its Paul 
(Paul, 1981) version. These notations however are only valid for the kinematic chains with 
one branch (i.e. serial kinematic chains), and can lead to ambiguities when dealing with 
kinematic chains with more then one branch (parallel kinematic chains). The Sheth-Uicker 
(S-U) (Sheth & Uicker, 1971) notation extends D-H notation for multiple loop kinematic 
chains in the general case, but is much more complicated because it introduces additional 
coordinate systems. Another notation presented by Kleinfinger (Khalil & Kleinfinger, 
1986), is usable for all serial, treelike or closed loop kinematic chains, and has fewer 
parameters then the S-U notation, however, since all manipulators employed in this 
chapter are serial kinematic chains, only D-H notation, albeit in a somewhat modified 
form, is used.

3. Kinematic Parameters 

Six parameters are needed to describe a complete relation between two independent 
coordinate systems - frames. Like most of the other kinematic notations, D-H notation 
requires following some rules when designating axes and orientations to the link frames.  

3.1. Modified D-H Notation

Assuming that robot links have only one dimension, the length, the classic D-H notation 
describes the complete relation between two adjacent link frames with only four kinematic 

parameters [ ]i i i ia d . The meaning of these parameters is the following: rotation

around a 1iz  axis with an angle i , translation  along a 1iz  axis with a displacement id ,

translation  along a 1i ix x=  axis with a displacement ia , rotation  around a 1ix  axis with 

an angle i .

For two coordinate systems having an arbitrary position and orientation in the 3D space, 



685

the conversion between them can be described with a matrix iM  given in the [4x4] 

homogenous matrix form, 

11 12 13 1

12 22 13 1

13 23 13 1

0 0 0 1

i i i

r r r p

r r r p

r r r p
M T R= =     (1) 

where

1 11 12 13

1 12 22 13

1 13 23 13

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1 0 0 0 1

i i

p r r r

p r r r

p r r r
T R= =      

To convert from matrix Mi, parameter ib  representing a link length along the 1iy axis of 

the ith coordinate system, has been added. Now, there are 5 independent parameters 

[ ]i i i i ia b d  used in modified D-H notation. Only one of these parameters is a 

variable, joint position ( i  if the joint is rotational or id  if the joint is prismatic) and the 

other 4 (or 3 in the original D-H notation) are fixed parameters determined only by a 
manipulator construction. In this way, the D-H transformation matrix between two 
adjacent link frames has the following form: 

1

cos cos sin sin sin cos sin

sin cos cos cos sin sin cos

0 sin cos

0 0 0 1

i i i i i i i i i

i i i i i i i i ii

i

i i i

a b

a b

d
T

+
=   (2) 

To get D-H parameters [ ]i i i i ia b d  for the ith link from a joint frame 

transformation matrix 1i

iT  written in the form as in eq. (2), a correct solution has to be 

chosen from a solution set 1 2 3 1 2 3{ }i i i i i iS = , , , , , . Because of the ambiguity of solutions of 

trigonometric equations, several possible solutions are available:

1 1 12( (3 2) (3 3))i i

i i iatan= , , ,T T

2 1 12( (2 3) (2 2))i i

i i iatan= , , ,T T

3 1 12( (1 3) (1 2))i i

i i iatan= , , ,T T  (3) 
1 1 12( (2 1) (11))i i

i i iatan= , , ,T T

2 1 12( (1 2) (2 2))i i

i i iatan= , , ,T T

3 1 12( (1 3) (2 3))i i

i i iatan= , , ,T T

4. Direct Kinematics 

A transformation from the nth local frame to the global frame is defined as:  

0

0

n

n k jk

k

T M M

=

=   (4) 

k k kM T R=
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Where:

- kT  is kth joint translation matrix.

- kR  is kth joint rotation matrix.   

- jkM  is kth joint transformation matrix.

Matrix jkM  is defined as:

1

2

3

cos cos sin sin

sin cos cos sin

sin sin cos cos

0 0 0 1

k k k k

k k k k

jk

k k k k

l

l

l
M =  (5) 

where k , k  and k  are the rotation angles around the respective kx , ky , kz  axes, and 1l ,

2l , 3l  are translations along the respective kx , ky , kz  axes of the kth coordinate system. If 

the system is using D-H notation, then all joint rotations and translations are done around 

and along the local kz -axis, so the eq. (5) takes the following form:  

3

sin 0 0 cos sin 0 0

sin cos 0 0 sin cos 0 0

0 0 1 0 0 1

0 0 0 1 0 0 0 1

k kk k

k kk k

jk qk

k

cos q q

q q

l q
M M= = =  (6) 

where kq  is a joint variable defined as (1 )k k k k kq d= + . If the joint is rotational then 

1k = , else it is prismatic and 0k = . Due to high complexity of 3D models, there are more 

coordinate systems than joints. All coordinate systems that do not undergo rigid-body 

motion are considered static with matrix qkM  equal to the unity matrix. A direct kinematic 

solution, a tool position and an orientation, are easily extracted from eq. (4).

5. Collision Detection 

Collision detection is a part of interference detection, which can be divided into three 
portions: collision detection that detects whether objects are in collision, collision 
determination that finds the exact collision point, and finally, collision avoidance that 
determines what actions should be taken in response to the collision. There are numerous 
approaches to a collision detection problem (Jimenez, Thomas & Torras, 2001), which can 
be mainly grouped into; space-time volume intersection, swept volume interference, 
multiple interference detection, and trajectory parameterization. A collision detection 
algorithm used in this work belongs to a multiple interference detection category. This 
implies that the algorithm reduces a general collision detection problem to multiple calls 
to the static interference tests focused on detecting intersections among simple geometrical 
entities; triangles and oriented bounding boxes (OBB) belonging to the objects being 
tested. As the algorithm is static, i.e. collision detection occurs only at discrete times, it is 
fast enough and effective from the computational point of view, thus it can provide real-
time collision detection in very complex (high polygon count) virtual environments.

5.1. Oriented Bounding Boxes (OBB) 

An oriented bounding box (OBB) can be described by the center point of the box c
b , and a 

center rotation vector r
b  (or three normalized vectors u

b , v
b , w

b  that represent the face 
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normals). To express the OBB dimensions the most compact representation is with the 

half-lengths B

uh , B

vh , B

wh , which represent dimensions along the respective u v w, ,  axis.

z

x

y

h

h
h

b

b
b

w

u

v

B

B

B
u

v

w

Figure 1. Oriented bounding boxes 

An intersection test between two OBBs A and B is accomplished with a fast routine 
presented in (Gottschalk, Lin & Manocha, 1996). This routine is based on separating axis 
theorem and is about an order of magnitude faster than methods that use linear 
programming or closest features. According to the separating axis theorem, it is sufficient 
to find one axis that separates objects A and B to determine they do not overlap. The total 
number of tested axes is fifteen, three from the faces of A, three from the faces of B and 
nine from combination of edges from both OBBs (3x3). The potential separating axes that 
should be orthogonal to the faces of A and B so the simplest way is to use the normals to 

the faces u
a , v

a , w
a  and u

b , v
b  and w

b . The remaining nine potential axes are formed by 

one edge from each OBB, { }ij i jc a b i u v w= × , , ,  and { }j u v w, , . The OBBs are then 

projected onto the axes to see if both projections overlap on all axes, i.e. if the OBB A and B
overlap. The maximum number of operations is reached when the two OBBs overlap, and 
is around 180 (without the transform of B into A’s coordinate system) (Gottschalk, 2000). 
However, in most cases without overlap, a separating axis is found earlier.

5.2. Triangle/triangle Intersection 

After the intersection between the OBBs is determined, an exact collision point is found 
with triangle/triangle intersection test (see Fig. 2). Often not only the information whether 
two triangles intersect but also their exact intersection point is needed. Several methods 
for triangle/triangle intersection test are available, with two of the fastest being the interval
overlap method developed by (Möller, 1997) and the triangle/triangle intersection method 
found in ERIT package (Held, 1997).

The ERIT’s method of detecting whether two triangles 1T  and 2T  intersect, can be briefly 

summarized as:

1. Compute 2 2:n x , the plane in which 2T  lies.

2. Trivially reject if all points of 1T  are on the same side of 2

3. Compute the intersection between 2  and 1T

4. If this line segment intersects or is totally contained in 2T , then 1T  and 2T

 intersect; otherwise, they do not.  
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1

T1

Figure 2. Triangle/triangle intersection 

In some occasions, it is not necessary to determine the exact collision point, but only to 
check if objects are in collision. If the object is distant it can be approximated with just one 
OBB (see Fig. 3) and consequently collision detection will be faster. The balance between 
fast collision detection and exact collision point determination is the case shown in Fig. 4. 
The 3rd hierarchy level OBBs are used for objects that are near each other (see Fig. 5). 
Normally, a manipulator will not contain higher levels of OBBs hierarchies (4th, 5th, etc...), 
since they would not provide computational advantage over a triangle/triangle 
intersection test. Binary trees are often used for the hierarchy representation and different 
strategies for hierarchy building are available, e.g. K-DOPTtree, OBBtree (Gottschalk, Lin 
& Manocha, 1996). The OBBtree approach is the most similar to the one used here. A depth 
of hierarchical tree, and a decision when the triangle/triangle test will be used instead of 
OBB overlap check, can be conditioned by available computational time and the 
complexity of the model.

Figure 3. 1st  level of OBB hierarchy   Figure 4. 2nd  level of OBB hierarchy 

Figure 5. 3
rd

 level of OBB hierarchy    Figure 6.  Manipulator prior to the collision 
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The next logical step is to use information about the intersection point (i.e. collision) and 
try to prevent the collision by changing the path of one or both colliding objects. Assuming 
that at least one colliding object is a robot, one must know kinematic parameters of the 
robot to be able to prevent collisions and plan collision-free robot trajectories. For that 
purpose regular kinematic parameters associated with positions and orientations of all 
robot joints and end effectors are not sufficient for proper collision-free trajectory 
planning. Namely, these parameters do not describe all points on the robot surface that 
could collide with the environment. While in practice, determination of kinematic 
parameters for an arbitrary collision point on the real robot surface is a very difficult goal, 
in the virtual environment this may be resolved in an elegant way by using a kinematic 
model of the robot derived from its virtual 3D model (Reichenbach & Kova i , 2003). Once 
the triangle/triangle intersection test has established the exact collision point, the 
determination of a link in the hierarchy where collision will take place is straightforward. 
If more than one link is in the collision, the link that is higher in the object hierarchy is 
preferred. A new D-H kinematic model is generated from eq. (3) with the collision point 
serving now as a tool frame origin (see Figs. 6 and 7), so inverse kinematics for the 
collision point may be calculated.  

(a)        (b) 

    (c)       (d) 
Figure 7. Different kinematic chains determined by a collision point 

The number of collision checks in one step is: 

2

dyn

col dyn stat link

N
N N N N= + +   , (7) 
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where dynN  is a number of dynamic objects, statN  is a number of static objects and linkN  is 

number of links in a manipulator. Further reduction in the number of collision checks can 
be achieved by using a sweep and prune technique, which exploits the temporal coherence, 
normally found in virtual environments (Klosowski, 1998) and (Möller & Rundberg, 1999). 
Temporal coherence (or frame-to-frame coherence) means that objects undergo small 
changes in their position and orientation between two consecutive frames.

6. Collision Avoidance 

Oriented bounding boxes (OBB) are used to determine the distance and the collision 
between different objects at the first hierarchical stage. As one moves down the generated 
OBB hierarchy-tree a search for the collision point is narrowed, thus finally allowing the 
exact collision point determination with triangle/triangle intersection test at the final 
overlapping OBB nodes (see Fig. 8). How deep is the hierarchical tree, or when the 
triangle/triangle test will be used instead of OBB overlap check, can be specified 
depending on the computational time available and the complexity of the model.  

(a) Prior to the collision    (b) OBBs and triangles of the colliding link  

(c) Close-up 

Figure 8. Two KukaKr150 robots in collision  

Required trajectory of a manipulator is checked against possible collisions and if a 
collision is detected in some imminent manipulator position, the manipulator link is 
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moved away from the possible collision point. Newly found collision-free points are then 
inserted into the previous trajectory and on-line re-planning of the trajectory is made. A 
complete check for all points in the trajectory and a trajectory re-planning are considered 
as one iteration of a collision avoidance algorithm. Iterative collision avoidance actions are 
taken until trajectories become collision-free.
Different collision avoidance strategies are proposed and tested. One strategy iteratively 
moves the first collision point for a predetermined displacement value while direction of 
the displacement is calculated based on collision point. A value of the displacement is 
predetermined according to the sparsity of objects in an environment, with larger 
movements possible in sparser environments. The algorithm proceeds to the next iteration 
until there are no collisions in the trajectory of the manipulator. Another possible strategy 
is to move all collision points simultaneously in one iteration for a predetermined 
displacement value. A strategy, that moves the middle1 collision point for a minimum 
distance required to evade the collision, is presented in section 7. The avoidance 
movement is made in a direction of the normal to the colliding surface (determined by a 
collision detection algorithm) and the value of displacement is calculated as the distance 
from the collision surface to the end of the link along the kinematic chain. In addition, the 
amount of displacement may be incremented by the projection of the colliding link OBB to 
the direction of collision avoidance movement and the direction of general movement 
between the points in the trajectory (see Fig. 9).
Inverse kinematics calculus at this point is done with modified manipulator kinematics, 
with the collision point serving as a tool position, and only links higher in a hierarchy 
from the collision link are moved. In the environments with dynamic objects it is possible 
to estimate the time interval when collision is likely to occur, by observing how far the 
objects are and how rapidly they move. Collision tests are then focused on this interval. A 
trajectory planning is done on-line, according to the algorithm proposed by (Ho & Cook, 
1982) and (Taylor, 1979) taking into account maximum possible joint velocities and 
accelerations.

w

w

n-1

n

n

t

x y

p

p

1

0

Figure 9. A displacement calculation 

When a trajectory planning is made, a volume swept by robot is checked against possible 
collisions. While the swept volume collision checks are made, an off-line trajectory planner 
may normally operate with a deeper hierarchical OBB level, due to a different amount of 
the computational time available, than an on-line trajectory planner. During an on-line 

                                          
1 Point in the middle of a continuous collision stretch is referred as the middle point 
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search for a collision-free path, a progressive hierarchical OBB level approach is used. 
Objects that are considered far from each other are tested only in the first level OBB tree 
hierarchy. As objects are approaching to each other, deeper hierarchical OBB trees are 
used to check against collisions. Further improvement of the search for a collision-free 
path is made by reducing the number of checks for the moving objects. The projection of 
object face normals to a relative velocity vector of the object must be positive, similarly to 
what is proposed in (Kheddar, Coquillart & Redon 2002), otherwise the object is not 
checked for collisions2.

7. FMS Control Application 

A controlled environment is static in the sense that all positions, dimensions and velocities 
of objects are known, but objects can be dynamic, i.e. they can undergo rigid-body 
transformations. In a constantly changing and partially unpredictable environment on-line 
trajectory planning must be used. In the FMS, trajectories are currently planned off-line, 
which causes serious limitations in reassignments to new tasks and results in time-
consuming coordination rules. The FMS resources are required to move from a job before 
it is completed (pre-emption property), and the process should not have to hold the 
resources already allocated to it until it has all resources required to perform a task (hold 
while waiting property).
A target FMS (see Figs. 10 and 11) contains two educational robots Rhino XR-3 and Rhino 
XR-4. There could be the case where the Rhino XR-4 robot is requested to move from a 
conveyer belt pickup/release place to one x-y table position. During this task, the Rhino 
XR-4 robot can also hold some object in its gripper. In the regarded FMS testbed, one of 
the obstacles is the gravitational buffer. In case of manipulator holding objects in its 
gripper, other FMS elements could also become obstacles, as it is shown in section 7.4 
where x-y table is the first obstacle RhinoXR4 robot could collide with during its 
movement.  The collision can be prevented by using the collision avoidance strategy in 
which the distance from the collision point and the extremes of a colliding object is 
calculated and directly used for the collision avoidance maneuver.
The idea is to use virtual models as a part of supervisory control of the target FMS. All 
sensor data are processed in the way that the virtual objects can be moved exactly as the 
real ones, while at the same time testing for possible collisions and employing the collision 
avoidance strategies when necessary. The virtual supervisory control provides collision-
free trajectories generation having only the trajectory start position and the trajectory end 
position, thus eliminating the need to specify additional way points in the trajectory 
planning. 
 The results of several different simulation experiments and their comparison are 
presented in the following subsections. In addition, the influence of end-effector 
construction and the influence of the conveyed object is discussed (section 7.5). Different 
end-effectors, or different objects moved by the manipulator, produce different 
trajectories. With a growing complexity in the construction of the end-effector of the 
manipulator, the collision avoidance maneuver computational time and planned trajectory 
complexity increase.

                                          
2

The approach is based on the following premise, that the objects that are moving away from each other are   

    not checked for collisions  
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(a) Type-I   (b) Type-II   (c) Type-III  (d) Type-IV 

Figure 12. Tool configurations 

7.1 Planning with End-Effector Type-I 

In the first experiment a collision avoidance trajectory planning is done with the end-
effector type-I attached to a manipulator (see Fig. 12a). Joint values of the Rhino XR-4 
robot are shown in Fig. 16. In the first iteration of collision avoidance trajectory planning, 
collisions are continuous along the trajectory stretch where RhinoXR-4 robot is moving 
near the gravitational buffer (see Figs. 16a and 17a). Actual manipulator positions can be 
observed in Fig. 13 (complete system) and in Fig. 18a. In order to depart from the collision 
point the manipulator is moved in a direction pointed by the normal to the colliding 
surface of the gravitational buffer (detected in the collision stage).
A movement amount is calculated as a distance between a collision point and a tool tip, in 
order that this point becomes collision-free in the next iteration of trajectory planning. A 
newly inserted way point, determined by the direction of the normal and the calculated 
movement amount, has significantly decreased a number of collision points. Joint values 
of the manipulator in the 2nd trajectory planning iteration are shown in Fig. 16b.

Figure 13. RhinoXR4 robot in collision with gravitational buffer 1st iteration 
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Figure 14. RhinoXR4 robot in collision with gravitational buffer 2nd iteration 

Figure 15. RhinoXR4 robot in collision with gravitational buffer 3rd iteration 

Now, there are only two small trajectory stretches where the collision is still present. 
Subsequent two iterations (see Figs. 16c and 16d) insert two additional way points and 
eliminate all collision points from the trajectory. It may be valuable to observe that the 3rd

and the 4th iteration are necessary because of the position of the end-effector and its 
construction. In Figs. 14 and 15, one can notice that only the pincers of the end-effector 
(gripper tool) are colliding, but otherwise manipulator is outside the collision area. The 
manipulator positions throughout the iterations of collision-free trajectory planning are 

shown in Fig. 18. A complete trajectory evolution in the Euclidian space 3R  can be seen in 
Fig. 25a. 
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Figure 16. Joint values throughout the iteration in collision-free trajectory planning 
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Figure 17. End-effector positions throughout the iteration in collision-free trajectory planning 
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vision systems. Chapter III is devoted to robot navigation and presents different navigation architectures. The

chapter IV is devoted to research on adaptive and learning systems in mobile robots area. The chapter V

speaks about different application areas of multi-robot systems. Other emerging field is discussed in chapter VI

- the human- robot interaction. Chapter VII gives a great tutorial on legged robot systems and one research

overview on design of a humanoid robot.The different examples of service robots are showed in chapter VIII.

Chapter IX is oriented to industrial robots, i.e. robot manipulators. Different mechatronic systems oriented on

robotics are explored in the last chapter of the book.
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