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1. Introduction

Beams, plates and shells are the most commonly-used structural components in industrial
applications. In comparison with beams and plates, shells usually exhibit more complicated
dynamic behaviours because the curvature will effectively couple the flexural and in-plane
deformations together as manifested in the fact that all three displacement components si‐
multaneously appear in each of the governing differential equations and boundary condi‐
tions. Thus it is understandable that the axial constraints can have direct effects on a
predominantly radial mode. For instance, it has been shown that the natural frequencies for
the circumferential modes of a simply supported shell can be noticeably modified by the
constraints applied in the axial direction [1]. Vibrations of shells have been extensively stud‐
ied for several decades, resulting in numerous shell theories or formulations to account for
the various effects associated with deformations or stress components.

Expressions for the natural frequencies and modes shapes can be derived for the classical
homogeneous boundary conditions [2-9]. Wave propagation approach was employed by
several researchers [10-13] to predict the natural frequencies for finite circular cylindrical
shells with different boundary conditions. Because of the complexity and tediousness of the
(exact) solution procedures, approximate procedures such as the Rayleigh-Ritz methods or
equivalent energy methods have been widely used for solving shell problems [14-18]. In the
Rayleigh-Ritz methods, the characteristic functions for a “similar” beam problem are typi‐
cally used to represent all three displacement components, leading to a characteristic equa‐
tion in the form of cubic polynomials. Assuming that the circumferential wave length is
smaller than the axial wave length, Yu [6] derived a simple formula for calculating the natu‐
ral frequencies directly from the shell parameters and the frequency parameters for the anal‐
ogous beam case. Soedel [19] improved and generalized Yu’s result by eliminating the short
circumferential wave length restriction. However, since the wavenumbers for axial modal
function are obtained from beam functions which do not exactly satisfy shell boundary con‐
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ditions, it is mathematically difficult to access or ensure the accuracy and convergence of
such a solution.

The free vibration of shells with elastic supports was studied by Loveday and Rogers [20]
using a general analysis procedure originally presented by Warburton [3]. The effect of flexi‐
bility in boundary conditions on the natural frequencies of two (lower order) circumferential
modes was investigated for a range of restraining stiffness values. The vibrations of circular
cylindrical shells with non-uniform boundary constraints were studied by Amabili and Gar‐
ziera [21] using the artificial spring method in which the modes for the corresponding less-
restrained problem were used to expand the displacement solutions. The non-uniform
spring stiffness distributions were systematically represented by cosine series and their
presence was accounted for in terms of maximum potential energies stored in the springs.

A large number of studies are available in the literature for the vibrations of shells under
different boundary conditions or with various complicating features. A comprehensive re‐
view of early investigations can be found in Leissa’s book [22]. Some recent progresses have
been reviewed by Qatu [23]. Regardless of whether an approximate or an exact solution pro‐
cedure is employed, the corresponding formulations and implementations usually have to
be modified or customized for different boundary conditions. This shall not be considered a
trivial task in view that there exist 136 different combinations even considering the simplest
(homogeneous) boundary conditions. Thus, it is useful to develop a solution method that
can be generally applied to a wide range of boundary conditions with no need of modifying
solution algorithms and procedures. Mathematically, elastic supports represent a general
form of boundary conditions from which all the classical boundary conditions can be readily
derived by simply setting each of the spring stiffnesses to either zero or infinity. This chap‐
ter will be devoted to developing a general analytical method for solving shell problems in‐
volving general elastically restrained ends.

2. Basic equations and solution procedures

Figure 1 shows an elastically restrained circular cylindrical shell of radius R, thickness h and
length L. Each of the eight sets of elastic restraints shall be understood as a distributed
spring along the circumference. Let u, v, and w denote the displacements in the axial x, cir‐
cumferential θ and radial r directions, respectively. The equations of the motions for the
shell can be written as
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where ρ is the mass density of the shell material, and N1, N12, N฀, Q1 and Q฀ denote the resul‐

tant forces acting on the mid-surface.
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Figure 1. A circular cylindrical shell elastically restrained along all edges.

In terms of the shell displacements, the force and moment components can be expressed as
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where
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E and σ are respectively the Young’s modulus and Poisson ratio of the material; M1, M2 and
M12 are the bending and twisting moments.

The boundary conditions for an elastically restrained shell can specified as:

at x=0,
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at x=L,
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where k1, k2, …, k8 are the stiffnesses for the restraining springs. The elastic supports repre‐
sent a set of general boundary conditions, and all the classical boundary conditions can be
considered as the special cases when the stiffness for each spring is equal to either zero or
infinity.

The above equations are usually referred to as Donnell-Mushtari equations. Flügge’s theory
is also widely used to describe vibrations of shells. In terms of the shell displacements, the
corresponding force and moment components are written as
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A shell problem can be solved either exactly or approximately. An exact solution usually im‐
plies that both the governing equations and the boundary conditions are simultaneously sat‐
isfied exactly on a point-wise basis. Otherwise, a solution is considered approximate in
which one or more of the governing equations and boundary conditions are enforced only
in an approximate sense. Both solution strategies will be used below.

2.1. An approximate solution based on the Rayleigh-Ritz procedure

Approximate methods based on energy methods or the Rayleigh-Ritz procedures are widely
used for the vibration analysis of shells with various boundary conditions and/or complicat‐
ing factors. In such an approach, the displacement functions are usually expressed as
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where φα
m(x),  α =u, v, and w,  are the characteristic functions for beams with similar boun‐

dary conditions. Although characteristic functions generally exist in the forms of trigono‐
metric and hyperbolic functions, they also include some integration and frequency constants
that have to be determined from boundary conditions. Consequently, each boundary condi‐
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tion basically calls for a special set of modal data. In the literature the modal parameters are
well established for the simplest homogeneous boundary conditions. However, the determi‐
nation of modal properties for the more complicated elastic boundary supports can become,
at least, a tedious task since they have to be re-calculated each time when any of the stiffness
values is changed. It should also be noted that calculating the modal properties will typical‐
ly involve seeking the roots of a nonlinear transcendental equation, which mathematically
requires an iterative root searching scheme and careful numerical implementations to en‐
sure no missing data. To overcome this problem, a unified representation of the shell solu‐
tions will be adopted here in which the displacements, regardless of boundary conditions,
will be invariably expressed as
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where pα(x),  α =u, v, and w,  denote three auxiliary polynomials which satisfy
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It is clear from Eqs. (9) that these auxiliary polynomials are only dependent on the first and
third derivatives βi, (i=1,2,…,8) of the displacement solutions on the boundaries. In terms of
boundary derivatives, the lowest-order polynomials can be explicitly expressed as [24, 25]
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This alternative form of Fourier series recognizes the fact that the conventional Fourier ser‐
ies for a sufficiently smooth function f(x) defined on a compact interval [0, L] generally fails
to converge at the end points. Introducing the auxiliary functions will ensure the cosine ser‐
ies in Eqs. (8) to converge uniformly and polynomially over the interval, including the end
points. As a matter of fact, the polynomial subtraction techniques have been employed by
mathematicians as a means to accelerate the convergence of the Fourier series expansion for
an explicitly defined function [26-28].

The coefficients βi represent the values of the first and third derivatives of the displacements
at the boundaries, and are hence related to the unknown Fourier coefficients for the trigono‐
metric terms. The relationships between the constants and the expansion coefficients can be
derived either exactly or approximately.

In seeking an approximate solution based on an energy method, the solution is not required
to explicitly satisfy the force or natural boundary conditions. Accordingly, the derivative pa‐
rameters βi in Eqs. (10) will be here determined from a simplified set of the boundary condi‐
tions, that is,
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where

ˆ / .i ik k K= (13)

By substituting Eqs. (8) and (10) into (12), one will obtain
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In light of Eqs. (13), Eqs (8) can be reduced to Eqs. (7) with the axial functions being defined

as
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Since the boundary conditions are not exactly satisfied by the displacements such construct‐
ed, the Rayleigh-Ritz procedure will be employed to find a weak form of solution. The cur‐
rent solution is noticeably different from the conventional Rayleigh-Ritz solutions in that: a)
the shell displacements are expressed in terms of three independent sets of axial functions,
rather than a single (set of) beam function(s), b) the basis functions in each displacement ex‐
pansion constitutes a complete set so that the convergence of the Rayleigh-Ritz solution is
guaranteed mathematically, and c) it does not suffer from the well-known numerical insta‐
bility problem related to the higher order beam functions or polynomials. More importantly,
the current method is that it provides a unified solution to a wide variety of boundary con‐
ditions.

The potential energy consistent with the Donnell-Mushtari theory can be expressed from
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By minimizing the Lagrangian L=V-T against all the unknown expansion coefficients, a final
system of linear algebraic equations can be derived
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The integrals in Eq. (23) can be calculated analytically; for instance
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2.2. A strong form of solution based on Flügge’s equations

As aforementioned, the displacement expressions in terms of beam functions cannot exactly
satisfy the shell boundary conditions; instead they are made to satisfy the boundary condi‐
tions in a weak sense via the use of the Rayleigh-Ritz procedure. To overcome this problem,
the displacement expressions, Eqs. (8), will now be generalized to
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which represent a 2-D version of the improved Fourier series expansions, Eqs. (8).

To demonstrate the flexibility in choosing the auxiliary functionspn
u(x), pn

v(x)andpn
w(x), an

alternative set is used below:

( ) ( ) (a)

( ) ( ) (b)

( ) ( ) (c)
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hereΛn
u = an bn , Λn

v = cn dn , Λn
w = en f n gn h n with an, bn,..., gn and hn being the unknown coef‐

ficients to be determined; α(x)= {α1(x) α2(x)}Tand β(x)= {β1(x) β2(x) β3(x) β4(x)}T and with
their elements being defined as
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(32)

In Eqs. (27), the sums of x-related terms are here understood as the series expansions in x-
direction, rather than characteristic functions for a beam with “similar” boundary condition.
This distinction is important in that the boundary conditions and governing differential
equations can now be exactly satisfied on a point-wise basis; that is, the solution can be
found in strong form, as described below.

Substituting Eqs. (6) and (27) into (4) and (5) will lead to
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Equations (31) represent a set of constraint conditions between the unknown (boundary)

constants, an, bn,..., gn and hn, and the Fourier expansion coefficients Amn, Bmn, and Cmn ( m, n =

0, 1, 2,... ). The constraint equations (31a-h) can be rewritten more concisely, in matrix form,

as

=Ly Sx (34)
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The elements of the coefficient matrices can be readily derived from Eqs. (31); for example,
Eq. (31a) implies
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Other sub-matrices can be similarly obtained from the remaining equations in Eqs. (31).

In actual numerical calculations, all the series expansions will have to be truncated to m=M
and n=N. Thus there is a total number of (M+1)(3N+2)+8N+6 unknown expansion coeffi‐
cients in the displacement functions. Since Eq. (33) represents a set of 8N+6 equations, addi‐
tional (M+1)(3N+2) equations are needed to be able to solve for all the unknown coefficients.
Accordingly, we will turn to the governing differential equations.

In Flügge’s theory, the equations of motion are given as
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Substituting Eqs. (6) and (37) into Eqs. (34) results in
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By expanding all non-cosine terms into Fourier cosine series and comparing the like terms,

the following matrix equation can be obtained

+ + = 0.
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The symbolsκ1m, κ2m, κ3m, κ4m, ϕ1m, ϕ2m, φ1m, φ2m, ψ1m, ψ2m, and χm
i  in the above equations are
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All the unmentioned elements in matrices P and Q are identically equal to zero.

Equations (32) and (36) can be combined into

= 0,
2h

K
r wæ ö

-ç ÷ç ÷
è ø
K M x (43)

where K = E + F L -1S  andM = P + QL -1S .

The final system of equations, Eq. (19) or (41), represents a standard characteristic equation
for a matrix eigen-problem from which all the eigenvalues and eigenvectors can be readily
calculated. It should be mentioned that the elements in each eigenvector are actually the ex‐
pansion coefficients for the corresponding mode; its “physical” mode shape can be directly
obtained from Eqs. (7) or (27).

In the above discussions, the stiffness distribution for each restraining spring is assumed to
be axisymmetric or uniform along the circumference. However, this restriction is not neces‐
sary. For non-uniform elastic boundary restraints, the displacement expansions, Eq. (27),
shall be used, and any and all of stiffness constants can be simply understood as varying
with spatial angle θ. For simplicity, we can universally expand these functions into standard
cosine series and modify Eq. (31) accordingly to reflect this complicating factor.

3. Results and discussion

Several numerical examples will be given below to verify the two solution strategies descri‐
bed earlier.

3.1. Results about the approximate Rayleigh-Ritz solution

We first consider a familiar simply-supported cylindrical shell. The simply supported boun‐
dary condition, Nx =Mx =v =w =0at each end, can be considered as a special case when
k2,6 =k3,7 =∞ and k1,5 =k4,8 =0 (in actual calculations, infinity is represented by a sufficiently
large number). To examine the convergence of the solution, Table 1 shows the frequency pa‐

rameters, Ω =ωR ρ(1−σ 2) / E , calculated using different numbers of terms in the series ex‐
pansions. It is seen that the solution converges nicely with only a small number of terms. In
the following calculations, the expansions in axial direction will be simply truncated to
M=15. Given in Table 2 are the frequencies parameters for some lower-order modes. Exact
solution is available for the simply supported case and the results are also shown there for
comparison. An excellent agreement is observed between these two sets of results. Although
the simply supported boundary condition represents the simplest case in shell analysis, this
problem is not trivial in testing the reliability and sophistication of the current solution
method. From numerical analysis standpoint, it may actually represent a quite challenging
case because of the extreme stiffness values involved. The non-trivialness can also been seen
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mathematically from the fact that the simple sine function (in the axial direction) in the exact
solution is actually expanded as a cosine series expansion in the current solution.

Number of terms used in the

series

Ω =ωR ρ(1−σ 2) / E

n=0 n=1 n=2 n=3 n=4

M=5

M=7

M=9

M=10

0.464652

0.464649

0.464648

0.464648

0.257389

0.257386

0.257385

0.257385

0.127132

0.127129

0.127128

0.127128

0.143329

0.143327

0.143327

0.143327

0.234823

0.234822

0.234822

0.234822

Table 1. Frequency parameters, Ω=ωR ρ(1−σ 2) / E , obtained using different numbers of terms in the displacement
expansions.

Mode
Ω =ωR ρ(1−σ 2) / E

n=0 n=1 n=2 n=3 n=4

m=1, Current

Exact

m=2, Current

Exact

m=3, Current

Exact

0.464648

0.464648

0.928907

0.928907

0.948172

0.948172

0.257385

0.257385

0.574179

0.574176

0.764375

0.764355

0.127128

0.127128

0.337652

0.337649

0.532951

0.532923

0.143327

0.143327

0.248813

0.248810

0.399893

0.399865

0.234822

0.234822

0.285620

0.285619

0.383688

0.383667

Table 2. Frequency parameters, Ω=ωR ρ(1−σ 2) / E , for a simply-supported shell; L=4R, h/R=0.05 and μ=0.3.

Next, consider a cylindrical shell clamped at each end, that is,u =v =w =∂w / ∂ x =0. The
clamped-clamped boundary condition is a case when the stiffnesses of the restraining
springs all become infinitely large. The related shell and material parameters are as follows:
L=0.502 m, R=0.0635 m, h=0.00163 m, E=2.1×1011, μ=0.28, and ρ=7800. Listed in Table 3 are
some of the lowest natural frequencies for this clamped-clamped shell. The reference results
given there are calculated from

6 4 2
2 1 0 0A A AW - W + W - = (44)

whereΩ =ωR ρ(1−σ 2) / E , and the coefficients A0, A1 and A2 are the functions of the modal
indices, shell parameters, and the boundary conditions [27]. Equation (42) can be derived
from the Rayleigh-Ritz procedure by adopting the beam characteristic functions as the axial
functions for all three displacement components. A noticeable difference between these two
sets of results may be attributed to the fact that: a) Eq. (42) given in ref. [29] is based on the
Flügge shell theory, rather than the Donnell-Mushtari theory, and b) Eq. (42) uses only a sin‐
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gle beam characteristic function in contrast to the three complete sets (of basis functions) in
the current method.

Mode
Current

m=1
Eq. (42)

Current

m=2
Eq. (42)

n=1

2

3

4

5

1886.74

934.220

982.265

1598.55

2484.78

2035.05

971.531

990.339

1600.90

2486.49

3854.75

2039.66

1454.80

1769.54

2572.31

4302.05

2189.59

1500.07

1782.28

2578.07

Table 3. The natural frequencies in Hz for a clamped-clamped shell; L=0.502 m, R=0.0635 m, h=0.00163 m, E=2.1E+11,
μ=0.28, ρ=7800 kg/m3.

Mode n=2 n=3 n=4 n=5 n=6 n=7

Translation:

current

(2.130) [22]

FEA

Rotation:

Current

(2.132) [22]

FEA

m=1:

Current

FEA

0.00413

0.00310

0.00310

0.01907

0.00343

0.00343

0.24075

0.23810

0.00986

0.00876

0.00876

0.01676

0.00924

0.00923

0.13190

0.12836

0.01792

0.01680

0.01679

0.02068

0.01734

0.01731

0.08343

0.07938

0.02830

0.02717

0.02714

0.02995

0.02774

0.02769

0.06292

0.05893

0.04099

0.03986

0.03980

0.04220

0.04045

0.04037

0.05906

0.05555

0.05599

0.05487

0.05475

0.05713

0.05546

0.05533

0.06606

0.06332

Table 4. Frequency parameters, Ω=ωR ρ(1−σ 2) / E , for a free-free shell; R=0.5 m, L=4R, h=0.002R, and μ=0.28.

Another classical example involves a completely free shell. Vibration of a free-free shell is of
particular interest as manifested in the debate between two legendary figures, Rayleigh and
Love, about the validity of the inextensional theory of shells. The lower-order modes are
typically related to the rigid-body motions in the axial direction. Theoretically, the Hw ma‐
trix given in Eqs. (14) will become non-invertible for a completely free shell. However, this
numerical irregularity can be easily avoided by letting one of the bending-related springs
have a very small stiffness, such as,k̂ 4 =10−6. Table 4 shows a comparison of the frequency
parameters calculated using different techniques. While the results obtained from the cur‐
rent technique agree reasonably well with the other two reference sets, perhaps within the
variance of different shell theories, the frequency parameters for the two lower order modes
with rigid-body rotation (n=2 and 3) are clearly inaccurate which probably indicates that the
inability of exactly satisfying the shell boundary conditions by the “beam functions” tends
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to have more serious consequence in such a case. Amazingly enough, the inextensional theo‐
ry works very well in predicting the frequency parameters for the “rigid-body” modes
(those with rigid-body motions in the axial direction). It is also seen that the frequency pa‐
rameters of the rigid-body modes increases monotonically with the circumferential modal
index n.

After it has been adequately illustrated how the classical boundary conditions can be easily
and universally dealt with by simply changing the stiffness values of the restraining springs,
we will direct our attention to shells with elastic end restraints. For the purpose of compari‐
son, the problems previously studied in ref. [20] will be considered here. It was observed in
that study that the tangential stiffness had the greatest effect on the natural frequency of the
cylinder supported at both ends while the axial boundary stiffness had the greatest influ‐
ence on the natural frequency of the cylinder supported at one end. It was also determined
that natural frequencies varied rapidly with the boundary flexibility when the non-dimen‐
sionalized stiffness is between 10-2 and 102.

The frequency parameters for the “clamped”-free shell are shown in Table 5 for the reduced
axial stiffness k̂ 1L (1−μ 2)=1 (corresponding to ku

* =1 in ref. [20]). It is seen that the current
results are slightly larger than those taken from ref. [20]. The possible reasons include: 1) the
difference in shell theories (the Flügge theory, rather than the Donnell-Mushtari, was used
there), and 2) different Poisson ratios may have been used in the calculations.

Mode n=0 n=1 n=2 n=3 n=4 n=5

m=1

m=2

0.9752

1.22044

0.514686

1.12788

0.32866

(0.315*)

1.08573

0.361036

1.10467

0.532604

(0.498)

1.16021

0.782661

1.432

Note: the numbers in parentheses are taken from ref. [20]

Table 5. Frequency parameters, Ω=ωR ρ(1−σ 2) / E , for a “clamped”-free shell; R=0.00625 m, L=R, h=0.1R, μ=0.28,
andk̂1L (1−μ 2) = 1.

Although all eight sets of springs can be independently specified here, for simplicity we will
only consider a simple configuration: a cantilevered shell with an elastic support being attach‐
ed to its free (right) end in the radial direction. Listed in Table 6 are the four lowest natural fre‐
quencies for several different stiffness values. Obviously, the cases for k̂ 7 =0 and ∞ represent
the clamped-free and clamped-simply supported boundary conditions, respectively.

The mode shapes for the three intermediate stiffness values are plotted in Figs. 2-4. It is seen
that the modal parameters can be significantly modified by the stiffness of the restraining
springs. The four modes in Fig. 2 for k̂ 7 =0.01 m-1 closely resemble their counterparts in the
clamped-free case, even though the natural frequencies have been modified noticeably.
While all the first four natural frequencies happen to increase, more or less, with the spring
stiffness, the modal sequences are not necessarily the same. For example, when the spring
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stiffness k̂ 7 is increased from 0.01 to 0.1 m-1, the third natural frequency goes from 886.66 to

926.17 Hz. However, this frequency drift may not necessarily reflect the direct effect of the
stiffness change on the (original) third mode. It is evident from Figs. 2 and 3 that the third
and fourth modes are actually switched in these two cases: the original third mode now be‐
comes the fourth at 1200.88 Hz. It is also interesting to note that while stiffening the elastic
support k̂ 7 (from 0.01 to 0.1 m-1) has significantly raised the natural frequencies for the first

two modes, the fourth mode is adversely affected: its frequency has actually dropped from
1023.61 to 926.17 Hz (see Figs. 2 and 3). A similar trend is also observed between the fourth
mode for k̂ 7=0.1 m-1 and the second mode for k̂ 7=1 m-1, as shown in Figs. 3 and 4.

Mode k̂ 7 = 0 k̂ 7 = 0.01 k̂ 7 = 0.1 k̂ 7 =1 k̂ 7 =1010

1

2

3

4

404.108

487.598

865.603

1003.38

451.242

513.222

886.656

1023.61

627.345

679.082

926.173

1200.88

729.593

935.745

1084.91,

1319.99, ,

742.920

936.719

1269.58

1333.37

Table 6. Natural frequencies in Hz for a clamped-elastically supported shell; L=0.502 m, R=0.0635 m, h=0.00163 m,
E=2.1E+11, μ=0.28, ρ=7800 kg/m3;k̂5 = k̂6 = k̂8 = 0.

Figure 2. First four modes for the clamped-elastically supported shell; k̂7 = 0.01 m-1andk̂5 = k̂6 = k̂8 = 0.
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Figure 3. First four modes for the clamped-elastically supported shell; k̂7 = 0.1 m-1andk̂5 = k̂6 = k̂8 = 0.

Figure 4. First four modes for the clamped-elastically supported shell; k̂7 = 1 m-1andk̂5 = k̂6 = k̂8 = 0.
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3.2. An exact solution based on the Flügge’s equations

To validate the exact solution method, the simply supported shell is considered again. Given

in Table 7 are the calculated natural frequency parametersΩ =ωR ρ(1−σ 2) / E . The current
results agree well with the exact solutions based on Flügge’s theory [30], solutions based on
beam functions [31] and three-dimensional linear elasticity solutions [30].

h/R n
Ω =ωR ρ(1−σ 2) / E

Ref. [30]a Ref. [31] Ref. [30]b Present

0.05

0 0.0929586 0.0929682 0.0929296 0.0929590

1 0.0161065 0.0161029 0.0161063 0.0161064

2 0.0393038 0.0392710 0.0392332 0.0393035

3 0.1098527 0.1098113 0.1094770 0.1098468

4 0.2103446 0.2102770 0.2090080 0.2103419

0.002

0 0.0929296 0.0929298 0.0929296 0.0929299

1 0.0161011 0.0161011 0.0161011 0.0161023

2 0.0054532 0.0054530 0.0054524 0.0054547

3 0.0050419 0.0050415 0.0050372 0.0050427

4 0.0085341 0.0085338 0.0085341 0.0085344

a Exact solutions based on Flügge’s theory.

b Three-dimensional linear elasticity solutions.

Table 7. Comparison of values of the natural frequency parameter Ω=ωR ρ(1−σ 2) / E  for a circular cylindrical shell
with simply supported boundary conditions, m = 1, R/l = 0.05, σ = 0.3.

n
m = 1 m = 2

FEM present difference (%) FEM present difference (%)

0 3229.8 3230.3 0.015% 5131.4 5131.1 0.006%

1 2478.6 2479.3 0.028% 4830.4 4830.6 0.004%

2 269.20 269.30 0.037% 276.62 278.58 0.704%

3 761.25 761.01 0.032% 770.99 771.62 0.082%

4 1459.2 1458.6 0.041% 1469.6 1469.3 0.020%

5 2359.4 2358.6 0.034% 2369.9 2369.0 0.038%

Table 8. Comparison of values of the natural frequency for a circular cylindrical shell with free-free boundary
conditions, L=0.502 m, R=0.0635 m, h=0.00163 m, σ =0.28, E=2.1E+11 N/m3, ρ=7800 kg/m3.
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The current solution method is also compared with the finite element model (ANSYS) for
shells under free-free boundary condition. In the FEM model, the shell surface is divided in‐
to 8000 elements with 8080 nodes. The calculated natural frequencies are compared in Ta‐
bles 8. An excellent agreement is observed between these two solution methods.

In most techniques, such as the wave approach, the beam functions for the analogous boun‐
dary conditions are often used to determine the axial modal wavenumbers. While such an
approach is exact for a simply supported shell, and perhaps acceptable for slender thin
shells, it may become problematic for shorter shells due to the increased coupling of the ra‐
dial and two in-plane displacements. To illustrate this point, we consider relatively shorter
and thicker shell (l=8R and R =39h). The calculated natural frequencies are compared in Ta‐
ble 9 for a clamped-clamped shell. It is seen that while the current and FEM results are in
good agreement, the frequencies obtained from the wave approach (based on the use of
beam functions) are significantly higher, especially for the lower order modes.

n
m = 1 m = 2

FEM Ref. [32] present FEM Ref. [32] Present

0 3229.8 4845.5 3230.3 5146.0 8075.8 5139.8

1 1882.8 2350.2 1880.9 3850.7 4775.6 3848.9

2 899.59 985.48 898.18 2017.8 2303.4 2014.1

3 896.97 919.01 896.56 1390.9 1479.2 1388.9

4 1501.9 1517.45 1501.6 1676.4 1714.0 1676.0

5 2386.1 2402.05 2386.0 2472.5 2501.8 2472.6

Table 9. Comparison of the natural frequencies for a circular cylindrical shell with clamped-clamped boundary
conditions, L=0.502 m, R=0.0635 m, h=0.00163 m, σ=0.28, E=2.1E+11 N/m3, ρ=7800 kg/m3.

The exact solution method can be readily applied to shells with elastic boundary supports.
Since the above examples are considered adequate in illustrating the reliability and accuracy
of the current method, we will not elaborate further by presenting the results for elastically
restrained shells. Instead, we will simply point out that the solution method based on Eqs.
(27) is also valid for non-uniform or varying boundary restraint along the circumferential di‐
rection, which represents a significant advancement over many existing techniques.

4. Conclusion

An improved Fourier series solution method is described for vibration analysis of cylindri‐
cal shells with general elastic supports. This method can be easily and universally applied to
a wide variety of boundary conditions including all the 136 classical homogeneous boun‐
dary conditions. The displacement functions are invariantly expressed as series expansions
in terms of the complete set of trigonometric functions, which can mathematically ensure
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the accuracy and convergence of the present solution. From practical point of view, the
change of boundary conditions here is as simple as varying a typical shell or material pa‐
rameter (e.g., thickness or mass density), and does not involve any solution algorithm and
procedure modifications to adapt to different boundary conditions. In addition, the pro‐
posed method does not require pre-determining any secondary data such as modal parame‐
ters for an “analogous” beam, or modifying the implementation algorithms to avoid the
numerical instabilities resulting from computer round-off errors. It should be mentioned
that the current method can be readily extended to shells with arbitrary non-uniform elastic
restraints. The accuracy and reliability of the current solutions have been demonstrated
through numerical examples involving various boundary conditions.
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