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1. Introduction

While the renaissance of nuclear power was motivated by the increasing energy demand
and the related climate problem, the recent history of nuclear power, more specifically two
disastrous accidents have forced focus on nuclear safety. Although, experience gathered
along nuclear reactor developments has sharpened the rules and regulations that lead to
the commissioning of latest generation nuclear technology, an issue of crucial concern is the
environmental monitoring around nuclear power plants. These measures consider principally
the dispersion of radioactive material that either may be released in control actions or in
accidents, where in the latter knowledge from simulations guide the planning of emergency
actions. In this line the following contribution focuses on the question of radioactive material
dispersion after discharge from a nuclear power plant.

The atmosphere is considered the principal vehicle by which radioactive materials that are
either released from a nuclear power plant in experimental or eventually in accidental events
could be dispersed in the environment and result in radiation exposure of plants, animals
and last not least humans. Thus, the evaluation of airborne radioactive material transport
in the atmosphere is one of the requirements for monitoring and planning safety measures
in the environment around the nuclear power plant. In order to analyse the (possible)
consequences of radioactive discharge atmospheric dispersion models are of need, which
have to be tuned using specific meteorological parameters and conditions in the considered
region. Moreover, they shall be subject to the local orography and supply with realistic
information on radiological consequences of routine discharges and potential accidental
releases of radioactive substances.

The present work provides a model that allows to implement afore mentioned simulations by
the use of a hybrid system. In a first step the local meteorological parameters are determined
using the next-generation mesoscale numerical weather prediction system “Weather Research

©2012 Vilhena et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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and Forecasting” (WRF). The forcasting system contains a three dimensional data assimilation
system and is suitable for applications from the meso- down to the micro-scale. The second
step plays the role of simulating the dispersion process in a micro-scale, i.e. in the environment
within a radius of several tenth kilometers.

2. On the advection-diffusion approach

The Eulerian approach is widely used in the field of air pollution studies to model the
dispersion properties of the Planetary Boundary Layer (PBL). In this context, the diffusion
equation that describes the local mean concentrations c̄ = c̄(r, t) at an event point of interest
(r, t) = (x, y, z, t) arising from a any contaminant point source, which may be time dependent,
can be written as

∂t c̄ + U∇c̄ −∇
TK∇c̄ = S . (1)

Here U = (ū, v̄, w̄)T is the vector field of the mean wind velocity, the diagonal matrix
K = diag(Kx, Ky, Kz) contains the eddy diffusivities and S is a source term, to be determined

according to the scenario of interest. In equation (1) we tacitly related the turbulent fluxes U′c′
to the gradient of the mean concentration by means of eddy diffusivity (K-theory)

U′c′ = −K∇c̄ (2)

The simplicity of the K-theory has led to the widespread use of this theory as mathematical
basis for simulating air pollution phenomena. However, the K-closure has its intrinsic limits: it
works well when the dimension of dispersed material is much larger than the size of turbulent
eddies involved in the diffusion process. Another crucial point is that the down-gradient
transport hypothesis is inconsistent with observed features of turbulent diffusion in the upper
portion of the mixed layer ([9]). Despite these well known limits, the K-closure is largely used
in several atmospheric conditions because it describes the diffusive transport in an Eulerian
framework where almost all measurements are easily cast into an Eulerian form, it produces
results that agree with experimental data as well as any other more complex model, and it is
not computationally expensive as higher order closures usually are.

For a time dependent regime considered in the present work, we assume that the
associated advection-diffusion equation adequately describes a dispersion process of
radioactive material. From applications of the approach to tracer dispersion data we saw
that our analytical approach does not only yield a solution for the three dimensional
advection-diffusion equation but predicts tracer concentrations closer to observed values
compared to other approaches from the literature, which is also manifest in better statistical
coefficients.

Approaches to the advection-diffusion problem are not new in the literature, that are either
based on numerical schemes, stochastic simulations or (semi-)analytical methods as shown
in a selection of articles ([12, 23, 26, 29, 32]). Note, that in these works all solutions are
valid for scenarios with strong restrictions with respect to their specific wind and vertical
eddy diffusivity profiles. A more general approach, the ADMM (Advection Diffusion
Multilayer Method) approach solves the two-dimensional advection-diffusion equation with
variable wind profile and eddy diffusivity coefficient ([21]). The main idea here relies on
the discretisation of the atmospheric boundary layer in a multi-shell domain, assuming
in each layer that eddy diffusivity and wind profile take averaged values. The resulting

220 Nuclear Power – Practical Aspects



On an Analytical Model for the Radioactive Contaminant Release in the Atmosphere from Nuclear Power Plants 3

advection-diffusion equation in each layer is then solved by the Laplace Transform technique.
The GIADMT method (Generalized Integral Advection Diffusion Multilayer Technique)
([7]) is a dimensional extension to the previous work, but again assuming the stepwise
approximation for the eddy diffusivity coefficient and wind profile. To generalize, a general
two-dimensional solution was presented by ([22]). The solving methodology was the
Generalized Integral Laplace Transform Technique (GILTT) that is an analytical series solution
including the solution of an associate Sturm-Liouville problem, expansion of the pollutant
concentration in a series in terms of the attained eigenfunction, replacement of this expansion
in the advection-diffusion equation and, finally, taking moments. This procedure leads to a set
of differential ordinary equations that is solved analytically by Laplace transform technique.
In this work we improve further the solutions of the afore mentioned articles and report
on a general analytical solution for the advection-diffusion problem, assuming that eddy
diffusivity and wind profiles are arbitrary functions having a continuous dependence on the
vertical and longitudinal spatial variables.

Equation (1) is considered valid in the domain (x, y, z) ∈ Γ bounded by 0 < x < Lx, 0 < y <

Ly (with Lx and Ly sufficiently large), 0 < z < h (here h is the boundary layer height) and
subject to the following boundary and initial conditions,

K∇c̄|(0,0,0) = K∇c̄|(Lx,Ly,h) = 0 (3)

c̄(x, y, z, 0) = 0 . (4)

Instead of specifying the source term as an inhomogeneity of the partial differential equation,
we consider a point source located at an edge of the domain, so that the source position rS =
(0, y0, HS) is located at the boundary of the domain rS ∈ δΓ. Note, that in cases where the

source is located in the domain, one still may divide the whole domain in sub-domains, where
the source lies on the boundary of the sub-domains which can be solved for each sub-domain
separately. Moreover, a set of different sources may be implemented as a superposition of
independent problems. Since the source term location is on the boundary, in the domain this
term is zero everywhere (S(r) ≡ 0 for r ∈ Γ\δΓ), so that the source influence may be cast in
form of a condition rather than a source term of the equation. The source condition for a time
dependent contamination reads then

S =
∮

ωS dΣ (5)

where ωS represents a flux across a closed surface that includes the source and is proportional

to the source strength. Instead of considering an explicit source term, we implement the
solution as a superposition of an infinite number of solutions with instantaneous source
represented in an initial condition. The solution for a time dependent source assumes the
following form

c̄(t, x, y, z) =
∫ t

0
˙̄c(t − τ, x, y, z) dτ (6)

with instantaneous initial condition

˙̄c(0, x, y, z) = ˙̄c0 = lim
∮

Σ̂ dΣ→0

∮

ωS dΣ = Qδ(x)δ(y − y0)δ(z − HS) (7)
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where Q is the emission rate, HS the height of the source, δ(x) represents the Cartesian Dirac
delta functional and Σ̂ is a unit vector.

3. A closed form solution

In this section we first introduce the general formalism to solve a general problem and
subsequently reduce the problem to a more specific one, that is solved and compared to
experimental findings.

3.1. The general procedure

In order to solve the problem (1) we reduce the dimensionality by one and thus cast the
problem into a form already solved in reference [22]. To this end we apply the integral
transform technique in the y variable, and expand the pollutant concentration as

c̄(x, y, z, t) = RT(x, z, t)Y(y), (8)

where R = (R1, R2, . . .)T and Y = (Y1, Y2, . . .)T is a vector in the space of orthogonal
eigenfunctions, given by Ym(y) = cos(λmy) with eigenvalues λm = m π

Ly
for m = 0, 1, 2, . . ..

For convenience we introduce some shorthand notations, ∇2 = (∂x , 0, ∂y)
T and ∂̂y =

(0, ∂y, 0)T , so that equation (1) reads now,

(∂tR
T)Y + Ū

(

∇2RTY + RT ∂̂yY
)

=
(

∇TK + (K∇)T
) (

∇2RTY + RT ∂̂yY
)

=
(

∇T
2 K + (K∇2)

T
)

(∇2RTY) +
(

∂̂T
y K + (K∂̂y)

T
)

(RT ∂̂yY) . (9)

Upon application of the integral operator

∫ Ly

0
dyY[F] =

∫ Ly

0
FT ∧ Y dy (10)

here F is an arbitrary function and ∧ signifies the dyadic product operator, and making use of
orthogonality renders equation (9) a matrix equation. The appearing integral terms are

B0 =
∫ Ly

0
dyY[Y] =

∫ Ly

0
YT ∧ Y dy ,

Z =
∫ Ly

0
dyY[∂̂yY] =

∫ Ly

0
∂̂yYT ∧ Y dy ,

Ω1 =
∫ Ly

0
dyY[(∇T

2 K)(∇2RTY)] =
∫ Ly

0

(

(∇T
2 K)(∇2RTY)

)T
∧ Y dy , (11)

Ω2 =
∫ Ly

0
dyY[(K∇2)

T(∇2RTY)] =
∫ Ly

0

(

(K∇2)
T(∇2RTY)

)

∧ Y dy ,

T1 =
∫ Ly

0
dyY[((∂̂T

y K)(∂̂yY)] =
∫ Ly

0

(

((∂̂T
y K)(∂̂yY)

)T
∧ Y dy ,

T2 =
∫ Ly

0
dyY[(K∂̂y)

T(∂̂yY)] =
∫ Ly

0

(

(K∂̂y)
T(∂̂yY)

)T
∧ Y dy .
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Here, B0 =
Ly

2 I, where I is the identity, the elements (Z)mn = 2
1−n2/m2 δ1,j with δi,j the

Kronecker symbol and j = (m + n)mod2 is the remainder of an integer division (i.e. is one
for m + n odd and zero else). Note, that the integrals Ωi and Ti depend on the specific
form of the eddy diffusivity K. The integrals (11) are general, but for practical purposes
and for application to a case study we truncate the eigenfunction space and consider M
components in R and Y only, though continue using the general nomenclature that remains
valid. The obtained matrix equation determines now together with initial and boundary
condition uniquely the components Ri for i = 1, . . . , M following the procedure introduced in
reference [22]:

(∂tR
T)B + Ū

(

∇2RTB + RTZ
)

= Ω1(R) + Ω2(R) + RT(T1 + T2) (12)

3.2. A specific case for application

In order to discuss a specific case we introduce a convention and consider the average wind
velocity Ū = (ū, 0, 0)T aligned with the x-axis. Since the variation of the average wind velocity
is slow compared to the time intervals for which the meteorological data are extracted from
WRF, we superimpose the solution after rotation in the x− y-plane in order to transform every
instantaneous solution into the same coordinate frame, i.e. the coordinate frame for t = 0. By
comparison of physically meaningful cases, one finds for the operator norm ||∂xKx∂x || <<

|ū|, which can be understood intuitively because eddy diffusion is observable predominantly
perpendicular to the mean wind propagation. As a consequence we neglect the terms with Kx

and ∂xKx.

The principal aspect of interest in pollution dispersion is the vertical concentration profile,
that responds strongly to the atmospheric boundary layer stratification, so that the simplified
eddy diffusivity K → K1 = diag(0, Ky, Kz) depends in leading order approximation only on
the vertical coordinate K1 = K1(z). For this specific case the integrals Ωi reduce to

Ω1 → (∂zKz)(∂zRT)B ,

Ω2 → Kz(∂
2
zRT)B , (13)

T1 → 0 ,

T2 → −KyΛB , (14)

where Λ = diag(λ2
1, λ2

2, . . .). The simplified equation system to be solved is then,

∂tR
TB + ū∂xRTB = (∂zKz)∂zRTB + Kz∂2

zRTB − KyRT
ΛB (15)

which is equivalent to the problem

∂tR + ū∂xR = (∂zKz)∂zR + Kz∂2
zR − KyΛR (16)

by virtue of B being a diagonal matrix.

The specific form of the eddy diffusivity determines now whether the problem is a linear
or non-linear one. In the linear case the K is assumed to be independent of c̄, whereas
in more realistic cases, even if stationary, K may depend on the contaminant concentration
and thus renders the problem non-linear. However, until now now specific law is known
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that links the eddy diffusivity to the concentration so that we hide this dependence using a
phenomenologically motivated expression for K which leaves us with a partial differential
equation system in linear form, although the original phenomenon is non-linear. In the
example below we demonstrate the closed form procedure for a problem with explicit time
dependence, which is novel in the literature.

The solution is generated making use of the decomposition method ([1–3]) which was
originally proposed to solve non-linear partial differential equations, followed by the Laplace
transform that renders the problem a pseudo-stationary one. Further we rewrite the vertical
diffusivity as a time average term K̄z(z) plus a term representing the variations κz(z, t) around
the average for the time interval of the measurement Kz(x, z, t) = K̄z(z) + κz(z, t) and use the
asymptotic form of Ky, which is then explored to set-up the structure of the equation that
defines the recursive decomposition scheme:

∂tR + ū∂xR − ∂z (K̄z∂zR) + KyΛR = ∂z (κz∂zR) (17)

The function R = ∑j Rj = 1TR(c) is now decomposed into contributions to be determined

by recursion. For convenience we introduced the one-vector 1 = (1, 1, . . .)T and inflate the
vector R to a vector with each element being itself a vector Rj. Upon inserting the expansion
in equation (17) one may regroup terms that obey the recursive equations and starts with the
time averaged solution for Kz:

∂tR0 + ū∂xR0 − ∂z (K̄z∂zR0) + KyΛR0 = 0 (18)

The extension to the closed form recursion is then given by

∂tRj + ū∂xRj − ∂z

(

K̄z∂zRj

)

+ KyΛRj = ∂z

(

κz∂zRj−1

)

. (19)

From the construction of the recursion equation system it is evident that other schemes are
possible. The specific choice made here allows us to solve the recursion initialisation using
the procedure described in reference [22], where a stationary K was assumed. For this reason
the time dependence enters as a known source term from the first recursion step on.

3.3. Recursion initialisation

The boundary conditions are now used to uniquely determine the solution. In our scheme
the initialisation solution that contains R0 satisfies the boundary conditions (equations (3))
while the remaining equations satisfy homogeneous boundary conditions. Once the set of
problems (19) is solved by the GILTT method, the solution of problem (1) is well determined.
It is important to consider that we may control the accuracy of the results by a proper choice
of the number of terms in the solution series.

In reference [22] a two dimensional problem with advection in the x direction in stationary
regime was solved which has the same formal structure than (19) except for the time
dependence. Upon rendering the recursion scheme in a pseudo-stationary form problem and
thus matching the recursive structure of [22], we apply the Laplace Transform in the t variable,
(t → r) obtaining the following pseudo-steady-state problem:

rR̃0 + u∂xR̃0 = ∂z
(

Kz∂zR̃0

)

− Λ KyR̃0 (20)
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The x and z dependence may be separated using the same reasoning as already introduced in
(8). To this end we pose the solution of problem (20) in the form:

R̃0 = PC (21)

where C = (ζ1(z), ζ2(z), . . .)T are a set of orthogonal eigenfunctions, given by ζi(z) =
cos(γlz), and γi = iπ/h (for i = 0, 1, 2, . . .) are the set of eigenvalues.

Replacing equation (21) in equation (20) and using the afore introduced projector (10) now for

the z dependent degrees of freedom
∫ h

0 dzC[F] =
∫ h

0 FT ∧ C dz yields a first order differential
equation system:

∂xP + HP = 0 , (22)

where P = P(x, r) and H = B−1
1 B2. The entries of matrices B1 and B2 are

(B1)i,j = −
∫ h

0
uζi(z)ζ j(z) dz

(B2)i,j =
∫ h

0
∂zKz∂zζi(z)ζ j(z) dz − γ2

i

∫ h

0
Kzζi(z)ζ j(z) dz

−r
∫ h

0
ζi(z)ζ j(z) dz − λ2

i Ky

∫ h

0
ζi(z)ζ j(z) dz .

A similar procedure leads to the source condition for (22):

P(0, r) = QB−1
1

∫

dzC[δ(z − HS)]
∫

dyY[δ(y − y0)] = QB−1
1 (C(HS) ∧ 1) (1 ∧ Y(y0)) (23)

Following the reasoning of [22] we solve (22) applying Laplace transform and diagonalisation

of the matrix H = XDX−1 which results in

P̃(s, r) = X(sI + D)−1X−1P(0, r) (24)

where P̃(s, r) denotes the Laplace Transform of P(x, r). Here X(−1) is the (inverse) matrix of

the eigenvectors of matrix B−1
1 B2 with diagonal eigenvalue matrix D and the entries of matrix

(sI + D)ii = s + di. After performing the Laplace transform inversion of equation (24), we
come out with

P(x, r) = XG(x, r)X−1
Ω , (25)

where G(x, r) is the diagonal matrix with components (G)ii = e−dix. Further the still

unknown arbitrary constant matrix is given by Ω = X−1P(0, r).

The analytical time dependence for the recursion initialisation (20) is obtained upon applying
the inverse Laplace transform definition

R0(x, z, t) =
1

2πi

∫ γ+i∞

γ−i∞
P(x, r)C(z)ert dr . (26)

To overcome the drawback of evaluating the line integral appearing in the above solution, we
perform the calculation of this integral by the Gaussian quadrature scheme, which is exact if

the integrand is a polynomial of degree 2M − 1 in the 1
r variable

R0(x, z, t) =
1

t
aT

(

pR0(x, z,
p

t
)
)

, (27)
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where a and p are respectively vectors with the weights and roots of the Gaussian quadrature

scheme ([27]), and the argument (x, z,
p
t ) signifies the k-th component of p in the k-th row of

pR0. Note, k is a component from contraction with a.

4. Experimental data and turbulent parameterisation

For model validation we chose a controlled release of radioactive material performed in

1985 at the Itaorna Beach, close to the nuclear reactor site Angra dos Reis in the Rio de

Janeiro state, Brazil. Details of the dispersion experiment is described elsewhere ([5]). The

experiment consisted in the controlled releases of radioactive tritiated water vapour from

the meteorological tower at 100m height during five days (28 November to 4 December

1984). During the whole experiment, four meteorological towers collected the relevant

meteorological data. Wind speed and direction were measured at three levels (10m, 60m and

100m) together with the temperature gradients between 10m and 100m. Some additional data

of relative humidity were available in some of the sampling sites, and were used to calculate

the concentration of radioactive tritiated water in the air (after measuring the radioactivity of

the collected samples). All relevant details, as well as the synoptic meteorological conditions

during the dispersion campaign are described in ref. [5]. The data from experiments 2 and 3

were used to obtain the numerical results and are presented in table 1.

Exp Period U(m/s) h(m) u∗(m/s) L(m) w∗(m/s) Q(MBq/s)

2 3 2.2 1134 0.4 −951 0.6 25.3

3 3 2.6 1367 0.5 −1147 0.7 20.5

Table 1. Micro-meteorological parameters and emission rate for experiments 2 and 3 at third period.

The micro-meteorological parameters shown in table 1 are calculated from equations obtained

in the literature. The roughness length utilized was 1m and the Monin-Obukhov length for

convective conditions can be written as L = −h/k (u∗/w∗)
3 ([35]), where k is the von Karman

constant (k = 0.4), w∗ is the convective velocity scale with wind speed U, u∗ = kU/ln(zr/z0)
is the friction velocity, where U is the wind velocity at the reference height zr = 10m, and

h = 0.3u∗/ fc is the height of the boundary layer with the Coriolis coefficient fc = 10−4.

In the atmospheric diffusion problems the choice of a turbulent parameterisation represents a

fundamental aspect for contaminant dispersion modelling. From the physical point of view a

turbulence parameterisation an approximation for the natural phenomenon, where details are

hidden in the parameters used, that have to be adjusted in order to reproduce experimental

findings. The reliability of each model strongly depends on the way the turbulent parameters

are calculated and related to the current understanding of the planetary boundary layer. In

terms of the convective scaling parameters the vertical and lateral eddy diffusivities can be

formulated as follows ([11]):

Kz = 0.22w∗h
( z

h

)
1
3
(

1 − z

h

)
1
3
(

1 − e
4z
h − 0.0003e

8z
h

)

(28)
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Ky =

√
πσv

16( fm)vqv
with σ2

v =
0.98cv

( fm)
2
3
v

(

ψǫ

qv

)
2
3 ( z

h

)
2
3

w2
∗

qv = 4.16
z

h
, ψ

1
3
ǫ =

(

(

1 − z

h

)2 (

− z

L

)− 2
3
+ 0.75

)

1
2

and ( fm)v = 0.16 (29)

where σv is the standard deviation of the longitudinal turbulent velocity component, qv is
the stability function, ψǫ is the dimensionless molecular dissipation rate and ( fm)v is the
transverse wave peak.

The wind speed profile can be described by a power law uz/u1 = (z/z1)
n ([25]), where uz

and u1 are the horizontal mean wind speeds at heights z and z1 and n is an exponent that is
related to the intensity of turbulence ([16]).

Thus, in this study we introduce the vertical and lateral eddy diffusivities (eq. (35) and eq.
(29)) and the power law wind profile in the 3D-GILTT model (eq. (16) or equivalently eq. (20))
to calculate the ground-level concentration of emissions released from an elevated continuous
source point in an unstable/neutral atmospheric boundary layer.

The validation of the 3D-GILTT model predictions against experimental data from the Angra
site together with a two dimensional model (GILTTG) are shown in table 2. While the present
approach (3D-GILTT) is based on a genuine three dimensional description an earlier analytical
approach (GILTTG) uses a Gaussian assumption for the horizontal transverse direction ([22]).
Figure 1 shows the comparison of predicted concentrations against observed ones for the three
dimensional approach, which reproduces acceptably the observed concentrations, although
this simulation did not make use of the terrain’s realistic complexity.

In the further we use the standard statistical indices in order to compare the quality of the
two approaches. Note, that we present the two analytical model approaches, since the earlier
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Figure 1. Observed and predicted scatter diagram of ground-level concentrations using the 3D-GILTT
approach for the experiment; dotted lines indicate a factor of two.
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Exp. Period Distance (m) Observed (Bq/m3) Predictions (Bq/m3)

GILTTG 3D-GILTT

2 3 610 0.58 0.20 0.40

2 3 600 0.50 0.19 0.40

2 3 700 0.53 0.29 0.44

2 3 815 0.61 0.38 0.47

2 3 970 0.54 0.47 0.48

2 3 1070 0.86 0.51 0.48

2 3 750 0.39 0.33 0.46

2 3 935 0.40 0.45 0.48

3 3 705 38.89 47.18 31.13

3 3 700 24.09 46.53 31.02

3 3 815 48.95 59.98 32.66

3 3 970 36.22 73.03 32.95

3 3 1070 33.50 78.65 32.44

3 3 500 50.26 17.74 22.58

3 3 375 26.86 2.57 11.67

3 3 960 19.61 72.35 32.97

3 3 915 18.02 69.04 33.03

Table 2. Concentrations of nine runs with various positions of the Angra dos Reis experiment and
model prediction by the approaches GILTTG and 3D-GILTT.

one was found to be acceptable in comparison to other approaches found in the literature and
both give a solution in closed form. The standard statistical indices are NMSE, the normalized
mean square error; COR, the correlation coefficient; FA2 and FA5, the fraction of data (in %) in
the cones determined by a factor of two and five, respectively; FB, the fractional bias and FS,
the fractional standard deviation. The subscripts o and p refer to observed and predicted

quantities, respectively, and C̄ indicates the averaged values. Table 3 presents the results
of the statistical indices used to evaluate the model performance ([14]) and further compare
our model to the GILTTG approach. The statistical index FB indicates weather the predicted
quantities (Cp) under- or overestimates the observed ones (Co). The statistical index NMSE
represents the quadratic error of the predicted quantities in relation to the observed ones. Best
results are indicated by values compatible with zero for NMSE, FB and FS, and compatible
with unity for COR, FA2 and FA5. The statistical indices point out that a reasonable agreement
is obtained between experimental data and the 3D-GILTT model.

In order to validate the two models we fit the predicted versus observed values by a linear
regression (see figure 2), where the closer their intersect to the origin and the closer the slope
is to unity the better is the approach. The GILTTG approach results in C̄p = 1.16C̄o + 7.01
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Statistical Indices GILTTG 3D-GILTT

NMSE = (Co − Cp)2/Cp Co 1.34 0.38

COR = (Co − Co)(Cp − Cp)/σoσp 0.67 0.83

FA2 = 0.5 ≤ (Cp/Co) ≤ 2 0.53 0.88

FA5 = 0.2 ≤ (Cp/Co) ≤ 5 0.96 1.00

FB = Co − Cp/0.5(Co + Cp) −0.44 0.13

FS = (σo − σp)/0.5(σo + σp) −0.54 0.18

Table 3. Statistical comparisons between GILTTG and 3D-GILTT results.

with R2 = 0.67 and κ = 0.43, whereas the 3D-GILTT obeys the result C̄p = 0.69C̄o + 3.26

with R2 = 0.83 and κ = 0.36. In order to perform a model validation we introduced an index

κ =
√

(a − 1)2 + (b/C̄o)
2

with C̄o = 1
n ∑

n
i=1 Coi, which if identical zero indicates a perfect

match between the model and the experimental findings. Here a is the slope, b the intersection,

Coi of the experimental data and C̄o its arithmetic mean. Since the experiment is of stochastic
character whereas the stochastic properties are hidden in the model parameters, considerable
fluctuations are present. Nevertheless, by comparison one observes that the present approach
yields the better description of the data.
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Figure 2. Linear regression for the GILTTG and 3D-GILTT. The bisector was added as an eye guide.

5. Meso-scale simulation for K-closure

The consistency of the K-approach strongly depends on the way the eddy diffusivity is
determined on the basis of the turbulence structure of the PBL and on the model ability
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to reproduce experimental diffusion data. Keeping the K-theory limitations in mind many
efforts have been made to develop turbulent parametrisations for practical applications in air
pollution modelling which reveals the essential features of turbulent diffusion, but which as
far as possible preserves the simplicity and flexibility of the K-theory formulation. The aim of
this step is to elaborate parametrisations for the eddy diffusivity coefficients in the PBL based
on the micro-meteorological parameters that were extracted from mesoscale WRF simulations.
The WRF model is based on the Taylor’s statistical theory and a model for Eulerian spectra
([11, 24]). The main idea of the proposed spectral model relies on considering the turbulent
spectra as a superposition of a buoyant produced part (with a convective peak wavelength)
and a shear produced part (with a mechanical peak wavelength). By such a model, the plume
spreading rate is directly connected with the spectral distribution of eddies in the PBL, that is
with the energy containing eddies of the turbulence.

The WRF Simulator is a meso-scale numerical weather prediction system that features
multiple dynamical cores and a 3-dimensional variational data assimilation system. The
simulator offers multiple physics options that can be combined in various ways. Since this
study focusses on the implementation of an interface with a model for the PBL, orography
related features of WRF were of importance, more specifically the Land-Surface and PBL
physics options were chosen for the present study. In WRF, when a PBL scheme is activated, a
specific vertical diffusion is de-activated with the assumption that the PBL scheme will handle
this process. The Mellor-Yamada-Janjic PBL scheme derives the eddy diffusivities coefficients
and the boundary layer height from the estimations of the Turbulent Kinetic Energy (TKE)
through the full range of atmospheric turbulent regimes ([19]).

Two grids were used for the WRF meso-scale simulation. The outer grid has an extension of
the order of half the earth radius so that a significant part of the large scale geological domain
of interest is included. The inner grid is centred at the point of interest, i.e. the centre of the
power plant where typically the nuclear reactor is located. The simulation may in principal
contain a sequence of days or even months. The micro-meteorological data are extracted at
the centre point of the inner WRF grid. The spectral model needs these quantities to calculate
the eddy diffusivity coefficients.

On the basis of Taylor’s theory, Taylor proposed that under the hypothesis of homogeneous
turbulence, the eddy diffusivities may be expressed as

Kα =
d

dt

(

σ2
α

2

)

=
σ2

i βi

2π

∫ ∞

0
FE

i (n)
sin(2πntβ−1

i )

n
dn, (30)

where α = (x, y, z) and i = u, v, w, FE
i (n) is the value of the Eulerian spectrum of energy

normalized by the Eulerian velocity variance, and σ2
i corresponds to the Eulerian variance of

the turbulent wind field. Following [33], βi =
(

πU2

16σ2
i

)
1
2
. For large diffusion travel times (t →

∞), the filter function in the integral of eqn. (30) selects FE
i (n) at the origin of the frequency

space, such that the rate of dispersion becomes independent of the travel time from the source
and can be expressed as a function of local properties of turbulence,

Kα =
σ2

i βiF
E
i (0)

4
(31)
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where FE
i (0) is the value of the normalised Eulerian energy spectrum at n = 0. In this

way the eddy diffusivity is directly associated to the energy-containing eddies which are the
principal contribution to turbulent transport. In order to use eqn. (31) we have to find an
analytical form for the dimensionless Eulerian spectrum. We assume here that the spectral
distribution of turbulent kinetic energy is a superposition of buoyancy and shear components.
Such a TKE model may be evaluated as a good approximation for a real PBL, where turbulent
production is due to both mechanisms ([15, 20]). In these conditions we may write the Eulerian
dimensional spectrum as SE

i (n) = Sib(n) + Sis(n), where the subscripts b and s stand for
buoyancy and shear, respectively.

An analytical form for the dimensional spectra in convective turbulence has been reported in
[11]

Sib(n) =
0.98ci

(

nz
ū

)

n
(

f ∗mi

)
5
3

(

1 + 1.5
nz
ū

f ∗mi

)Ψ
2
3

ǫb

(

z

zi

)
2
3

w2
∗ , (32)

while for mechanical turbulence ([10])

Sis(n) =
1.5ci

(

nz
ū

)

n ( fmi)
5
3

(

1 + 1.5
nz
ū

fmi

)Φ
2
3
ǫsu2

∗ (33)

where Ψǫb = ǫbh
w3∗

and Φǫs = ǫκz
u3∗

are the dimensional dissipation rate functions, ǫb and ǫs

are the convective and mechanical rate of tke dissipation, f ∗mi is the normalized frequency of
the spectral peaks regardless of stratification and fmi is the reduced frequency with the mean
wind speed ū in the mixing layer.

The dimensionless spectrum FE
i (n) in eqn. (31) is obtained by normalizing the dimensional

spectra with the total variance, σ2
i =

∫ ∞

0 SE
i (n)dn, that is

FE
i (n) =

SE
i

σ2
i

=
SE

ib(n) + SE
is(n)

σ2
i

. (34)

The total wind velocity variance is obtained by the sum of mechanical and convective
variances σ2

i =
∫ ∞

0 (SE
ib(n) + SE

is(n)) dn = σ2
ib + σ2

is. Making use of eqns. (30), (32), (33)

and eqn. (34) one ends up with Kα =
βi

4

(

SE
ib(0) + SE

is(0)
)

, that for the w-component becomes

Kz =
βi

4

(

0.98cw
(

z
ū
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n( f ∗mw)
5
3

Ψ
2
3

ǫb

(

z

zi

)
2
3

w2
∗ +

1.5cw
(

z
ū

)

n( fmw)
5
3

Φ
2
3
ǫsu2

∗

)

(35)

6. Application to the Fukushima-Daiichi accident

In order to illustrate the suitability of the discussed formulation to simulate contaminant
dispersion in the atmospheric boundary layer, we evaluate the performance of the new
solution and simulate radioactive substance dispersion around the Fukushima-Daiichi power
plant.
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At the 11th of march, 2011 the Fukushima-Daiichi nuclear power plant accident (coordinates

in latitude, longitude: 37o 25’ 17” N, 141o 1’ 57” E) caused considerable radiation leakage into

the atmosphere and into the sea. The radioactive pollution of the environment and sea was

caused principally by the direct release of contaminated water from the power station. To a
lesser extent atmospheric release of the radio-nuclide from the atmospheric plume are carried

by the winds over the sea during and after the accident sequence. Shorter–lived radioactive

elements, such as Iodine-131 were detectable for a few months (half-live of approximately 80

days). Others, such as Ruthenium-106 and Caesium-134 will still persist in the environment

for several years (Caesium-137 has a half-life of approximately 30 years).

In the following we show the results for a sequence of four days from the 12th to the 15th of

march. Figure 3 shows some meso-scale meteorological information, that was obtained from

WRF. The first plot in fig. 3 corresponds to the situation three hours after the beginning of

Figure 3. Temperature and mean wind profile from WRF for 3 hours, 48 hours and 93 hours after the
beginning of constant release of radioactive substances.
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constant release of radioactive material, the second and third plot correspond to 48 hours and

93 hours after time zero.

From the meso-scale meteorological data one may determine the eddy diffusivity coefficients

for each specific hour. In the z-time plot of fig. 4 we report the dimensionless vertical eddy

diffusivity coefficients as calculated by eq. (35) for four subsequent days. The figure shows in

a simple way the spatial and time structure of this coefficient. In this context, it is important

to point out that the largest values of the Kz coefficient correspond to the strongest mixing

and likely the minimum level of contamination at ground level. It is evident analysing fig. 4

that the maximum values are reached during the day as a consequence of the strong diurnal

convective mixing and in the range of a dimensionless height between [0.4, 0.7], that is in

the bulk of the convective boundary layer. During the night the mixing is reduced as a

consequence of the formation of the stable boundary layer due to the inversion of the heat

flux.
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Figure 4. The dimensionless eddy diffusivity coefficient dependent on height in multiples of the
boundary layer height for a time sequence of four subsequent days.

In the further we show the radioactive substance concentrations close to the surface around

the nuclear power plant. Figures 5 show the distributions for 3 hours, 48 hours and 93 hours

after the beginning of the substance release with a logarithmic scale.

The centre of the nuclear power plant is located in the centre of the plot, the cost line is almost

in the north south direction, that is parallel to the y-axis in the plot with the ocean to the right

side. Shortly after the beginning of the release the mean wind pointed towards the ocean,

whereas after three days the wind blew towards the south in the direction of Tokyo.
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Figure 5. The logarithmic concentration distribution of radioactive substances released from the nuclear
power plant for 3 hours, 48 hours and 93 hours after the beginning of the release.

7. Conclusions

The present work was based on an Eulerian approach to determine dispersion of radioactive
contaminants in the PBL. To this end the diffusion equation for the cross-wind integrated
concentrations was closed by the relation of the turbulent fluxes to the gradient of the mean
concentration by means of eddy diffusivity (K-theory). We are completely aware of the fact
that K-closure has its intrinsic limits so that one would like to remove these inconsistencies.
However, comparisons of predictions by this approach to experimental data have shown that
there are scenarios where this lack is not significantly manifest, which we use as a justification
together with its computational simplicity to perform our simulations based on this approach.

Since the consistency of the K-approach depends crucially on the determination of the
eddy diffusivity considering the turbulence structure of the PBL in its respective stability
regimes, we elaborated parametrisations for the eddy diffusivity coefficients based on the
micro-meteorological parameters that were extracted from meso-scale WRF simulations, that
allowed to take into account the realistic orography of the larger vicinity of a reactor site
in consideration. The approach proposed here for the determination of the eddy-diffusivity
coefficient is based on the Taylor statistical diffusion theory and on the spectral properties
of turbulence. The assumption of continuous turbulence spectrum and variances, allows the
parametrisations to be continuous at all elevations, and in stability conditions ranging from a
convective to a neutral condition, and from a neutral to a stable condition so that a simulation
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of a full diurnal cycle is possible. Simulating micro-meteorology for a short period for the
Fukushima Nuclear Power Station Accident may be considered a first step into a direction
where the impact of the contamination of radioactive material in the site may be simulated
and evaluated for the whole period of the accident until today. Thus the present work may be
understood as one tile in a larger program development that simulates radioactive material
dispersion using analytical resources, i.e. solutions. In a longer term we intend to build a
library that allows to predict radioactive material transport in the planetary boundary layer
that extends from the micro- to the meso-scale.

The quality of the solution may be estimated by the following considerations. Recalling,
that the structure of the pollutant concentration is essentially determined by the mean wind

velocity Ū and the eddy diffusivity K, means that the quotient of norms ̟ = ||K||
||Ū|| defines

a length scale for which the pollutant concentration is almost homogeneous. Thus one may
conclude that with decreasing length ( ̟

m and m an increasing integer number) variations in

the solution become spurious. Upon interpreting ̟−1 as a sampling density, one may now
employ the Cardinal Theorem of Interpolation Theory ([30]) in order to find the truncation
that leaves the analytical solution almost exact, i.e. introduces only functions that vary
significantly in length scales beyond the mentioned limit.

The square integrable function χ =
∫

r c̄ dt dx dη ∈ L2 (η = y or z) with spectrum {λi} which

is bounded by m̟−1 has an exact solution for a finite expansion. This statement expresses
the Cardinal Theorem of Interpolation Theory for our problem. Since the cut-off defines some
sort of sampling density, its introduction is an approximation and is related to convergence
of the approach and Parseval’s theorem may be used to estimate the error. In order to keep
the solution error within a prescribed error, the expansion in the region of interest has to

contain n + 1 terms, with n = int
{

mLy,z

2π̟ + 1
2

}

. For the bounded spectrum and according to

the theorem the solution is then exact. In our approximation, if m is properly chosen such that
the cut-off part of the spectrum is negligible, then the found solution is almost exact.

Further, the Cauchy-Kowalewski theorem ([8]) guarantees that the proposed solution is a
valid solution of the discussed problem, since this problem is a special case of the afore
mentioned theorem, so that existence and uniqueness are guaranteed. It remains to justify
convergence of the decomposition method. In general convergence by the decomposition
method is not guaranteed, so that the solution shall be tested by an appropriate criterion.
Since standard convergence criteria do not apply in a straight forward manner for the present
case, we resort to a method which is based on the reasoning of Lyapunov ([6]). While
Lyapunov introduced this conception in order to test the influence of variations of the initial
condition on the solution, we use a similar procedure to test the stability of convergence while
starting from an approximate (initial) solution R0 (the seed of the recursive scheme). Let
|δZn| = ‖∑

∞
i=n+1 Ri‖ be the maximum deviation of the correct from the approximate solution

Γn = ∑
n
i=0 Ri, where ‖ · ‖ signifies the maximum norm. Then strong convergence occurs if

there exists an n0 such that the sign of λ is negative for all n ≥ n0. Here, λ = 1
‖Γn‖ log

( |δZn|
|δZ0|

)

.

For model validation one faces the drawback, that the majority of measurements are at ground
level, so that one could think that a two dimensional description would suffice, however
the present analysis clearly shows the influence of the additional dimension. While in the
two dimensional approach the tendency of the predicted concentrations is to overestimate
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the observed values, this is not the case for the results of the three dimensional description,
mainly because it does not assume turbulence to be homogeneous. Moreover the solution of
the advection diffusion equation discussed here is more general than shown in the present
context, so that a wider range of applications is possible. Especially other assumptions for the
velocity field and the diffusion matrix are possible. In a future work we will focus on a variety
of applications and introduce a rigorous proof of convergence from a mathematical point of
view, which we indicated in sketched form only in our conclusions.
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