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1. Introduction

Predicting clinical outcome following a specific treatment is a challenge that sees physicians and
researchers alike sharing the dream of a crystal ball to read into the future. In Medicine, several
tools have been developed for the prediction of outcomes following drug treatment and other
medical interventions. The standard approach for a binary outcome is to use logistic regression
(LR) [1,2] but over the past few years artificial neural networks (ANNs) have become an increas‐
ingly popular alternative to LR analysis for prognostic and diagnostic classification in clinical
medicine [3]. The growing interest in ANNs has mainly been triggered by their ability to mimic
the learning processes of the human brain. The network operates in a feed-forward mode from
the input layer through the hidden layers to the output layer. Exactly what interactions are mod‐
eled in the hidden layers is still under study. Each layer within the network is made up of com‐
puting nodes with remarkable data processing abilities. Each node is connected to other nodes
of a previous layer through adaptable inter-neuron connection strengths known as synaptic
weights. ANNs are trained for specific applications through a learning process and knowledge
is usually retained as a set of connection weights [4]. The backpropagation algorithm and its var‐
iants are learning algorithms that are widely used in neural networks. With backpropagation,
the input data is repeatedly presented to the network. Each time, the output is compared to the
desired output and an error is computed. The error is then fed back through the network and
used to adjust the weights in such a way that with each iteration it gradually declines until the
neural model produces the desired output.
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ANNs have been successfully applied in the fields of mathematics, engineering, medicine,
economics, meteorology, psychology, neurology, and many others. Indeed, in medicine,
they offer a tantalizing alternative to multivariate analysis, although their role remains advi‐
sory since no convincing evidence of any real progress in clinical prognosis has yet been
produced [5].

In the field of nephrology, there are very few reports on the use of ANNs [6-10], most of which
describe their ability to individuate predictive factors of technique survival in peritoneal dialy‐
sis patients as well as their application to prescription and monitoring of hemodialysis therapy,
analyis of factors influencing therapeutic efficacy in idiopathic membranous nephropathy, pre‐
diction of survival after radical cystectomy for invasive bladder carcinoma and individual risk
for progression to end-stage renal failure in chronic nephropathies.

This all led up to the intriguing challenge of discovering whether ANNs were capable of
predicting the outcome of kidney transplantation after analyzing a series of clinical and im‐
munogenetic variables.

Figure 1. The prediction of kidney allograft outcome.... a dream about to come true?
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2. The complex setting of kidney transplantation

Predicting the outcome of kidney transplantation is important in optimizing transplantation
parameters and modifying factors related to the recipient, donor and transplant procedure
[8]. The biggest obstacles to be overcome in organ transplantation are the risks of acute and
chronic immunologic rejection, especially when they entail loss of graft function despite ad‐
justment of immunosuppressive therapy. Acute renal allograft rejection requires a rapid in‐
crease in immunosuppression, but unfortunately, diagnosis in the early stages is often
difficult [11]. Blood tests may reveal an increase in serum creatinine but which cannot be
considered a specific sign of acute rejection since there are several causes of impaired renal
function that can lead to creatinine increase, including excessive levels of some immunosup‐
pressive drugs. Also during ischemic damage, serum creatinine levels are elevated and so
provide no indication of rejection. Alternative approaches to the diagnosis of rejection are
fine needle aspiration and urine cytology, but the main approach remains histological as‐
sessment of needle biopsy.[10] However, because the histological changes of acute rejection
develop gradually, the diagnosis can be extremely difficult or late [12]. Although allograft
biopsy is considered the gold standard, pathologists working in centres where this approach
is used early in the investigation of graft dysfunction, are often faced with a certain degree
of uncertainty about the diagnosis. In the past, the Banff classification of renal transplant
pathology provided a rational basis for grading of the severity of a variety of histological
features, including acute rejection. Unfortunately, the reproducibility of this system has
been questioned [13]. What we need is a simple prognostic tool capable of analyzing the
most relevant predictive variables of rejection in the setting of kidney transplantation.

3. The role of HLA-G in kidney transplantation outcome

Human Leukocyte Antigen G (HLA-G) represents a “non classic” HLA class I molecule,
highly expressed in trophoblast cells. [14] HLA-G plays a key role in embryo implantation
and pregnancy by contributing to maternal immune tolerance of the fetus and, more specifi‐
cally, by protecting trophoblast cells from maternal natural killer (NK) cells through interac‐
tion with their inhibitory KIR receptors. It has also been shown that HLA-G expression by
tumoral cells can contribute to an “escape” mechanism, inducing NK tolerance toward can‐
cer cells in ovarian and breast carcinomas, melanoma, acute myeloid leukemia, acute lym‐
phoblastic leukemia and B-cell chronic lymphocytic leukemia. [15] Additionally it would
seem that HLA-G molecules have a role in graft tolerance following hematopoietic stem cell
transplantation. These molecules exert their immunotolerogenic function towards the main
effector cells involved in graft rejection through inhibition of NK and cytotoxic T lympho‐
cyte (CTL)-mediated cytolysis and CD4+T-cell alloproliferation. [16]

HLA-G transcript generates 7 alternative messenger ribonucleic acids (mRNAs) that encode
4 membrane-bound (HLA-G1, G2, G3, G4) and 3 soluble protein isoforms (HLA-G5, G6,
G7). Moreover, HLA-G allelic variants are characterized by a 14-basepair (bp) deletion-inser‐
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tion polymorphism located in the 3’-untranslated region (3’UTR) of HLA-G. The presence of
the 14-bp insertion is known to generate an additional splice whereby 92 bases are removed
from the 3’UTR [28]. HLA-G mRNAs having the 92-base deletion are more stable than the
complete mRNA forms, and thus determine an increment in HLA-G expression. Therefore,
the 14-bp polymorphism is involved in the mechanisms controlling post-transcriptional reg‐
ulation of HLA-G molecules

A crucial role has been attributed to the ability of these molecules to preserve graft function
from the insults caused by recipient alloreactive NK cells and cytotoxic T lymphocytes
(CTL). [17] This is well supported by the numerous studies demonstrating that high HLA-G
plasma concentrations in heart, liver or kidney transplant patients is associated with better
graft survival [18-20].

Recent studies of association between the HLA-G +14-bp /−14-bp polymorphism and the
outcome of kidney transplantation have provided interesting, though not always concord‐
ant results [21-22].

4. Kydney transplantation outcome

In one cohort,  a total of 64 patients (20,4%) lost graft function. The patients were divid‐
ed into  2  groups  according to  the  presence  or  absence  of  HLA-G alleles  exhibiting  the
14-bp insertion polymorphism. The first  group included 210 patients (66.9%) with either
HLA-G +14-bp/+14-bp or HLA-G −14/+14-bp whereas the second group included 104 ho‐
mozygotes (33.1%) for the HLA-G −14-bp polymorphism. The patients had a median age
of 49 years (range 18-77) and were prevalently males (66.6%). The donors had a median
age of  47 years (range 15-75).  Nearly all  patients  (94,9%) had been given a cadaver do‐
nor  kidney  transplant  and  for  most  of  them  (91.7%)  it  was  their  first  transplant.  The
average  (±SD)  number  of  mismatches  was  3  ±  1  antigens  for  HLA Class  I  and 1  ±  0.7
antigens  for  HLA Class  II.  Average  ±SD cold  ischemia  time  (CIT)  was  16  ±  5.6  hours.
The percentage of patients hyperimmunized against HLA Class I and II antigens (PRA >
50%) was higher in the group of homozygotes for the HLA-G 14-bp deletion. Pre-trans‐
plantation  serum  levels  of  interleukin-10  (IL-10)  were  lower  in  the  group  of  homozy‐
gotes for the 14-bp deletion.

Kidney transplant outcome was evaluated by glomerular filtration rate (GFR), serum cre‐
atinine and graft function tests.  At one year after transplantation, a stronger progressive
decline  of  the  estimated GFR,  using the  abbreviated Modification of  Diet  in  Renal  Dis‐
ease (MDRD) study equation,  was observed in the group of homozygotes for the HLA-
G 14-bp deletion in comparison with the group of heterozygotes for the 14-bp insertion.
This  difference  between  the  2  groups  became  statistically  significant  at  two  years  (5.3
ml/min/1.73 m2; P<0.01; 95% CI 1.2 -9.3) and continued to rise at 3 (10.4 ml/min/1.73m2;
P<0.0001; 95% CI 6.4-14.3) and 6 years (11.4 ml/min/1.73m2; P<0.0001; 95% CI 7.7 – 15.1)
after transplantation.

Artificial Neural Networks – Architectures and Applications118



5. Logistic regression and neural network training

We compared the prognostic performance of ANNs versus LR for predicting rejection in
a  group  of  353  patients  who  underwent  kidney  transplantation.  The  following  clinical
and immunogenetic  parameters  were  considered:  recipient  gender,  recipient  age,  donor
gender, donor age, patient/donor compatibility: class I (HLA-A, -B) mismatch (0-4), class
II  (HLA-DRB1 mismatch;  positivity  for  anti-HLA Class  I  antibodies  >50%;  positivity  for
anti-HLA Class II  antibodies >50%; IL-10 pg/mL; first  versus second transplant,  antithy‐
mocyte globulin (ATG) induction therapy; type of immunosoppressive therapy (rapamy‐
cin, cyclosporine, corticosteroids, mycophenolate mophetyl,  everolimus, tacrolimus); time
of  cold  ischemia,  recipients  homozygous/heterozygous  for  the  14-bp  insertion  (+14-bp/
+14-bp and +14-bp/−14-bp) and homozygous for the 14-bp deletion (−14-bp/−14-bp). Graft
survival was calculated from the date of  transplantation to the date of  irreversible graft
failure or graft loss or the date of the last follow up or death with a functioning graft.

ANNs  have  different  architectures,  which  consequently  require  different  types  of  algo‐
rithms. The multilayer perceptron is the most popular network architecture in use today
(Figure 2). This type of network requires a desired output in order to learn. The network
is trained with historical data so that it can produce the correct output when the output
is  unknown.  Until  the  network  is  appropriately  trained  its  responses  will  be  random.
Finding  appropriate  architecture  needs  trial  and  error  method  and  this  is  where  back-
propagation steps in. Each single neuron is connected to the neurons of the previous lay‐
er  through adaptable  synaptic  weights.  By adjusting the  strengths  of  these  connections,
ANNs  can  approximate  a  function  that  computes  the  proper  output  for  a  given  input
pattern.  The training data  set  includes  a  number  of  cases,  each containing values  for  a
range of  well-matched input  and output  variables.  Once the input  is  propagated to the
output  neuron,  this  neuron  compares  its  activation  with  the  expected  training  output.
The  difference  is  treated  as  the  error  of  the  network  which  is  then  backpropagated
through the layers, from the output to the input layer, and the weights of each layer are
adjusted such that with each backpropagation cycle the network gets closer and closer to
producing the desired output [4].  We used the Neural Network ToolboxTM  6 of the soft‐
ware Matlab®  2008,  version 7.6 (MathWorks,  inc.)  to develop a three layer feed forward
neural network. [23]. The input layer of 15 neurons was represented by the 15 previous‐
ly  listed clinical  and immunogenetic  parameters.  These  input  data  were  then processed
in the hidden layer (30 neurons). The output neuron predicted a number between 1 and
0 (goal), representing the event “Kidney rejection yes” [1] or “Kidney rejection no” (0),
respectively. For the training procedure, we applied the ‘on-line back-propagation’ meth‐
od on 10 data sets of 300 patients previously analyzed by LR. The 10 test phases utilized
63  patients  randomly  extracted  from  the  entire  cohort  and  not  used  in  the  training
phase.  Mean sensitivity (the ability of  predicting rejection) and specificity (the ability of
predicting no-rejection) of data sets were determined and compared to LR. (Table 1)
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Rejection Observed Cases
LR Expected cases

(%)

ANN Expected

cases (%)

Extraction_1 Test N=63
No 55 40 (73) 48 (87)

Yes 8 2 (25) 4 (50)

Extraction_2 Test N=63
No 55 38 (69) 48 (87)

Yes 8 3 (38) 4 (50)

Extraction_3 Test N=63
No 55 30 (55) 48(87)

Yes 8 3 (38) 5 (63)

Extraction_4 Test N=63
No 55 40 (73) 49 (89)

Yes 8 3 (38) 5 (63)

Extraction_5 Test N=63
No 7 40 (73) 46 (84)

Yes 8 4 (50) 6 (75)

Extraction_6 Test N=63
No 55 30 (55) 34 (62)

Yes 8 4 (50) 6 (75)

Extraction_7 Test N=63
No 55 40 (73) 47 (85)

Yes 8 3 (38) 5 (63)

Extraction_8 Test N=63
No 55 38 (69) 46 (84)

Yes 8 4 (50) 5 (63)

Extraction_9 Test N=63
No 55 44 (80) 51 (93)

Yes 8 2 (25) 4 (50)

Extraction_10 Test N=63
No 55 32 (58) 52 (95)

Yes 8 2 (25) 5 (63)

Specificity % (mean) No Rejection 68% 85%

Sensitivity % (mean) YES Rejection 38% 62%

Table 1. Sensitivity and specificity of Logistic Regression and an Artificial Neural Network in the prediction of Kidney
rejection in 10 training and validating datasets of kidney transplant recipients
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Figure 2. Structure of a three-layered ANN

6. Results and perspectives

ANNs can be considered a useful supportive tool in the prediction of kidney rejection fol‐
lowing transplantation. The decision to perform analyses in this particular clinical setting
was motivated by the importance of optimizing transplantation parameters and modifying
factors related to the recipient, donor and transplant procedure. Another motivation was the
need for a simple prognostic tool capable of analyzing the relatively large number of immu‐
nogenetic and other variables that have been shown to influence the outcome of transplanta‐
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tion. When comparing the prognostic performance of LR to ANN, the ability of predicting
kidney rejection (sensitivity) was 38% for LR versus 62% for ANN. The ability of predicting
no-rejection (specificity) was 68% for LR compared to 85% of ANN.

The advantage of ANNs over LR can theoretically be explained by their ability to evaluate
complex nonlinear relations among variables. By contrast, ANNs have been faulted for be‐
ing unable to assess the relative importance of the single variables while LR determines a
relative risk for each variable. In many ways, these two approaches are complementary and
their combined use should considerably improve the clinical decision-making process and
prognosis of kidney transplantation.
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