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1. Introduction 

High precision industrial machines suffer the presence of vibrations mostly due to two noise 

sources: ground vibration and direct force disturbances. They can generate several problems 

at different levels and of different natures, causing performance losses on sensitive systems 

(Crede, 1951), (Rivin, 1979). 

In the last years the growing processing quality level and the need to increase throughput 

resulted in a continuing demand for higher accuracy. Therefore active isolation and 

vibration damping systems became mandatory to satisfy these requests (Pneumont, 2002), 

(Hyde, 1997).  

In general, machine supports are designed for high stiffness to obtain a robust machine 

alignment with respect to its surroundings. However, when significant ground vibration 

levels occur, the support stiffness is commonly sacrificed to reduce vibration transmission to 

the payload stage. Efforts to go towards these issues are recorded in several applications 

and the solutions are different for any particular situation, depending on the nature of 

vibration sources, the amount of disturbances and the machine environment.  

Several actuation technologies are used to face this kind of problem: shape memory alloys, 

electromagnetic, piezoelectric, magnetostrictive and magneto-rheological fluids actuators 

(Thayer, 1998). Among them, electromagnetic actuators revealed themselves as effective and 

performing. Methods for vibration suppression can be classified in a rough approach in 

three families: passive, active and semi-active actuators. Completely passive solutions have 

almost reached their maximum potential which is still not sufficient to satisfy stringent 

requirements. On the opposite, the exponential growth in electronics and actuators fields 

made the use of active and semi-active isolation more feasible. In particular, active control 
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architectures allow to perform an effective isolation at low frequencies, which is a common 

requirement for very demanding applications like micrometer motion control, defect 

inspections, critical dimensions measurement and overlay metrology. 

In general, active control arrangements are provided with sensors, actuators and controllers 

(Watters, 1988). Each of them can be classified depending on their technology and physical 

working principle. The choice of sensors and actuators is strictly related to the type of 

application and requirements and has also influence on the selection of the control strategies 

to be employed. Depending on the type of controller, the system model can be used only to 

support the control design or can play itself a fundamental role on the control action (model 

based strategies) (Beadle et al, 2002), (Sullivan, 1997). Typically the main control approaches 

are feedback, classical or model based, and feed-forward technique, mostly with adaptive 

reference filtering (Anderson, 1996). 

This chapter focuses on the evaluation of an active isolation and vibration damping device 

mounted in the working cell of a micro-mechanical laser center, which is based on active 

electromagnetic actuators. Two different models and three control strategies are developed 

and illustrated. 

To clarify the goal of this study it is important to point out that: a) the vibration damping is 

defined as the reduction of the response amplitude of the system within a limited bandwidth 

near the natural frequencies of the system; b) vibration isolation is defined as the attenuation 

of the response of the system after its corner frequency to cut-off all the disturbances after that 

frequency, while allowing all the signals below it to pass with no alterations. 

The machine object of study is composed by two main parts: a frame support and a payload 

stage where the laser cutting operation is performed. The system performance in terms of 

accuracy and precision is reduced by the presence of two main vibration sources: the 

ground and the stage itself. The active device should meet two goals: the payload vibrations 

damping and the reduction of the transmissibility of ground disturbances. 

In this work, after a review of the major actuators families usually employed to damp and 

isolate high precision machines,  the phases followed to design, implement and validate the 

proposed device are illustrated with a particular emphasis on the mechatronics aspects of 

the project.  

A detailed analysis of the plant components is reported along with an exhaustive 

explanation of the design criteria followed for the choice of supports, actuation and sensing 

subsystems. The actuation block consists in four electromagnetic Lorentz type actuators 

(two per axis).  

The absolute velocities of the frame support and of the stage are measured by means of eight 

geophone sensors to determine the amount of disturbances (Huan, 1985), (Riedesel, 1990). The 

considerations leading to the choice of this sensing system are reported along with the 

description of the related signal conditioning stage. The design of the supports between the 

ground and the frame and of the connections between the frame and the stage is also explained. 
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Furthermore, all the subsystems described in the first part of the chapter are modeled along 

with their interactions. The Lagrange equations approach is used to represent the system 

behavior and in particular the links between the mechanical and electrical subsystems are 

illustrated. 

Two models are developed: a) four degrees of freedom model and b) six degrees of freedom 

model. Both of them include the plant, the sensing, the control and the actuation blocks. 

Time and frequency domain computations are carried out from the models to evaluate 

vibration levels and displacements and to identify which control parameters need to be 

carefully designed to satisfy the requirements.  

The last section exposes in detail the proposed control strategies along with the modeling 

approach validation. Three different control strategies are developed:  

a. Feedback control: the control law consists in a couple of decentralized actions exerted 

along X  and Y -axis allowing to minimize the ground vibrations transmission and 

damp the payload vibrations. Specifically, a Lead-Lag control strategy, performed with 

a digital platform based on DSP and FPGA, is used to compensate the high-pass band 

dynamic of the geophone sensors and to damp the vibrations (Kuo, 1996), (Elliott, 2001). 

The payload isolation is achieved by feeding the control block with the difference of 

frame and stage velocities and giving the proper current command to the actuators. The 

four degrees of freedom model is used to design this control law. In the section 

describing the control strategy the comparisons between simulation and experimental 

tests is presented, which illustrates the validity of the model and the effectiveness of the 

proposed approach. In particular, the performance of the vibration damping has been 

evaluated by using the frequency responses between the actuators force and the 

payload velocities, whereas the performance of the active isolation is evaluated by 

simulating numerically the disturbances coming from the ground and evaluating their 

transmission through all the system till the payload in closed loop configuration. 

b. Feedforward control: this action is focused on the rejection of the direct disturbance coming 

from the payload. The command is not generated on-line as in classical feedforward 

applications, but it is computed in advance from the data obtained from a direct 

disturbance from the payload to the machine. That is, here the compensation is computed 

numerically in the case of known disturbances profiles. The design of this strategy is based 

on the four degrees of freedom model, as in the case of the feedback control technique. 

c. Modal control: the approach allows the controller to focus on the rotational and 

translationalal modes of the machine. Results show that the performance of this strategy 

are comparable to those of the standard feedback control (a), though significant advantages 

exist in the design procedure where the control effects can be evaluated directly on the 

motion modes. This technique makes use of the six degrees of freedom model. 

2. Actuators technology for damping and active isolation: An overview 

Undesired noise and vibrations are since ever a major problem in many human activities 

and domains. Airplanes, space trusses and satellites, cars, machine tools and large bridges, 
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all can be disturbed in their normal functions by vibrations and noise. Actuators play a 

critical role in the active control of vibration and different technologies must be considered 

in order to obtain compact and efficient smart structures. 

Selection and use of these technologies is greatly influenced by the user's technical 

knowledge, the project's budget, available energy sources, and performance tradeoffs. For 

example, pneumatic actuators don't deliver high force output, but are well suited when a 

cost-effective, easy start-up solution is required. Hydraulic actuators generate a lot of noise 

and can leak nasty fluid, but are ideal for high force applications that require precise control. 

Electromechanical actuators have high energy requirements and are more difficult to install 

and maintain, but are preferred for complex, multi-axis, motion control applications. 

Pneumatics: pneumatic actuation is the conversion of compressed air into, typically, linear 

force. Typical applications involve extreme temperature and magnetic systems because 

pneumatic actuators don't have the magnetic field issues of electric motors. Position 

feedback with proximity sensors is used in modern control-loop systems, bringing 

pneumatics beyond simple bang-bang applications. 

Pressure losses and the compressibility of air make pneumatics less efficient than other 

actuator technologies. In addition compressor and delivery system limitations dictate that 

pneumatic systems operate at lower pressures, providing lower forces and lower bandwidths 

than other systems. Pneumatic cylinders typically operate with compressed air at 100 psi or 

less, in contrast with hydraulic cylinders, which operate on pressurized hydraulic fluids at 

over 500 psi. Speed, force and bandwidth are directly connected with these characteristics. 

Hydraulics: hydraulic actuators are suitable for rugged applications that require high force 

output. However, hydraulic systems generate noise and, without proper maintenance, they 

can leak. More equipment is needed as well: hydraulic systems require a fluid reservoir, 

motors and pumps, release valves, and equipment to reduce noise and heat levels. 

Moreover external sensors are needed to determine piston velocity, acceleration and 

position in a closed-loop system. Hydraulic systems can deliver much tighter control than 

pneumatic systems and higher force density than any other actuator technologies. 

Bandwidth is better than pneumatic actuators but still under hundreds of Hertz. 

Electromechanical: electromechanical actuators can be based on rotatory motors (using ball 

screw, roller screw or belt drive), linear motors or moving coils. This type of actuator have 

high dynamic performance, with accelerations greater than 20 g and velocities of 10 m/sec 

and eventually higher. Sub-micron resolution and repeatability are commonplace. Because 

the actuator is directly coupled to the load, there are fewer components with the chance of 

failure, which adds long term value. 

Piezoelectric: piezomotors and piezoactuators rely on the electromechanical response of  

crystals. Electrical excitation causes the crystals to slightly change shape and distort, 

therefore generating large forces and small displacements. Exciting the crystals at a high 

frequency generates smooth, precise motion, making piezoelectric actuators suitable for 

applications with very fine positioning and high bandwidth requirements. 
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Actuator 

Technology 
Advantages Drawbacks 

Pneumatic Strong, light, simple, fast. 
Precise position control impossible 

except at full stops. 

Hydraulic Very high forces possible. 

Can leak. Requires position feedback 

for repeatability. External hydraulic 

pump required. Some designs good 

in compression only. 

Electro-

mechanical 

rotary motor 

Cheap. Repeatable. Operation can 

be automated. Self-contained. 

Identical behaviour extending or 

retracting. DC or stepping motors. 

Position feedback possible. 

Many moving parts prone to wear. 

Electro-

mechanical 

Linear motor 

Simple design. Minimum of 

moving parts. High speeds 

possible. Self-contained. Identical 

behaviour in extending or 

retracting. 

Low force. 

Moving coil 

Force, position and speed are 

controllable and repeatable. 

Capable of high speeds and 

precise positioning. Linear, rotary, 

and linear + rotary actions 

possible. 

Requires position feedback to be 

repeatable. 

Piezoelectric Very small motions possible. 

Requires position feedback to be 

repeatable. Short travel. Low speed. 

High voltages required. Expensive. 

Good in compression only, not in 

tension. 

Table 1. Actuators technology comparison 

3. System architecture 

In this section of the chapter a full description of machine subsystems is provided. The 

mechanical, electrical, electronic, and control parts are identified and fully described 

separately in the first part. Furthermore, since the project can be assumed as a classical 

mechatronics application, the different blocks are analyzed with their interactions in order 

to provide an overall view of the system.  
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Figure 1. a) Picture of the machine. b) Sketch of the system. 1: Frame; 2: Stage; 3: Actuators; 4: Frame–

Stage Springs; 5: Air springs; 6: Frame sensors; 7: Stage sensors. 

Figure 1.a shows a picture of the laser cutting machine while in the sketch of Figure 1.b all 

the components of the system are highlighted. The stage (2) consists in a granitic base that 

can move freely within the work volume and is surrounded by four electromechanical 

actuators (3) acting between the frame (1) and the stage. The machine is partially isolated 

from the ground by means of four air springs (5). Four mechanical springs (rods) (4) are 

placed between the frame and the stage. The vibrations due to the machine process and 

coming from the ground are measured on the stage and on the frame by means of eight 

velocity inertial sensors (6, 7). A schematic representation of the actuators, sensors, and 

springs position is reported in Figure 2, where cGF and kGF represent the damping and the 

stiffness, respectively introduced by the supports, whereas cFS and kFS are the damping and 

the stiffness, respectively of the springs acting as connections between frame and stage. 

Actuators and sensors positions can be considered collocated, in order to minimize the 

couplings between the axes actions by keeping the proper alternation between resonances 

and anti-resonances in the system dynamics. The main machine parameters and 

specifications are listed in Table 2.  
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Figure 2. XY  plane view of the system. Stage-Frame spring ( SFk , SFc ), electromagnetic actuator 

(ACT), velocity sensor (Sens.), Ground-Frame spring ( GFk , GFc ). 

 

Stage mass 1450 kg 

Frame mass 300 kg 

Maximum displacement of the stage 2.5 mm 

Inertia of the stage along X -axis in YZ -plane 200 kg m2 

Inertia of the frame along X -axis in YZ -plane 100 kg m2 

Table 2. Main parameters and specifications of the machine. 

The design phases have been performed considering the mechatronics nature of the system 

and the interactions between the machine subsystems, illustrated in Figure 3. Regarding 

overall controller architecture, a classical feedback behavior is performed: eight velocities 

are acquired by the sensors measurements and elaborate with conditioning and filtering 

stages in order to feed the actuators with the proper commands by means of power 

electronics action. The filtering stage consists in the implementation of a Lead-Lag control 

strategy designed to fulfill the machine requirements in terms of: a) active isolation from the 

disturbances coming from the ground and b) damping of the vibrations generated by the 

machine processes. Feedforward action is also included which allows to reject the direct 

disturbances coming from the payload. These feedback and feedforward control actions are 

completely independent one from the other. 
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Figure 3. Block diagram of the system. 

3.1. Actuators subsystem 

The actuation on the system is realized by means of four electromagnetic Lorentz type 

actuators placed as illustrated in Figure 1 and Figure 2.   

The picture and the section view of the actuator architecture are reported in Figure 4, being 

A and B permanent magnets, while C indicates the coil.  

 

Figure 4. a) Picture of the Lorentz actuator. b) Section view (A and B: permanent magnets, C: coil). 

The force ACTF  generated by each actuator is: 

 ACTF BNli=  (1) 

where B  is the magnetic field, N  is the number of turns of the coil, i  is the current flowing 

in the coil, l  is the coil length. The direction of the resulting force is illustrated in Figure 5. 

The amount of required force for each actuator is equal to 200 N while the main parameters 

of the designed actuator are reported in Table 3.  
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Coil thickness 6 mm 

Coil length 3.3 mm 

Coil active section 198 mm2 

Copper current density 12 A/mm2 

Coil length (l) 200 mm 

Coil max actuation force (FACT) 200 N 

Number of turns (N) 263 - 

Number of coils per axis 2 - 

Table 3. Actuators main parameters. 

The design of the actuators has been performed starting from the requirements of force and 

maximum displacement of the stage, then a current density and the wire section have been 

selected in order to perform a FEM analysis and to compute the magnetic field. Finally, once 

known all the electrical parameters, the coil length l  has been computed. 

 

Figure 5. Actuator force generation. 

The actuators parameters have been identified experimentally. The resulting values are: 

resistance 4.33R = Ω , 9.64L mH= . The actuator electrical dynamics can be expressed as: 

 

1
1 1

( )
( )ACT

LG s
RZ s sL R

s
L

= = =
+

+

 (2) 

The stationary gain ( 0)G s =  is: 

 10

1
( 0) 20log 12.73G s dB

R

 
= = = − 

 
 (3) 
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The electrical pole eω  is: 

 449 72e

R
rad s Hz

L
ω = = =  (4) 

The resulting actuator trans-conductance (Current/Voltage) transfer function is reported in 

Figure 6. 

 

Figure 6. Actuator trans-conductance (Current/Voltage) transfer function (magnitude and phase). 

3.2. Springs and supports 

The frame and the stage are connected in the vertical direction by means of four linear 

springs indicated by 4 in Figure 1 as well as cSF and kSF in Figure 2. The design has been 

performed computing displacements and stresses with a FEM software, starting from the 

following requirements:  

• infinite fatigue life; 

• stiffness 

40 ;

40 ;

32500 ;

SFx

SFy

SFz

k N mm

k N mm

k N mm

 =


=


=

 

• damping 

228 ;

228 ;

4313 ;

SFx

SFy

SFz

c Ns m

c Ns m

c Ns m

 =


=


=

 

• maximum displacement 2.5 ;MAXz mm=  

The designed spring is made of harmonic steel and is characterized by: 
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• length 125 ;SPRINGl mm=  

• diameter 5 ;SPRINGd mm=  

• maximum value of stress 500 .MAX MPaσ =  

Four air-springs (indicated by5 in Figure 1 as well as kGF and cGF in Figure 2) consisting in a 

resilient element air and neoprene diaphragm, have been chosen as supports to provide the 

system of a partial level of isolation from the ground. The springs are characterized by the 

following properties: 

• Nominal natural frequency:

12.3 ;

12.3 ;

5.4 ;

GFx

GFy

GFz

f Hz

f Hz

f Hz

 =


=


=

 

• stiffness 

450 ;

450 ;

500 ;

GFx

GFy

GFz

k N mm

k N mm

k N mm

 =


=


=

 

• damping 

575 ;

575 ;

1700 ;

GFx

GFy

GFz

c Ns m

c Ns m

c Ns m

 =


=


=

 

• Transmissibility at resonance: 8:1; 

• The maximum load is equal to 545 kg;  

• The maximum air pressure is equal to 80 psi (5.5 bar). 

3.3. Sensing subsystem 

The disturbances on the plant are evaluated by measuring the velocities of the stage and of 

the frame along X -axis and Y –axis, by means of eight geophones placed as indicated in 

Figure 2. They are the most common inertial velocity sensors used to monitor seismic 

vibrations and can be classified as electromagnetic sensors that measure the velocity and 

produce a voltage signal thanks to the motion of a coil in a magnetic field (Hauge et al, 

2002). One configuration of the conventional geophones consists of a cylindrical magnet 

coaxial with a cylindrical coil as shown in Figure 7. The coil is made up of a good conductor 

like copper and is wound around a nonconductive cylinder to avoid eddy currents effects, 

caused by the currents induced in the coil. The wire diameter and the dimensions of the 

holding cylinder are designed according to the application requirements. 

The internal core is a permanent magnet selected to maximize the magnetic field density 

and consequently the induced voltage in the coil. The coil is fixed to the geophone housing 

by means of leaf springs (membranes). These springs are designed to ensure the alignment 

during the relative motion between coil and magnet, by keeping as low as possible the 

stiffness in order to minimize the geophone resonant frequency. 
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The reverse configuration shown in Figure 8 is realized using a coil fixed to the housing 

while the moving mass is the permanent magnet. Since the mass of the magnet is heavier than 

that of the coil, this configuration leads to a lower natural frequency, but the moving part is 

larger and heavier. 

 

Figure 7. Geophone active configuration scheme. a) Coil and springs installation. b) Cross section. 

 

Figure 8. Geophone reverse configuration  scheme. 

Two different geophones of the Input-Output Inc. sensors have been tested: an active sensor 

model LF24 (configuration in Figure 7) and a passive sensor model SM6 (configuration in 

Figure 8). The LF-24 Low Frequency Geophone is characterized by the following 

parameters: natural frequency at 1Hz, distortion measurement frequency at 12Hz and 

sensitivity equal to 15V/(m/s).  

The sensor chosen is the passive model SM6 because it allows to have an extreme low noise, 

though the output needs to be amplified by an active conditioning stage. 

The sensor response transfer between the velocity of the housing and the induced voltage in 

the coil, can be written in the well known second order form: 

 
2

2 22 n n

Gs
TFG

s sξω ω
= −

+ +
 (5) 



 
Feedforward and Modal Control for a Multi Degree of Freedom High Precision Machine 525 

where n K mω =  is the natural frequency of the geophone, 2 nC mξ ω=  is the damping 

ratio including the eddy current effects and G Bl=  is the transduction constant, where B  

is the magnetic field generated by the permanent magnet and l  is the length of the coil.  

Considering that the first natural frequency of the system is at about 1.8 Hz, close to the 

geophone natural frequency, the sensor sensitivity cannot be simply modeled as a constant 

value. Thus the transfer function of the geophone response must be identified to make the 

result more reliable. 

SM6 geophone is a passive velocity sensor with the following parameters: natural frequency 

4.5Hz and sensitivity 28V/(m/s). The damping ratio coefficient has been experimentally 

identified for both sensors and is equal to 1 (model SM6 is represented in Figure 9.a and 

model LF24 in Figure 9.b).  

Since the generated voltage is proportional to the crossing rate of the magnetic field, the 

output of the sensor will be proportional to the velocity of the vibrating body. A typical 

instrument of this kind may have a natural frequency between 1 Hz to 5 Hz. The sensitivity 

of this kind of sensor is in the range 2-3.5 V/ms−1 with the maximum peak to peak 

displacement limited to about 5 mm (Thomson, 1981). When a geophone is used to measure 

vibrations with a frequency below its natural frequency, the proof-mass tends to follow the 

motion of the vibrating body rather than staying stationary. This motion of the proof-mass 

reduces the relative motion between the same proof-mass and the housing decreasing the 

induced voltage. In these conditions the sensitivity of the sensor (ratio between the voltage 

and the casing velocity) becomes very small limiting its range of usage to frequencies above 

its corner frequency. It is important to underline that both displacement and acceleration 

can be obtained from the velocity by means integration and differentiation operations.  

 

 

 

 
 

Figure 9. Geophone damping ratio identification. a) model SM6 (passive). b) model LF24 (active). 
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3.4. Electronics subsystem 

In this section the subsystems related to sensor acquisition and conditioning, power 

electronics and control implementation (Sensor Conditioning, Power Electronics, 

Feedforward Control, and Feedback Control in Figure 3) are illustrated. 

The electronics system architecture is shown in Figure 10. The main characteristic of this 

architecture is the serial communication input/output line that provides high noise 

immunity, which can be useful when signals must travel through a noisy environment, such 

as with remote sensors. 

 

Figure 10. Electronics subsystem. 

The digital carrier is used like a buffer to provide the proper current level for the serial 

communication. Here, multiples system buses manage data exchange between the main 

serial communication core (FPGA) and the communication boards placed on the plant.  

The communication boards are provided with one digital-to-analog converter (DAC) and 

two analog-to-digital converters (ADC). The DAC is a 16-bit, high-speed, low-noise voltage-

output DAC with 30-MHz serial interface that is capable of generating output signal 

frequencies up to 1 MHz. The ADC is a single channel 12-bit analog-to-digital converter 

with a high-speed serial interface and sample rate range of 50 ksps to 200 ksps. 

Control Unit 

The control modules are supported by a DSP/FPGA–based digital control unit. Hence the 

overall control implementation can be divided between the two digital devices in order to 

fulfill different requirements: control strategy realization on DSP and serial communication 

implementation on FPGA. 
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The overall control strategy is characterized with a nested and decentralized control 

structure, where only the outer loop is implemented on DSP while the inner current loop is 

realized on the power module directly. In particular, the outer loop computes the right 

reference for the inner one starting from required error compensation. The same strategy is 

applied for each axis. 

Sensors Conditioning 

The Sensors Conditioning Module provides the output signal from geophone by means of 

an instrumentation amplifier circuits. The component is configured for dual-channel 

operation, in order to connect two geophones together. Figure 11, shows the circuit layout 

for dual-channel. R1A and R1B are the gain setting resistors. 

With the ADC input in the range [0-3] V and assuming the maximum magnitude of noise in 

geophone measurement nearly equal to 1000 m/s, the setting resistors are selected to achieve 

a gain of 100. 

 

Figure 11. Instrumentation amplifier circuits AD8224. R1A and R1B are the gain setting resistors. 

Power Electronics 

The Power Electronics Module is based on a trans-conductance amplifier instead of a 

switching amplifier in order to avoid noise due to the switching frequency. This kind of 

amplifier operates as a voltage-to-current converter whit a differential input voltage (voltage 

controlled current source configuration). 

The electronics layout that is divided in three main stages: a) the trans-conductance 

amplifier, b) the current amplifier and c) the feedback resistor. 

The power module uses the voltages reference ( )inV  from the control unit to generate the 

proper current ( )LI  to the load (electromagnetic actuator assumed as a RL load). The first 



 

Smart Actuation and Sensing Systems – Recent Advances and Future Challenges 528 

stage performs the current control by means of an operational amplifier that is unity-gain 

stable with a bandwidth of 1.8MHz and it is internally protected against over-temperature 

conditions and current overloads. The second stage is a classical current amplifier with 

bipolar transistors in Darlington configuration to increase the current gain. The last stage 

provides the feedback signal to ensure the desired current in the load. The power supply is 

in the range of ±30V. 

4. Modeling  

Two different models have been developed to permit the design of the three proposed 

control strategies: 

1. Four degrees of freedom model used for the design of: a) a feedback controller  with a 

Lead Lag approach, b) Feedforward control strategy. 

2. Six degrees of freedom model used for the design of c) Modal controller. 

4.1. Four degrees of freedom model 

The system has been modeled by using four degrees of freedom describing the dynamics in 

YZ plane. Four flexural steel springs have been used to link the stage to the frame, four air 

springs are placed at the bottom of the frame, two actuators are working in series between 

the stage, and the frame and two geophones are used to measure the velocities of stage and 

frame respectively. As the axial stiffness of the flexural springs is very high, it can be 

assumed that there is no relative displacement between stage and frame along the vertical 

direction, which means that the relative displacement along the z axis between stage and 

frame are the same. Both stage and frame are assumed as moving about the frame mass 

center with the same rotating speed. The model reference frames are defined in Figure 2 (XY 

-plane view) and in Figure 13 (YZ -plane view).  

 

Figure 12. YZ plane 4 dof kinematic relationships scheme. 
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The degrees of freedom of the model  are: 

 ; ; ;F F SX y z qθ =    (6) 

that indicate the displacement of the frame along Y -axis and Z -axis, the rotation of the 

frame (and stage) around the X -axis mass center and the stage displacement along its Y -

axis.  

Referring to Figure 12, it is possible to obtain the formulation of the velocity of a generic 

point S  of the stage: 

 
( )

0

0 0

cos sin

( )

S F S S S S

F F F F S S S S S S

V V q j FS k j

y j z k q z j y q k

θ α α

θ θ

 = + + − = 
= + + − + +

    
     

 (7) 

The kinetic energy T of the system can be expressed as: 

 2 2 2 21 1 1 1

2 2 2 2S S S F F FT m V J m V Jθ θ= + + +
    (8) 

Where mS and JS are the mass and the rotating inertia measured in the center of mass of the 

stage S, and mF and JF the mass and the rotating inertia measured in the center of mass of the 

frame F . 

The potential energy U is obtained starting from the diagram reported in Figure 13.  

 

 
 

Figure 13. YZ  plane 4 dof model scheme. 
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The potential energy U  is: 

 
( ) ( )

2 22
1 2

2 2

( ) ...

( )

GFz F G GFy F G GFz F G

GFy F G SFy S

U k z d z k y h y k z d z

k y h y k q

θ θ θ

θ

= − − + + − + + − +

+ + − +
 (9) 

where yG and zG are the displacement of the ground and d1, d2, and h the quantities reported 

in Figure 13.  

Owing to the Rayleigh formulation, the damping of the system is governed by the following 

dissipation function: 

 
( ) ( )

2 22
1 2

2 2

( ) ...

( )

GFz F G GFy F G GFz F G

GFy F G SFy S

c z d z c y h y c z d z

c y h y c q

θ θ θ

θ

ℜ = − − + + − + + − +

+ + − +

       

  
           (10) 

where each damping term ic  is obtained starting from the experimental identification of 

damping ratios iς : 

 2i i i ic k mς=  (11)  

The inputs of the system are: the force of the electromagnetic actuators actF , the force of the 

stage SF  and the velocities from the ground in y direction Gyv  and z direction Gzv . The 

output are the velocities Fv  of the frame and Sv of the stage measured with geophones 

sensors. Inputs and outputs are graphically represented in Figure 14.  

 

Figure 14. YZ plane 4dof model scheme – input and output. 
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Using the Lagrange formulation is possible to write the equations of motion in the form: 

 { }G Gq Cq q T q FΜ + + Κ + = Τ   (12) 

where 

  ( )
T

F F Sq y z qϑ=  (13) 

( )
T

G G Gq y z=  

are the vectors of  the generalized coordinates, 

  ( )
T

Gy Gz S actF v v F F=  (14) 

is the vector of the generalized forces and M is the mass matrix 

 

0

0

0 0 0

0

0

0 0

0

tot S S S

tot S S

S S S S tot S S

S S S S

m m z m

m m y
M

m z m y J m z

m m z m

 −
 
 =  − −
 

−  

 (15) 

with tot S Fm m m= + , 2 2
0 0( )tot S F S S SJ J J m y z= + + + . 0Sy , 0Sz are the initial position of the 

stage. The matrix is symmetric and not diagonal because it takes into account the coupling 

between the stage and the frame dynamics.  

The stiffness matrix K  is: 

 
1 2

2 2 2
1 2 1 2

4 0 4 0

0 4 2 2 0

4 2 2 2 4 2 0

0 0 0 4

GFy GFy

GFz GFz GFz

GFy GFz GFz GFz GFy GFz

SFy

k k h

k k d k d
K

k h k d k d k d k h k d

k

 
 

− + 
=  

− + + + 
 
 

         (16) 

The damping matrix C  is: 

 
1 2

2 2 2
1 2 1 2

4 0 4 0

0 4 2 2 0

4 2 2 2 4 2 0

0 0 0 4

GFy GFy

GFz GFz GFz

GFy GFz GFz GFz GFy GFz

SFy

c c h

c c d c d
C

c h c d c d c d c h c d

c

 
 

− + 
=  

− + + + 
 
 

       (17) 

The selection matrix T of the generalized forces is: 
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1 2

4 0 1 0

0 4 0 0

4 2 2 0 0

0 0 1 1

GFy

GFz

GFy GFz GFz

c

c
T

c h c d c d

 −
 

− 
=  − 
 − 

                             (18) 

1 2

4 0

0 4

4 2 2

0 0

GFy

Gzy
G

GFy GFz GFz

k

k
T

k h k d k d

 −
 
 

=  
− 

 
 

 

In the state space formulation the equations of motion of the system can rewritten as: 

 
.

X AX BU= +       (19) 

where the state vector X and the input vector are: 

 { } { },
TT

G Gy Gz S actX q q q U v v F F= =  (20) 

with A the state matrix, B the input matrix  

 
1 1 1 1

0 0 0

,

0 0 0
G

I

A M K M C M T B M T

I

− − − −

   
   

= − − =   
   
   

 (21) 

The relationship between input and output can be represented as:  

 Y CX DU= +  (22) 

where Y  is the output vector, C  the output matrix and D  the feedthrough matrix 

 { }
0 0 0 0 1 0 1 0 0 0 0 0 0

, ,
0 0 0 0 1 0 1 0 0 0 0 0 0

T geoS

S F
geoF

z
Y v v C D

z

 −  
 = = =  

−    
      (23) 

4.2. Six degrees of freedom model 

As well as the dynamics on the YZ plane described in the previous section, it has been 

developed a six degrees of freedom  model of  system dynamics on the XY plane. In this 

case, the degrees of freedom of the model are: 

 ; ; ; ; ;S S S F F FX x y x yθ θ =             (24)  
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indicating the stage displacements xS along X-axis, yS along Y-axis, the rotation θS about the 

axis passing through the mass center and oriented along the Z-axis, the frame 

displacements xF along X-axis, yF along Y-axis, and the rotation θF about the axis passing 

through the mass center oriented along the Z-axis. Stage and frame degrees of freedom, 

inputs, and geometric properties are illustrated in Figure 15 and 16. 

Resorting to the Lagrange formulation as reported in (12), the q vector of the generalized 

coordinates is: 

 ( )
T

S S S F F Fq x y x yθ θ=  (25) 

and the F the vector of  the generalized forces is 

  ( )
T

X X Y YF F F F F+ − + −=                  (26) 

it is possible to obtain the corresponding mass matrix M, stiffness matrix K and damping 

matrix C (not reported due to its excessive size). 

 

 

 

 

 
 

 

 

Figure 15. XY Plane 6 dof model scheme: stage degrees of freedom and inputs. 
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Figure 16. XY Plane 6 dof model scheme: stage degrees of freedom and inputs. 

The selection matrix T of the generalized forces is: 

 
1 2 3 4

1 2 3 4

1 1 0 0

0 0 1 1

1 1 0 0

0 0 1 1

s s s s

f f f f

d d d d
T

d d d d

 −
 

− 
 
 =

− 
 − 
 − − − − 

                             (27) 

Similarly in the state space formulation the equations of motion of the system can rewritten 

as: 

 

.

X AX BU= +  (28) 

where the state vector X and the input vector U  are: 

 { } { },
T T

X q q U F= =  (29) 
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with the following state and input matrix  

 1 1 1

0 0
,

I
A B

M K M C M T− − −

   
= =   

− −      
             (30) 

The relationship between input and output can be represented as:  

 Y CX DU= +  (31) 

where Y  is the output vector that contains the derivative time of the generalized 

coordinates (25): 

 { }
T

Y q=    (32) 

C is the output matrix and D  the feedthrough matrix: 

 0 , 0C I D   = =                                     (33) 

5. Control design & results 

In this section three different control strategies to damp vibration and isolate the machine 

are proposed: a) Feedback control by the use of a Lead-Lag technique, b) Feedforward 

control and c) Modal control. The experimental validation has been carried out just for the 

first strategy as proof of the correctness of the modeling approach. Feedforward and modal 

controls are validated numerically. 

5.1. Feedback control 

The control action is designed to achieve two main goals: active isolation of the payload 

from the ground disturbances and vibration damping during the machine work processes. 

These two actions allow to operate on the stage without external disturbances. Dynamics on 

XZ  and YZ -planes are considered the same and decoupled so the control laws along the 

two planes are equivalent.  

Furthermore, from the control point of view, the adopted model is oversized with respect to 

the control requirements if the goal is the isolation of the stage. As a matter of fact, in this 

case a two degrees of freedom model is sufficient while if also the dynamics of the frame is 

required to be controlled, then a 4 dof  model is necessary. 

The considered system can be regarded as intrinsically stable due to the presence of 

mechanical stiffness between the stage and the frame, which allows to obtain a negative real 

part for all the eigenvalues of the system. 

Root loci of the system in open and closed loop configurations are reported in Figure 17. 
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Figure 17. Root loci of open loop (a) and closed loop (b) configurations (Circles: zeros; Crosses: poles). 
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Poles and zeros of the system are reported in Table 4. 

 

 Poles [rad/s] Zeros [rad/s] 
G

eo
p

h
o

n
e -28.2743 -

-28.2743 - 

F
ee

d
b

ac
k

 

C
o

n
tr

o
ll

er
 

-1 -75

-4 -12 

O
p

en
 L

o
o

p
 

P
la

n
t 

-6.4136 + 79.8805i -5.8786 + 80.8581i 

-6.4136 - 79.8805i -5.8786 - 80.8581i 

-3.7383 + 46.4898i -2.0791 + 37.9468i 

-3.7383 - 46.4898i -2.0791 - 37.9468i 

-0.2371 + 10.9133i -1.9325 + 33.6912i 

-0.2371 - 10.9133i -1.9325 - 33.6912i 

-1.9557 + 33.7951i 0

-1.9557 - 33.7951i 0

-28.2743 0

-28.2743 -

C
lo

se
  

L
o

o
p

 

P
la

n
t 

-6.3137 + 79.8109i -5.8786 + 80.8581i 

-6.3137 - 79.8109i -5.8786 - 80.8581i 

-5.3540 + 46.2140i -2.0791 + 37.9468i 

-5.3540 - 46.2140i -2.0791 - 37.9468i 

-1.9649 + 33.7933i -1.9325 + 33.6912i 

-1.9649 - 33.7933i -1.9325 - 33.6912i 

-27.7026 + 12.6862i -1

-27.7026 - 12.6862i -4

-1.8090 + 9.2149i 0

-1.8090 - 9.2149i 0

-4.7413 0

-0.9885 -

Table 4. Poles and zeros of the system 

Since the system along YZ ( XZ ) presents one actuation point and a couple of sensors 

(frame and stage velocities), a solution with a SISO control strategy is not feasible. A 

simplest solution to this problem considers the difference between the measured velocities 

as the feedback signal, so the system can be assumed as SISO and the control design 

becomes simpler. 
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Figure 18 shows that the system dynamics has a peak at 1.8 Hz related to the stage and 

higher modes related to the interaction of the stage with the frame and the ground at 10 Hz 

and beyond.  

 

Figure 18. Vibration damping action. Transfer function from the actuator force to the difference of 

frame and stage velocities ( ( )S F ACTq q F−  ). Open-loop vs Closed-loop. Solid line: experimental; 

Dashed line: numerical. 

The feedback controller is focused on damping the mode related to the stage by adding on 

the loop a lead-lag compensator. 

The two actions can be expressed as: 

 

LAG
LAG

LAG

LEAD
LEAD

LEAD

s z
C

s p

s z
C

s p

+
=

+

+
=

+

 (34) 

The LAGC  action is used to improve the transient response at low frequency, while the 

LEADC  is useful to increase the stability margin of the closed-loop system. 

Therefore the resulting Lag-Lead action allows to compensate the critical phase behavior of 

the geophones and furthermore guarantees a quick damping action with good levels of 

stability margins. 

The experimental tests have been performed to validate the two control actions. Figure 18 

shows the numerical and experimnental frequency response function in open loop and 

closed loop, obtained from the actuator force to the velocity measured on the stage. The 

force acts both on the stage and the frame, the dynamics of both the subsystems are visible. 

The vibration damping effect of the control action is validated on the stage mode (1.8 Hz 

peak) and the good correspondence shown between the simulated and experimental 

response is useful to validate the modeling approach.  
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Figure 19. Impulse time response, force from the actuator and velocity measured on the stage. Open-

loop (a), Closed-loop (b), Force exerted by the actuators. Solid line: experimental results. Dashed line: 

numerical results.  

A further demonstration of the correctness of the damping action is the velocity time 

response reported in Figure 19. In this case the system is excited with an impulse from the 

actuator and the velocity is measured on the stage. Numerical and experimental responses 

are superimposed to provide a further validation of the model (the position time response is 

not reported since the machine is not provided with displacement sensors and hence this 

validation could not be possible to performed). Figure 19.a shows open loop response,  

Figure 19.b shows closed loop response while in Figure 19.c the force exerted by the 

actuators is reported.   

The excitation coming from the laser-axis action on the stage is controlled in an effective 

way as shown in Figure 20 where the numerical transfer function between a force impulse 

on the stage and the related measured velocity is reported.   
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Figure 20. Vibration damping action. Transfer function from a force applied on the stage to the velocity 

measured on the stage ( )S Sq F . Numerical response. Solid line: closed-loop; Dashed line: Open-loop.  

 

Figure 21. Active isolation action. Transfer function from a simulated ground velocity to the velocity 

measured on the stage ( )S Gq q  . Numerical response. Solid line: Open loop configuration. Dashed line: 

Closed loop configuration. 

The active isolation action is verified by simulating the excitation coming from the ground. 

The experimental test in this case has not been performed since in reality it is difficult to  

excite the machine from the ground in a controlled and effective way. Nevertheless the 

model is reliable as proved in Figure 14 and the obtained results can be assumed as a good 

validation of the control action. 



 
Feedforward and Modal Control for a Multi Degree of Freedom High Precision Machine 541 

Figure 21 illustrates that the closed loop system is capable to reject the disturbances coming 

from the ground in an effective way. 

5.2. Feedforward control 

Although the feedback control explained in Section 5.1 is strongly effective for external 

disturbances coming from the ground, it could not be sufficient to make the machine 

completely isolated from the direct disturbance generated by the movement of the 

payload. It is indeed possible that in the case of high precision requests, feedback control 

approaches such as PID, Lead-Lag or LQR are not able to satisfy by themselves severe 

specifications. Hence different schemes, operating selectively on the stage direct 

disturbances, are required. 

In this section an off-line feedforward scheme allowing to isolate the machine from the 

action of payload direct disturbance in operating condition is proposed. The scheme is not 

classical, i.e. the command is not generated on-line but it is computed in advance on the 

basis of the data response to the direct disturbance and the transfer function between the 

control command and the controlled output. As illustrated in Figure 3, the action of 

feedforward control is superimposed to the one of the Lead-Lag feedback control and acts 

exclusively on the disturbance acting from the payload. 

The technique is based on the complete knowledge of the fixed pattern followed by the 

payload of the machine during operations. Since also the operation timing is known, it is 

possible to compute in advance a feedforward command, so as to be able to suppress the 

effects of the direct disturbance that are generated by the payload movements, and that 

cannot be measured. These commands are stored in the electronic control unit and are 

summed to the feedback control action at the appropriate time. 

The model used to design the control law is the four degrees of freedom model exposed in 

Section 4.1. Being the XZ-plane and YZ-plane symmetric, just the latter is considered in the 

design phases. 

The controlled output is the velocity measured on the stage ( )sv s and it can be considered as 

the sum of two contributions: the effect of the direct disturbance on the output ( )Dsv s and 

the effect of the feedforward action on the output ( )FFsv s . Then the total response is: 

 ( ) ( ) ( ) ( ) ( ) ( )s Ds FFs Ds FFv s v s v s v s h s u s= + = +  (35) 

where ( )h s is the transfer function between the control command ( )FFu s to the controlled 

output  ( )FFv s . 

The control signal is: 

 1( ) ( ) ( )FF Dsu s h s v s−= −  (36) 
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Since the operation pattern and timing are known (Figure 23 (a)), the transfer function ( )h s

can be obtained by using an FFT analyzer, the command signal ( )FFu s (Figure 23 (b)) can be 

computed offline, stored in the control unit and applied to the system at the proper time 

when the payload is moving. 

It is worthy to notice that the inversion of ( )h s  leads to a non-causal function with a 

numbers of zeros equal or higher than the number of poles. This issue is overcome by 

adding the required number of poles at a frequency sufficiently high (more than 100 Hz), in 

order to make the feedforward filter proper and fit to be used in the control scheme. 

Bode diagram of h(s) is reported in Figure 22 (feedback control is on, vibrations coming  

from the ground are damped).  

Figure 23 (c) shows that the proposed technique is effective and allows to isolate the 

machine from the direct disturbance generated by the payload operations. The excitation 

signal reproduces a standard laser cut periodic profile. 

The coupling of this action with the feedback control system permits to obtain a full 

vibration damping and active isolation from external disturbance coming from the ground 

and direct disturbance coming from the stage.  

 

 

 

 

 
 
 

 

 

Figure 22. Control command to controlled output stage velocity transfer function (h(s)) Bode diagram. 
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Figure 23. a) Feedforward control: disturbance profile; b) Control signal. Solid line: feedforward off, 

dashed line: feedforward on; c) Controlled output: stage velocity. Solid line: feedforward off, dashed 

line: feedforward on. 

5.3. Modal control 

The third and last control technique proposed in this chapter is a modal approach to 

perform a feedback control scheme. This strategy is similar in performance to the Lead–Lag 

strategy illustrated in Section 5.1, but it simplifies the control design procedure once it gives 

a direct feeling on actuators action on machine modes. 

The method is based on the scheme reported in Figure 24. The goal of the technique is to 

decouple the rotational and translational motion modes of the machine to direct the action  

of the controller selectively on the dynamic of interest.  

 

Figure 24. Modal control overall scheme. 
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The eight geophones measurements on stage and frame are elaborated to obtain four 

velocity differences: 

 

DX SensSX SensFX

DX SensSX SensFX

DY SensSY SensFY

DY SensSY SensFY

V V V

V V V

V V V

V V V

+ + +

− − −

+ + +

− − −

= −

= −

= −

= −

 (37) 

These values are then summed and subtracted in order to obtain the motion mode 

uncoupling. 

Rotational mode: 

 RX DX DX

RY DY DY

V V V

V V V

+ −

+ −

= +

= +
 (38) 

Translational mode 

 
TX DX DX

TY DY DY

V V V

V V V

+ −

+ −

= −

= −
 (39) 

The control dynamic is the same of Lead-Lag approach, the difference consisting in the error 

fed to the controller. The poles of the system in open and closed loop are reported in Table 4. 

 

Figure 25. Modal control. a) Control command to stage-frame velocities difference transfer function. b) 

Control command to translational dynamics transfer function. c) Control command to rotational 

dynamics transfer function. Solid line: open loop. Dashed line: closed loop. 
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Figure 25 shows the motion modes uncoupling and system behaviour in open and closed loop. 

Figure 25.a illustrates control command to stage-frame velocities difference transfer function 

where translational and rotational modes are coupled.  Figure 25.b and Figure 25.c report the 

translational ( ,TX TYV ) and rotational ( ,RX RYV ) dynamics respectively. It is worthy to notice 

that the influence of rotational dynamics is dominant, being its response amplitude higher 

than translational one. Due to this consideration it can be easily explained the low action of the 

feedback control on the translational dynamics (b)) is compared to the rotational one (c)). 

6. Conclusions 

In this chapter the design of three different control techniques for vibration damping and 

active isolation for high precision laser cutting machines has been illustrated. After an 

overview on the main actuation technologies in this field the work explains the advantages 

of electromechanical actuators and focuses on the mechatronics approach of the machine 

subsystem design. For controller implementation, two different models (four and six 

degrees of freedom) have been developed. The considered controllers are: 

a. Feedback control with a Lead-Lag approach; 

b. Off-line Feedforward scheme; 

c. Modal control. 

Experimental and simulation results used to check the effectiveness of the modeling 

approach and of the three proposed control techniques. 
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