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1. Introduction

Soil varies considerably from location to location (Nielsen et al., 1973). Knowledge on soil spa‐
tial variability is important in ecological modelling (Burrough, 1983; Corwin et al., 2006), envi‐
ronmental  prediction  (Trangmar  et  al.,  1985),  precision  agriculture  (Goderya,  1998),  soil
quality assessment (Heuvelink and Pebesma, 1999; McBratney et al., 2000), and natural resour‐
ces management. Adequate understanding of the variability in soil properties as a function of
space and time is necessary for developing logical, empirical and physical models of soil and
landscape processes (Burrough, 1993; Foussereau et al., 1993; Wilding et al., 1994). Geostatis‐
tics, a widely used approach, has been used to identify the spatial structure in the variability of
soil attributes (Vieira, 2000; Carvalho et al., 2002; Vieira et al., 2002). Semivariance function
characterizes the spatial continuity between points. When the semivariance is plotted against
the lag distance or separation distance between points, the plot is called semivariogram (Fig. 1;
McBratney and Webster, 1986; Isaaks and Srivastava, 1989). The structure of the semivario‐
gram is explained by three properties; the nugget, the sill and the range (Fig. 1). These spatial
structures of semivariogram help in identifying autocorrelation and replicating samples, re‐
vealing dominant pattern in data series, identifying major ongoing processes (Si et al., 2007),
designing experiments (Fagroud and van Meirvenne, 2002) and monitoring networks (Pra‐
kash and Singh, 2000), selecting proper data analysis method and interpreting data (Lambert et
al., 2004), and assessing simulation and uncertainty analysis in a better way (Papritz and Du‐
bois, 1999). The semivariogram structures also help to quantify spatial dependence between
observations. Modelling of observed semivariance values helps in predicting the spatial distri‐
bution of attribute values (Goovaerts, 1998). The spatial distribution of attribute values is very
important in separating random noise in semivariance, and interpolation and mapping analy‐
sis such as kriging (Deutsch and Journel, 1998; Nielsen and Wendorth, 2003).
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Figure 1. A typical example of semivariogram showing different components.

The choice of theoretical models and its fitting procedure is very important to get a better pre‐
diction of unsampled locations (McBratney and Webster, 1986). Spherical model (Burgess and
Webster, 1980; Vieira et al., 1981; Van Kuilenburg et al., 1982; Vauclin et al., 1983; Trangmar,
1985), exponential model (David, 1977), Gaussian model (McBratney and Webster, 1986) and
linear plateau model (Burgess and Webster, 1980; Hajrasuliha et al., 1980; Vauclin et al., 1983)
are important among the most commonly used semivariogram models in the field of soil sci‐
ence. The maximum likelihood method (Cressie, 1991) or least square regression (Vieira et al.,
1981; Yost et al., 1982; Trangmar et al., 1985) including the weighted least square methods
(Cressie, 1985) optimize the parameter value by minimizing the deviations of model predic‐
tion from the experimental semivariances. Small sum of deviations between the model and the
experimental values indicate superior performance of the models. Small and comparable sum
of the deviations indicates comparable performance of the models. Therefore, selection of
model is prerequisite for better prediction (Burnham and Anderson, 2002). In reality, there can
be several models to choose from. Selection of good models requires balancing of goodness of
fit and complexity, which is generally, determined using a likelihood ratio approach leading to
a chi-square test. The Akaike Information Criterion (AIC) values can be calculated from maxi‐
mum likelihood function (Akaike, 1973), which is used to evaluate the performance of the
models (Webster and McBratney, 1989). The smallest AIC value indicates the best model, but
the values of parameters such as nugget, sill and range can be different from model to model,
even though they have the same physical meaning (Trangmar, 1985). Different value of a pa‐
rameter for different models clearly indicates the uncertainty associated with the parameter,
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which makes the interpretation difficult. Therefore, interpretation of a particular spatial proc‐
ess from the parameter values of a particular model will be biased. In addition the parameter
value from individual models may have large uncertainty. This uncertainty is inherent to the
model selection and is well beyond just the issue of determining best model(s). Model averag‐
ing is a technique designed to help in accounting the uncertainty associated with the models
and their parameters.

The model averaging is not a new concept in statistics. People started combining and aver‐
aging models since 1970s for different purposes (Hoeting et al., 1999). During averaging
models are assigned with weights based on their performance. The AIC values are used to
calculate the weights for the models (Burnham and Anderson, 2002). Before the recent de‐
velopment of computational power, the averaging procedure ignored the uncertainty associ‐
ated with models. Recently, the use of model averaging is increased to reduce the
uncertainty associated with the model selection. Information on the use of model averaging
procedure in soil science is scarce (Webster and McBratney, 1989) and there is no informa‐
tion of reducing uncertainty associated with the semivariogram model parameters from
averaging of commonly used semivariogram model parameters. Therefore, the objective of
this paper is to reduce the uncertainty associated with semivariogram model parameters
through averaging. The weighted average of the parameter values of commonly used mod‐
els can be a better way of describing the spatial processes.

Name of Model Equations †

Spherical Model
γs(h ;a, b, c) = {a + (b−a) 1.5

h
c −0.5( hc )3

if h ≤c

b otherwise

Exponential Model
γe(h ;a, b, c) =a + (b−a){1−exp( −hc )}

Gaussian Model
γg(h ;a, b, c) =a + (b−a){1−exp( −h 2

c 2 )}
Linear Plateau Model

γl(h ;a, b, c) = {a + (b−a) hc if h ≤c

b otherwise

† In all models; γ = 0 when h = 0

Table 1. Commonly used models for semivariogram fitting in soil science

2. Theory

Geostatistics can explain the spatial variability and the patterns of a variable in field from its
autocorrelation. It describes the relationship between measurements at different locations
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(or times) separated by certain distance (or time). For example, a soil property Z(xi) meas‐
ured at location xi, where i =1, 2, …, n and n is the number of samples along a transect. The
continuity of this relationship can be investigated from h scatterplots, which can be done by
plotting the measured values Z(xi) as horizontal axis and Z(xi+h) as vertical axis, where i =1,
2, …. The h scatterplot will show a cloud of points, where every point represents one pair of
sample locations Z(xi) and Z(xi+h) (Pannatier, 1996; Zawadzki and Fabijanczyk, 2007). For
each h, half of the mean value of the squared difference Z(xi) - Z(xi+h) is defined as semivar‐
iance (Matheron, 1962).

( ) ( ) ( ) ( )
( ) 2

1

1
2

N h

i i
i

h Z x Z x h
N h

g
=

é ù= - +ë ûå (1)

The variance (σi
2) of the squared difference Z(xi) - Z(xi+h) can be calculated using Eq. (2).

( ) ( )
( )

22

1

1
1

N h

i i i
i

a a
N h

s
=

= -
- å (2)

where, ai = Z (xi)−Z (xi + h ) 2 and N(h) is the number of pairs in a cloud for a particular h.

The experimental semivariogram can be fitted to a mathematical model. Not all the mathe‐
matical functions that seem to fit the observed values can be considered as semivariogram
model. One important criterion for the semivariogram models is to be “positive-definite” to
ensure the nonnegative covariance values restricting the models to be permissible for fitting
(Isaaks and Srivastava, 1989; Goovaerts, 1997; Deutsch and Journel, 1998). There are a num‐
ber of permissible semivariogram models including the most commonly used spherical, ex‐
ponential, Gaussian, and linear plateau (Table 1).

Among the fitting procedures, the weighted nonlinear least square method is the most ro‐
bust  and reliable method (Cressie,  1985).  This  procedure minimizes the residual  sum of
squared errors (RSS) between experimental semivariance data and the models by optimiz‐
ing the model parameters: nugget, sill and range values. The RSS can be calculated using
Eq. 3.

2

1

m

i i i
i

RSS w g g
=

é ù= -ë ûå % (3)

where, m is the number of lags, γ̃ i is the semivariance value for lag i, γi are the correspond‐
ing model predictions, and wi are weighting factors. The weighing factor used in calculating
RSS is related to the variance associated with the semivariance calculation (Jian et al., 1996).
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= (4)

where, σi
2 is the variance calculated in Eq. 2 for lag i. In this weighted least squares approxi‐

mation the fit can always be improved by diminishing the residual sum of squared errors
with addition of parameters to the models (Webster and McBratney, 1989). In case of the
same number of parameters in the most commonly used semivariogram models, the small
and comparable RSS values indicate the comparable performance of different models. A sol‐
ution can be achieved by fitting each model using the least square approximation and then
comparing the goodness of fit for each model (Webster and McBratney, 1989). The perform‐
ance of a model can be evaluated and the fitting can be said as the best with the lowest
Akaike Information Criterion (AIC) (Akaike, 1973). AIC is an estimate of the expected Kull‐
back-Leiler information (a ruler to measure the similarity between the statistical model and
the true distribution) lost by using a model to approximate the process that generated ob‐
served pattern (Burnham and Anderson, 2002; Johnson and Omland, 2004). It is also defined
as Eq. 5:

( ) ( )  2 ln maximized likelihood   2  number of parametersAIC = - + ´ (5)

Or it can be estimated as in Eq. 6.

( ˆ2ln 2AIC L y pqé ù= - +ë û (6)

where, p is the number of parameters and ln L (θ̂ | y  is the maximized likelihood and can
be estimated from Eq. 7.

( ˆln ln
2
n RSSL y

n
q æ öé ù = - ç ÷ë û è ø

(7)

where, n is the number of data points. With close performance, different models with same
number of parameters having the same physical meaning produces different optimized pa‐
rameter values. A single process in field will be represented by different values based on the
selected models. In this case the estimated parameter values will be associated with uncer‐
tainty, which can be reduced by making weighted average based on the performance of the
selected model. If there are R numbers of models with parameters θj (j = 1, 2, 3,...,p), the esti‐
mated parameters can be calculated from the Eq. 8 (Burnham and Anderson, 2002; Johnson
and Omland, 2004).
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where, Wj are the weights assigned to a particular model. The weights can be calculated
from the AIC values for each model (Eq. 9).
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( )

1
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exp 2

j
j R

j
j

W

=

-D
=

-Då
(9)

where, Δj = AI Cj −AI Cmin and AICj and AICmin are the AIC values for a particular model and
the lowest AIC value model.

To explain the uncertainty associated with the parameter, we need to calculate the variance
associated with each optimized parameter. If a model has p parameters, we can calculate p ×
p covariance matrix. From the calculation of Hessian Matrix (the second derivative matrix of
χ2 merit function) we can estimate the standard error in fitted parameters. In the calculation
of Hessian Matrix (Press et al., 1992), let us assume we have to fit a model:

( ); , ,h a b cg g= (10)

The χ2 merit function, that will be equal to RSS (Eq. 11),

( ) ( ) ( )22
2

1

1, , ; , , , ,
m

i
i i

a b c h a b c RSS a b cc g g
s=

é ù= - =ë ûå % (11)

The χ2 gradient for the parameters, z, will be zero when χ2 is minimum. The components
can be calculated as Eq. (12).

( ) ( )2

2
1

; , , ; , ,
2 where, , , .

N
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An additional derivative will give,

( ) ( ) ( ){ } ( )22 2

2
1

; , , ; , , ; , ,12 ; , ,
N

i
ia b a b a bi

d h a b c d h a b c d h a b cd h a b c
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It is conventional to remove the factors of 2 by defining

2 21
2ab

a b

d
dz dz

ca º (14)

For a linear equation, the second derivative term can be dismissed because it is zero or small
enough when compared to the term involved in first order derivative. So the αab formula can
be written as (Press et al., 1992);

( ) ( )
2

1

; , , ; , ,1N

ab
i a bi

d h a b c d h a b c
dz dz

g g
a

s=

é ù
= ê ú

ê úë û
å (15)

So for a three parameter (a, b, c) semivariogram model we will get a 3 × 3 Hessian Matrix, (Eq. 16).
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(16)

The approximation of the covariance matrix can be done by inversing the matrix α (Press et
al., 1992) (Eq. 17).

1C a
-

é ù é ù=ë û ë û (17)

This matrix component indicates the variance associated with each parameter for different
models. At the same time we need to calculate the variance associated with the averaged pa‐
rameter. The parameter variance for each model and the weight assigned to the model are used
to calculate the variance of the averaged parameter (Eq. 18) (Burnham and Anderson, 2002)

( ) ( ) ( )2
1

ˆ ˆˆ ˆˆvar var
R

j j
j

W gq q q q
=

é ù
= + -ê ú

ë û
å (18)

where, W is the weights assigned to R number of models, g, θ̂ is the estimated model param‐

eter values from fitting, and θ̄
^

 is the average of estimated model parameter values.
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Characteristics Sand (Zeleke and Si, 2005) Copper (Atteia et al., 1994)

Minimum 52.50 3.55 (1.27)

Maximum 78.75 166.40 (5.11)

Mean 64.23 23.58 (2.87)

Median 64.41 17.20 (2.84)

Mode 58.75 16.40 (2.80)

Skewness 0.28 3.02 (0.42)

Kurtosis -0.73 11.88 (0.11)

Standard Deviation 6.06 22.24 (0.72)

Variance 36.76 494.48 (0.52)

Table 2. Descriptive statistics of the data sets used for model fitting

3. Materials and methods

Demonstration of this average parameter estimation procedure was done using two soil pa‐
rameters, which were chosen from two different experimental datasets. One soil property,
sand content, was collected from a regularly spaced (3 m) 128 point transect (Zeleke and Si,
2005). The sampling site was located at Smeaton, Saskatchewan, Canada (53°40′N latitude
and 104°58′W longitude). The hydrometer method was used to determine the particle sizes
(Gee and Bauder, 1986). Another soil property, copper (Cu) content, was selected from a da‐
taset consisting of 359 topsoil samples collected by the Swiss Federal Institute of Technology
in the Swiss Jura (Atteia et al., 1994). The data points were selected according to a regular
configuration of a mesh of 250 m × 250 m with several clusters from an area of approximate‐
ly 1450 ha. The cluster samples were collected following nested sampling design with 100,
40, 15, and 6 m sampling interval. Copper content was measured using a direct current plas‐
ma spectroscopy (ARL, Spectran V) with other 5 heavy metals (Atteia et al., 1994).

4. Results and discussion

The exploratory information about the dataset is given in Table 2. The skewness of the sand
0.28, which indicates a near normal statistical distribution of the dataset. The copper content
is highly skewed (skewness = 3.02) and exhibits a log normal statistical distribution. There‐
fore, we decided to normalize the copper content using natural logarithm transformation.
The exploratory information of logarithm transformed values for copper content is present‐
ed in parentheses in Table 2.
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Figure 2. Empirical semivariogram and fitted models for sand content data.
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Figure 3. Empirical semivariogram and fitted models of logarithm-transformed copper content data.
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Semivariance for sand content (Fig. 2) and logarithm transformed copper content (Fig. 3) are
calculated and plotted as a function of lag interval. For the semivariance calculation of regu‐
larly spaced sand samples, the lag interval is 6 m, which is twice the minimum sampling
interval. The maximum lag distance used for this calculation is 144 m and the minimum
number of pairs used for the semivariogram calculation is 24. The semivariance of the cop‐
per content is calculated using minimum and maximum lag distance of 0.1 km and 2 km re‐
spectively, which leads to at least 20 pairs of data points. The experimental semivariograms
are fitted with four most commonly used semivariogram models (Table 1) following weight‐
ed least square estimation. The fitted semivariogram models and the experimental semivar‐
iograms are shown in Fig. 2 and Fig. 3 for sand and copper, respectively. The optimized
parameters (nugget, sill and range) values for each of the models are presented in Table 3.
The nugget value optimized by different models for the sand content varies from 14.67 %
(exponential model) to 18.13 % (Gaussian model). The value of sill varies from 36.40 % (line‐
ar plateau model) to 39.27 % (exponential model). The optimized range value that indicates
the distance over which the processes are spatially dependent, for the sand content varies
widely from 47.10 m (Gaussian model) to over 100 m (Spherical model). The variance (val‐
ues in the paresis in Table 3) associated with each parameters are approximated from the
calculation of Hessian Matrix (Press et al., 1992). The variance associated with the parameter
estimate is very high as the semivariance is calculated from the semivariance cloud, which
spreads over a range of values. The nugget, sill, and range have their own physical signifi‐
cance and different models should result in the same set of parameter values. However, due
to model uncertainty, four models have different set of optimized parameter values for the
sand content. The range of optimized parameter values (Table 3) from different models
clearly indicate how uncertain our models and parameters are.

Similarly there are a wide range of optimized parameter values from different models for
copper content. The optimized nugget values vary widely in different models (0.027
ln(mg2/kg2) for exponential model to 0.122 ln(mg2/kg2) for Gaussian model) (Table 3). Wide
range of sill and range values clearly indicates the uncertainty associated with the parame‐
ters. Different parameter values for different models make the interpretation of the parame‐
ters and the semivariogram structures difficult and uncertain. The ratio of the nugget
semivariance (VN) to the sill semivariance (VS) gives a measure of the strength or degree of
spatial structure (Cambardella et al., 1994). Therefore, it is sometime difficult to explain the
semivariogram structure of a particular property with different nugget and sill values for
different models.

In this situation the goodness of fit for each model is calculated. The residual sum of
squared error (RSS) between the experimental data and the model data is presented in Table
3. The comparable RSS values indicate that the four models are comparable. From the RSS
value, the maximum likelihood is calculated for each model. Akaike Information Criterion
(AIC) for different models is calculated from the maximum likelihood of the models and is
presented in Table 4. The AIC values for the spherical (-167.269) and exponential models
(-167.187) fitted for sand semivariogram are very close indicating a close performance of the
models. The performance of the linear plateau and Gaussian models are also acceptable. The
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AIC values for all four models are very similar for copper content (vary from -111.739 to
-113.739). The similar AIC values for the models indicate that all four models are almost
equivalent. Though the performance of the models is very comparable, the optimized pa‐
rameter values from different models are not similar. In this situation, the selection of pa‐
rameter value from a particular model can be associated with high uncertainty.

Parameter Model Nugget Sill Range VN/VS RSS

---%--- ---%--- ---m---

Sand Spherical 16.08

(257.45)

36.71

(231.66)

100.94

(29610.00)

0.438 0.021

Exponential 14.67

(423.95)

39.27

(1081.00)

49.15

(32550.00)

0.374 0.021

Gaussian 18.13

(198.24)

36.57

(214.91)

47.10

(5233.00)

0.495 0.040

Linear Plateau 16.57

(217.15)

36.40 (181.53) 74.37

(8379.00)

0.455 0.026

ln(mg2/kg2) ln(mg2/kg2) --km--

Copper Spherical 0.101

(0.074)

0.553

(0.037)

0.480

(0.767)

0.183 0.067

Exponential 0.027

(0.177)

0.548

(0.039)

0.132

(0.133)

0.049 0.061

Gaussian 0.122

(0.062)

0.544

(0.034)

0.171

(0.097)

0.224 0.061

Linear Plateau 0.089

(0.080)

0.543

(0.033)

0.271

(0.235)

0.164 0.063

Table 3. Optimized parameter values and their variance (in paresis) for different semivariogram models for sand
content and copper

The model averaging is conducted to reduce parameter uncertainty. Weights are assigned to
the models based on their performance and importance. The model with lowest AIC value
indicates best model. Based on the smallest AIC, ΔAIC is calculated from the difference be‐
tween AIC value of a particular model and the smallest AIC value out of four models. The
ΔAIC is used to measure the likelihood of each model. The value of the likelihood of models
helps in assigning weights for different models. The spherical and the exponential models
for the sand semivariogram have the highest weight, which are almost equal. This indicates
an equivalent performance of these two models. The Gaussian and linear plateau models
have very small weights, indicating less importance of the models than that of the other two.
Whereas for copper, the weights assigned to different models are close enough to explain
the performance as equivalent. Based on the weights assigned to each model, the average
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value of the parameter and the variance associated with each parameter is estimated. Sand
has an average nugget, sill and range value of 15.42 %, 37.92 % and 75.53 m respectively.
The variance associated with each averaged parameters are presented in the paresis in Table
4. The higher weight of the spherical and exponential model indicates that two models have
large contribution to the average value of parameters. Similarly, the variance of the aver‐
aged parameters will have large contribution from spherical and exponential models.
Whereas for copper, the contribution to the average value by each models is comparable.
The average value of nugget, sill and range for copper are 0.081 ln(mg2/kg2), 0.546 ln(mg2/
kg2), and 0.219 km respectively. The variance of each averaged parameter is also calculated
and presented in Table 4 (in paresis). The averaged variance reduced the uncertainty associ‐
ated with the parameters by taking the average.

Parameter Model AIC value Weight Average parameter value

Nugget Sill Range

Sand Spherical -167.269 0.4946 15.42 % 37.92 % 75.53 m

Exponential -167.187 0.4748 (335.79) (635.06) (31007.42)

Gaussian -151.279 0.0001

Linear Plateau -161.687 0.0303

Copper Spherical -111.739 0.1230 0.081 ln(mg2/

kg2)

0.546 ln(mg2/

kg2)

0.219

kmExponential -113.703 0.3285

Gaussian -113.658 0.3212 (0.106) (0.036) (0.235)

Linear Plateau -112.964 0.2270

Table 4. Parameter values obtained through model averaging of commonly used models and their variance (in paresis).

When different models optimize parameters with a wide range of values, the weighted aver‐
age of the estimated parameter values provide more concise information and better under‐
standing about the parameters and thus the spatial structure. The variance of the optimised
parameters clearly indicates the reduced uncertainty of the parameters. This weighted aver‐
age value of the parameters provides a better prediction about the underlying processes by
reducing the uncertainty associated with the parameters and the bias in their selection. Bet‐
ter understanding of the parameters provides guidance for sampling and insights on experi‐
mental design.

5. Conclusion

The performance of the commonly used semivariogram models, used for fitting the experimen‐
tal semivariogram, is comparable. Different models optimize a particular parameter differently,
which indicates the uncertainly associated with the parameter. The uncertain parameter value
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makes the prediction of spatial processes difficult and uncertain. A model averaging procedure is
used to obtain the parameter value and to reduce model parameter uncertainty.

Two soil properties (sand content and copper content) are taken as examples for demon‐
strating the average parameter estimation procedure. The sand content is measured at regu‐
lar sampling interval along a transect, whereas the copper content is measured at variable
sampling intervals in a two-dimensional field. The semivariogram is calculated for both
properties and fitted with four most commonly used mathematical models (spherical, expo‐
nential, Gaussian and linear plateau). Weighted least square estimation is used for fitting
these models to the experimental semivariogram. The goodness of fit for each model is cal‐
culated from their residual sum of squares. The parameter for each models are optimized
during the fitting procedure. The likelihood of each model is calculated based on the Akaike
Information Criterion (AIC) for each model. Different weights were assigned to each model
based on their performance and importance from the AIC values. These weights are used
for obtaining the weighted average of the optimized parameters. The weighted average of
the estimated parameters reduced the uncertainty associated with the parameters and the
bias in their selection. The average parameter values and reduced uncertainty provide more
concise information about the spatial structure and consequently provide better guidance
for sampling, experimental design, and interpolation and mapping.
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