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Blind Implicit Source Separation —
A New Concept in BSS Theory

Fernando J. Mato-Méndez and Manuel A. Sobreira-Seoane
University of Vigo
Spain

1. Introduction

The Blind Source Separation (BSS) problem was first introduced (Heraultetal.,, 1985;
Jutten & Herault, 1988) in the context of biological problems (Ans et al., 1983; Herault & Ans,
1984) with the aim of being able to separate a set of signals generated by the central nervous
system. A few years later, several methods based on BSS were applied to other fields of
industry and research (Deville, 1999). The BSS problem arises from the need to recover the
original sources from a blindly mixture. This extraction is characterised as a blind process
because the lack of information about the following topics: the characterisation of the sources,
the number of sources present at the time of the mixture, and the way that this mixture
is performed. Although this kind of information is unknown, the problem described can
be solved if the input signals to the mixture process are statistically independent. Related
literature provides several methods, most of which have been classified according to the
context in which the mixture is performed: linear mixture model, convolutive mixture model,
and non-linear mixture model. The first part of this chapter is devoted to describe the most
relevant existing works in applying these methods to the audio field. Many of the real
problems, however, do not support this simplification, so this part stresses the need for full
characterisation of the problem, mainly about the mixing process and the nature of the sources
involved.

Typically, the goal of the BSS theory is to extract a set of variables matching the sources
involved in the mixture. We have detected, however, the existence of other research fields
where the goal is to extract from the mixture another set of variables which appear as
implicit functions of the hidden sources. Extracting these variables brings a new challenge
for the BSS theory, becoming particularly complex when the sources have a noisy nature.
In the second part of this chapter, a complete definition of this new problem is introduced,
for which the BSS problem in its classical form must be reformulated. Used by first time
in (Mato-Méndez & Sobreira-Seoane, 2011), within a pattern recognition context, the Blind
Implicit Source Separation (BISS) concept opens an interesting research field. The BSS-PCA
algorithm proposed in the research work referenced above solves with success the problem
of classification of traffic noise. Within this algorithm, the BISS problem is handled in an
embedded way. Motivated by the promising results achieved, a new compact expression for
the BISS solution is now proposed. The new BISS-PCA method introduced here robustly
solves the feature extraction process for the problem described. The conclusions of this
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research can be generalized to other application fields, so we believe that this chapter will
be of special interest for the readers.

2. Blind audio source separation

The aim of BSS theory is to extract p unknown sources, from m mixtures acquired through a
sensors network. To solve this problem, the literature provides a wide set of methods, most
collected in (Comon & Jutten, 2010; Hyvdrinen et al., 2001). In this sense, many algorithms
have been applied to the context of audio signals, and they can be classified according to the
solution of three different problems. First, the denoising process from an undesired mixture
provided by both, the channel noise and the sensors network noise. Second, the separation of
musical sources from an audio mixture. Finally, the problem created by the “cocktail party”
effect (Cherry, 1953), generated when several speakers talk at the same time in reverberant
field conditions. Other problems appearing in the state of the art can be analysed as a
combination of the above.

2.1 Mixture models

The study of the solution becomes very complex taking into account the existence of different
types of problems and application contexts. For many years, however, they have been
addressed according to how the mixing process is performed. A generic mixture model for
the BSS problem can be written as

x(n) = H(s(n) +e(n)), ey

where H is a function of both, the channel and the sensor network, and € is a Gaussian
additive noise signal, independent of the p sources of s. Thus, existing methods can be
classified according to this criterion (see (Comon & Jutten, 2010; Mansour & Kawamoto, 2003;
Pedersen et al., 2007; Puntonet G., 2003) for more detail) into the categories that are described
below.

2.1.1 Instantaneous mixtures

Source separation from instantaneous mixtures has been one of the first applications of BSS
in the audio field. For signals acquired into a recording studio, the mixing process can
be considered instantaneous: first, the signals associated with each of the sources can be
considered independent because being acquired at different times and at different spatial
locations. Second, the multipath contributions associated with both, the sources and sensors,
can be neglected thanks to the acquisition process of the mixture and third, studios can
be considered as “noise free” controlled environments. So the signals recorded under
these conditions does not contains neither relevant undesired reflections or significant noise
contributions. Thus, many authors approach this problem by means of an instantaneous
mixture model. For this situation, the channel is characterised by have no memory, for which
the mixture acquired by the j — th sensor can be modelled as

p
xj(n) = ;hijsi(n)- )

In this context, the function H in (1) can be identified with a real matrix verifying that

x(n) = Hs(n), ®)
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where the vector x contains the contributions of the m sensors in the array. So, the separation
problem is reduced to solve the system of Eq. (3). In this case, the solution can be achieved by
applying ICA on this equation. Before proceed, it is necessary to have at least the same number
of mixtures than sources. Besides, at most, only one source can show a Gaussian distribution.
Under these conditions, the separation is performed by calculating an estimation of the mixing
matrix that minimises the statistical dependence between components of the original signals.

The contribution of the sensor array and the channel makes not possible to neglect the noise
effect in most applications. Therefore, the signal acquired by the j — th sensor can be expressed
as

P
xj(n) = ;hijsi(”) +e(n) + €5 (n), @)

where €; (n) is the noise signal acquired by the j — th sensor, and e;?(n) is the noise signal

provided by the channel. The last signal is typically characterised as wide-band noise, with
N( pes, 0'6]9) distribution for that sensor. It is usual to express the sum of these two noise signals
as

€j(n) = ejs-(n) + e}?(n). ()

Taking into account this undesired effect, Eq. (3) must be rewritten as
x(n) = Hs(n) +e(n), ©)

where the vector e contains the values of the noise signals associated with the m
sensors. There are a large number of algorithms that apply ICA on instantaneous mixing
problems, which are deeply studied in (Comon & Jutten, 2010). These algorithms show
a reasonable separation quality, even when applied on noisy mixtures. According to
the criteria used in the application of ICA, the literature provides research contributions
based on: second order statistics (Mansour & Ohnishi, 2000; Matsuoka et al., 1995), higher
order statistics (Ihm & Park, 1999; Jutten et al., 1991a; Mansour & Ohnishi, 1999; Moreau,
2001), the probability density function (Amari & Cichocki, 1998; Bofill & Zibulevsky, 2000;
Cichocki et al.,, 1997; 1998; Diamantaras & Chassioti, 2000; Hild et al., 2001; Lappalainen,
1999; Lee et al., 1999; Pham & Cardoso, 2001) and geometric models (Mansour et al., 2002;
Prieto et al., 1998; 1999; Puntonet et al., 1995; 2000).

2.1.2 Convolutive mixtures

When the mixture is not instantaneous, the channel has memory, so the signal acquired by the
j — th sensor can be expressed as

P
xj(n) =) Y Hygsi(n = 1)+ €j(n), 7)

where r is the order of the FIR filter that models the mixture. Thus, this mixture can be
modelled by means of the expression

x(n) = [H(z)]s(n) + e(n) = ZI:H(Z)s(n —1)+e(n). (8)
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This is the convolutive model, where H(!) is the matrix that models the channel and H(z) the
matrix that models the effects of sources on the observations. Therefore, this last matrix can
be written by means of the Z transform as

[H(z)] = Z[H(n)] = ;H(Z)Zl- ©)

Several ICA-based algorithms can be applied in this case to carry the separation process
out. In the context of audio, the convolutive problem is classically analysed by means
of second order statistics (Ehlers & Schuster, 1997; Ikram & Morgan, 2001; Kawamoto et al.,
1999; Rahbar & Reilly, 2001; Sahlin & Broman, 1998; Weinstein et al., 1993), higher order
statistics (Charkani & Deville, 1999; Jutten et al., 1991b; Nguyen et al., 1992; Nguyen & Jutten,
1995; Van Gervenetal.,, 1994) and probability density function (Bell & Sejnowski, 1995;
Koutras et al., 1999; 2000; Lee et al., 1997a;b; Torkkola, 1996).

2.1.3 Nonlinear mixtures

In a more general approach, the H function in Eq. (1) does not support a linear form. This
is the case for the separation problem of traffic noise sources in a general context. In this
problem, the original sources can not be observed and it is unknown how their signals have
been mixed. So, if possible, the extraction of the signals that make up the resulting mixture
can be a priori characterised as a blind separation process.

For nonlinear mixtures it is usual to simplify the problem by using a post-nonlinear mixture
model as
x(n) = H1[Has(n)] + e(n), (10)

being H; a real matrix and H; a nonlinear function. To solve it, research works based on
second order statistics (Molgedey & Schuster, 1994) and based on the probability density
function (Solazzi et al., 2001; Valpola et al., 2001) can be consulted.

2.2 Full problem approach

The usual procedure in BSS is to analyse the problem by means of identifying its mixing
model. A proper application of the methods described, however, requires an additional
knowledge about both, the mixing process and the nature of the sources involved. Thus,
to set an accurate strategy of separation it is necessary to add other informations.

The BSS problem for those situations in which the number of observations is higher than
the number of sources (over-determined problem), or equal (determined problem), is well
studied. For other situations (underdetermined problem), much remains to be done. This new
approach leads to research works focused on solving underdetermined problems (Nion et al.,
2010; Rickard et al., 2005; Sawada et al., 2011; Zhang et al., 1999a), and focused on optimising
the solution for over-determined problems (Joho et al., 2000; Yonggang & Chambers, 2011;
Zhang et al., 1999a;b).

In addition, a prior knowledge about both, the statistical and spectral characterisation
of the sources, will lead to more efficient separation methods. Thus, the information
can be extracted by means of BSS algorithms that exploit the study of second order
statistics for non-stationarity sources (Kawamoto etal., 1999; Mansour & Ohnishi, 2000;
Matsuoka et al., 1995; Pham & Cardoso, 2001; Weinstein et al., 1993) and cyclo-stationarity
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sources (Knaak et al., 2002; 2003). These will also be suitable for the separation of whiteness
sources (Mansour et al., 1996; 2000). Some information, however, contained in wide-band
sources can not be extracted only using second order statistics. In this case, algorithms based
on higher order statistics must be applied.

Finally, many of the algorithms show an excellent performance working on synthetic
mixtures. However, a significant degradation in the results is detected when they are applied
on real mixtures. In addition, a distinction between both, master-recorded and live-recorded
mixtures, must be done. Research works carried out to solve audio signals separation in
real conditions can be found in (Kawamoto et al., 1999; Koutras et al., 2000; Lee et al., 1997a;
Nguyen et al., 1992; Sahlin & Broman, 1998).

The BSS problem applied to extract signals from a noisy mixture is well studied. The residual
signal in this case is typically characterised as white noise. A particularly complex problem
occurs, however, when the signals to extract are noise signals. Besides, these are in general
characterised as coloured noise, as it occurs for traffic noise sources. In this sense, the research
carried out by us regarding the application of BSS to traffic noise real mixtures may be
consider a pioneer work. The more closest researches can be found in the study of mechanical
fault diagnosis in combustion engines. This is a less complex problem because the signal
acquisition process is performed by isolating the engine. The research is focused in applying
BSS for the study of its vibrational behaviour. Existing papers (Antoni, 2005; Gelle et al., 2000;
Knaak & Filbert, 2001; Knaak et al., 2002; Wang et al., 2009; Wu et al., 2002; Ypma et al., 2002)
show the difficulty in the search for satisfactory solutions. The complexity of application of
BSS theory will become higher by incorporating other sources for the generation of the traffic
noise signal. The next section is devoted to the study of this problem in the context of pattern
recognition, for which the BSS problem needs to be reformulated.

3. Blind implicit source separation

This new concept is related to the classical definition of sources into a BSS problem and it
has been detected by us in classification problems of noise signals. In a generic classification
problem, the main goal is to assign an unknown pattern ¢ to a given class ¢;. This class
belongs to the set € of ¢ classes previously determined. The starting condition is that
each pattern shall be represented by a single vector of features, and it can not belong to
more than one class. Under these hypotesis, this pattern may be uniquely represented by
@ = [@1,92,...,94]", where d is the number of the extracted features and the dimensionality
of the classification problem. For a better understanding of the new BSS concept, the following
two examples of application may be considered:

* Mechanical fault diagnosis in combustion engines
For the context described, the fault diagnosis can be seen as the combination of two
problems to be solved: a classification problem, and a source separation problem. Thus,
the BSS application has two purposes: the first task, being able to separate relevant
information from the wide-band noise associated with the vibration of the structure. This
relevant information is contained within the spectral lines associated with the combustion
noise, so that the first task may be characterised as a denoising process. The second task is
focused in extracting the information contained within the set of spectral lines and assign it
to one of the engine phases. Thus, the strategy followed seeks to improve the identification
of possible faults associated with one of the engine phases. This identification task can be
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viewed as a classification problem. The prior application of BSS results therefore in a better
definition of the boundaries that separates the two classes previously established (faulty,
non-faulty).

Classification of traffic noise

Although, in a colloquial sense, being able to separate two sources of traffic noise might
seem synonymous with being able to classify them, both concepts differ in practice because
the processing methods applied. There appears, however, a clear correlation between both,
the difficulty in applying blind separation algorithms on specific classes of sources and the
difficulty in applying classification algorithms on them. To compare the problem with
the above, it must be simplified by considering only the combustion noise. In this case,
the classification problem consists in assigning an unknown pattern with a predetermined
class of vehicles regarding its noise emitted level. In this case, a single engine can belong to
two categories of vehicles. Unlike the previous case, the features vector does not provide
discriminative information, so an extraction of information from extra sources is needed.
The trouble, as the reader may guess, is the lack of uniqueness for the solution. This issue
occurs for other sources considered, so the problem is not successfully solved by adding
them into the feature extraction process.

As it will be shown, the problem of classification of traffic noise is much more complex than
the one described in the example. The signal acquired by means of a sensors network is a
combination of a large number of noise sources. Thus, the associated BSS problem becomes
into an extremely complex problem to solve:

For a isolated pass-by, the vibration behaviour of the engine becomes more complex due
to the change of the mechanical model handled. This model is now in motion, and it is
affected by its interaction with the other parts of the structure. The information associated
with the spectral lines, located at low frequencies, is now altered by energy from other
systems such as suspension or brakes. The resulting signal is thus combined with noise
induced by the exhaust system.

The turbulences created by the vehicle in motion (aerodynamic noise) spread energy at
high frequency on the acquired signal. Both, the distribution and intensity of this energy,
will depend on the geometry and speed of the vehicle. For a given geometry, the higher
the speed of the vehicle, the higher the emission at high frequencies will be.

Once exceeded 50 km/h, for motorcycles and cars, and 70 km/h for trucks, most of the
energy in the acquired signal is now associated with rolling noise. This noise is generated
by the contact of the wheel with the pavement surface. Thus, a masking of information
associated with the three sources of noise described above is produced.

The consideration of other features modifies the resulting signal: directivity pattern of
the vehicle, vehicle maintenance/age, road conservation, ground effect, Doppler effect,
type of pavement, distance from source to the sensor network, atmospheric conditions and
reflexions of the signal on different surfaces close to the road (buildings, noise barriers, ...).
The traffic noise signal results from a combined pass-by of vehicles. This combination adds
both, an interfering pattern and a masking effect, into the mixing process of the signals
associated with each of the sources.

Several calculation methods have been developed to predict the noise levels emitted by the
traffic road. These are based on mathematical models trying to find the best approximation
to the real model described above. This real model is too complex to be implemented, so
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an approach is carried out by simplifying the number of sources to be considered. Thus,
part of the information needed to carry out this prediction is obtained by means of indirect
methods. Regarding the European prediction model (CNOSSOS-EU, 2010), information about
the average speed of the road, the pavement type and the traffic road intensity is then
needed. This information must be collected according to the vehicle type categorisation
performed. Thus, we decided to address the design of a portable device capable to provide
such information in real time. For this purpose, the more complex trouble lies in the classifier
design. Within this, the incorporation of BSS techniques was proposed with the hope to
improve the feature extraction process. To address this task into an intercity context, the
mixing process can be modelled according to the scheme of Fig. 1, where s;(n) is the signal
associated with the vehicle to be classified.

Channel
Mixing
8,(n) »| N, n) x,(n)
(7 o
: Additive Noise
> h', ()
€.(n)
s,(n) hlom(N) o @ x,(n)

Fig. 1. BSS model of convolutive mixture for the problem of classification of traffic noise on
intercity roads.

The goal will be to extract the feature vector of an event whose signal is hidden in mixture
where overlapping events are present. The extraction of the signal s; itself does not help,
because this signal carries information associated to other events. It is therefore necessary
to find another way to extract this features vector by means of the discriminative information
associated with the event to be classified. So, it is proposed to express this information through
the acquired mixture as sé (n) = T;(x(n)). Thus, the problem to be solved consists in finding

¢i =i, .-, (Pid]T, by means of

1) = (gu(n),.. gia(), (1)
for wich the BSS problem can be expressed as
@i(n) = ¢(s;(n) = p(Ti(x(n)) = ¢(T;([H(z)]s(n) + e(n))). (12)

As the reader can see, the BSS sources in its classical form remain hidden. For this reason, we
have named this new BSS problem as Blind Implicit Source Separation (BISS). To solve it, the
sources definition handled in Fig. 1 is thus no longer valid.
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3.1 Dimensionality reduction

One of the typical problems that appear in pattern recognition is the need to reduce the
dimensionality of the feature space. For this task both, Principal Component Analysis (PCA)
and Independent Component Analysis (ICA), are the most usual techniques employed. The
performance obtained, however, may be different according to the problem to be solved. As
it will be seen through this section, the explanation lies in the way that both techniques are
applied.

An overview of the original feature space shows in general the existence of values that do
not efficiently contribute to the extraction of discriminative information for classification
purposes. Under this assumption, for years a large number of techniques has been
developed (Fodor, 2002). The goal is to reduce the dimensionality of the original problem,
while minimising the possible loss of information related with this process. Most are
based on the search of subspaces with better discriminative directions to project the data
(Friedman & Tukey, 1974). This projection process involves a loss of information. So a
compromise solution is achieved by means of a cost function. There are research works
(Huber, 1985), however, which prove that the new subspaces show a higher noise immunity.
Furthermore, it is achieved a better capability to filter features with a low discriminative
power. So, it results in a better estimation of the density functions (Friedman et al., 1984).

But there are two issues that must be taken into account and that are closely related to the
transformations to be used at this stage. First, outliers will be added due to the high variability
of the patterns to classify, so an increase of between-class overlap inevitably will occur. Thus,
this issue leads to a degradation in the classifier performance. Furthermore, the choice of a
suitable rotation of the original data will allow a better view of the discriminative information,
as it is shown in Fig. 2. So, it will be very important to find those transformations that
contribute to both, a best definition of the between-class boundaries and a best clustering
of the within-class information.

(a) (b)

Fig. 2. Example of projection pursuit. Set of projection directions achieved by means of a
wrong geometric rotation (a). Set of projection directions achieved by means of an accurate
geometric rotation (b).

Most of the techniques developed for dimensionality reduction are based on the assumption
of normality of the original data. For these, it is also shown that most of the projections
in problems of high dimensionality allow to achieve transformed data with a statistical
distribution that can be considered approximately normal. Among them, a technique of
proven effectiveness is PCA (Fukunaga, 1990).
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In certain cases, however, PCA may not provide the best directions for projecting the data, as
it is shown in Fig. 3. (b). Moreover, this technique limits the analysis to second order statistics
so that, for features with a certain degree of statistical dependence between them, ICA
(Hyvdérinen et al., 2001) will be more suitable. In this technique, the search of independence
between components is the basis for the projection directions pursuit, so it can be considered
as a dimensionality reduction technique, and therefore an alternative to PCA.

(p1 & ocgoo (p1
§ g 2 oo g
2 1 %20 o .
[o) o
N® o 00R0 o0 ¢
o p [0) o q° fox) [0)
00 2 .'.:.o 2

(a) (b)

Fig. 3. Example of PCA projection. One class (a). Two classes (b): accurate direction (left),
and wrong direction (right).

ICA application, however, is subject to two major restrictions:

1. The assumption of independence of the data is a stronger condition than the assumption
of incorrelation, so the conditions for ICA application are more restrictive compared with
PCA.

2. The data must show a non-Gaussian distribution, so ICA is not applicable to normal
populations, as it occurs with the space of features studied here.

The traffic noise signal verifies the two previous hypotheses: the samples may be considered
independent, because being acquired at different times and have different sources spatial
location. Furthermore, these samples follow a non-Gaussian distribution, as it is shown in
(Mato-Méndez & Sobreira-Seoane, 2008b). Although the extraction of features can be made
by using only one sensor, the assumptions handled are the following:

1. For isolated pass-bys, the acquired signal is the result of the combination of both, the signal
associated with the vehicle and the background noise.

2. For combined pass-bys, the problem becomes more complex because adding energy
associated with other vehicles to the signal associated with the vehicle intended to be
classified.

3. The removal of this residual information by source separation techniques would improve
the extraction process.

So why not apply this technique to the acquired signal?.

3.2ICA approach

Taking in mind the ideas described into the previous section, the application of ICA
is proposed within a first research work (Mato-Méndez & Sobreira-Seoane, 2008a). This
application is carried out by transforming the convolutive problem, which follows the model
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in Fig. 1, into a linear problem. This transformation is achieved by performing a set of
synthetic mixtures by means of the signal acquired. At this point, the reader must remember
that the goal is to obtain a higher separability degree of the extracted features. It is not
therefore the extraction of the signals associated with the vehicles involved within the mixture
process. From this point of view, the transformation carried out is accurate. Thus, the problem
to solve now is to find ¢; = [¢;1,..., Pi4]’, an estimation of ¢;, by applying ICA to the new
mixture performed X.

In ICA, the separation is conducted by estimating the mixing matrix which minimises the
statistical dependence between components of the original signals. To apply it, at most only
one source can show a Gaussian distribution. Besides, once the number of sources is known,
it is necessary to get at least an equal number of mixtures. For the linear case, the process
of extracting the independent components match with solving the blind source separation
problem. Under these hypothesis, the mathematical approach of the mixture can be expressed
as

ail ... alp
(X1 (n),...,%m(n)]" ~ [sl(n),...,sp(n)]T. (13)
Am1 --- Amp

The convolutive problem can be therefore expressed by means of a linear system of m mixture
equations with p unknowns, X ~ A - S, where A represents the mixing matrix, and S and X
are the vectors of sources and observations respectively. The solution for the linear problem
is then conducted by finding the separation matrix B, which is an estimate of the inverse of
the mixture matrix A. Although the uniqueness for the solution does not exist from a strict
mathematical approach, regarding the independence of the extracted signals this uniqueness
can be achieved (Cao & Liu, 1996). In this sense, to ensure the separability of the sources it is
sufficient with applying a set of conditions before proceed:

1. The separation process is feasible if the linear function associated with the mixture is
bijective, i.e., the regularity of the mixing matrix is needed to be able of estimate B.

2. Regarding the independence of the sources, if p — 1 sources shows a non-Gaussian
distribution, the independence of pairs of the extracted components is ensured. As result,
the possibility of separating the original sources is also ensured.

3. The combined presence of Gaussian and non-Gaussian sources at the time of the mixture
will allow the separation of the last ones. This separation will be impossible, however, for
the first ones.

Under the above assumptions, an estimation of both unknowns, the coefficients of the matrix
A and the values of the vector s, can therefore be achieved. Although the independence
between the recovered sources is ensured in this way, there still exist two unsolved problems
in calculating the solution: the uncertainty associated with the energy of the signals obtained,
and the uncertainty on the order that they appear. Despite these two uncertainties, ICA proves
the existence of uniqueness solving the BSS problem. Furthermore, the existence of these two
uncertainties is not an inconvenience for classification purposes.

The process is conducted in two steps. In a first stage, the orthogonal projection of the
input mixtures is performed by means of a decorrrelation process. This stage therefore
simplifies the solution to a data rotation. Thus, the separation matrix can be factorized
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as B = R-W, being W a whitening matrix and R a rotation matrix. The whitening
process is started by subtracting the mean from the samples. After this, it concludes by
applying an orthonormalization process on the centred samples by means of the Singular
Value Decomposition (SVD). Proceeding as above, the covariance matrix & = E[s(n) - s (n)]
match with the identity matrix. It is true that the study of second order statistics, and more
specifically the analysis provided by the decorrelation, allows to carry out a whitening of the
samples. This is, however, a necessary but not sufficient condition to ensure the independence
of the samples. The difficulty lies in the uncertainty introduced by their possible rotation. This
is the reason why, at most, only one of the original sources may show a Gaussian distribution.
If this condition is not ensured, the separation of two Gaussian sources is not possible. It is
due because the joint distribution for these sources will show a circular symmetry.

Among the wide set of ICA-based algorithms, the developed by Aapo Hyvérinen (Hyvarinen,
1999) is used in (Mato-Méndez & Sobreira-Seoane, 2008a;b) due to its excellent relationship
between quality and computational cost. Also known as FastICA, this algorithm in fixed point
use both statistics, the kurtosis and negentropy, as non-gaussianity criteria. The decorrelation
process is performed by applying on X the SVD decomposition, widely used in data mining.
The idea of this decomposition method was first raised by Carl Eckart and Gale Young in 1936
(Eckart & Young, 1936), by approximating a rectangular matrix by another of lower rank. It
was not until 1980, however, that a computational version was proposed by Virginia C. Klema
and Alan J. Laub (Klema & Laub, 1980). This new version allowed to discover its performance
in solving complex problems. SVD decomposition makes possible to detect and to sort the
projection directions that contain the values of higher variance, by means of the use of two
square matrices containing the singular vectors. Thus, the dimensionality reduction can be
achieved by means of SVD, allowing to find subspaces that best approximate the original

data. By applying SVD on X, this matrix can be expressed as X ~ UA% VT ie.,

xl...f{l Uy ... u 1 n

=3

U] ... 0f
~ oot <\/K0> oL (14)
oo ul oull ol .. 0!

where

VAL 0
VA = . (15)
0 VA

Fig. 4 graphically shows the changes that take place for a two-dimensional case. The
left-multiplication by VT allows to transform both vectors, v; and v, showed in Fig. 4 (a),
to the unit vectors of Fig. 4 (b). After this step, these vectors are scaled by the product of the
covariance matrix X, by transforming the unit circle into an ellipse of axes ¢1I7 and 0,1, as it
is showed in Fig. 4 (c). Finally, the right-multiplication by the matrix U leads to a new rotation
of the axes and the consequent rotation of the resulting ellipse of Fig. 4 (c) to its final position
showed in Fig. 4 (d).

Thus, the whitening matrix can be expressed as

—1 -
w=vi~aAz UTX (16)
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Fig. 4. Graphical evolution for the four steps involved in the SVD decomposition for a
two-dimensional case.

Finally, after obtaining the matrix R by finding a non-normal orthogonal projection, a
estimation of the sources can be achieved by means of S = RW. Taking into account that
both, U and V, are unitary matrices, and that the remaining m — r eigenvalues are null, the
singular value decomposition of the matrix X allows to express Eq. (14) as

=1 =1
xl o .. xl r

~ Z \/)\kukvE, (17)
o)

where {A1,...,A,} is the set of singular eigenvalues of X. A suitable approximation for this
matrix can be achieved therefore by means of

. b
X =Y Vv, (18)
k=1
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after removal the r — b values, whose contribution can be neglected. This approximation is
optimal for the Frobenius norm (Srebro, 2004), being equivalent to the Euclidean norm for
this case. The error is thus limited to

E {Hx-i szii A (19)

3.3 Discussion

The method applied allows to improve the classification results. This improvement is due
to the previous remotion of energy that is not related with the event that is being processed.
The separability degree of the extracted features, however, is suboptimal because of various
causes analysed by us, and which are summarised as follows:

¢ Under ICA assumptions, its application on the acquired signal will always result in
a set of independent components. But, are these components related with the event
to be classified?. For isolated pass-bys, the generated signal follows a sources model
much more complex that the used in Fig. 1. In this case, the traffic signal is generated
from a set {01,...,04} of g sources of noise, by combining the signals associated with
each one of them. Discriminative information associated with each of these sources is
therefore masked within this process. This situation is worst when considering combined
pass-bys generated from a set {sj,...,s,} of pisolated pass-bys. Regarding discriminative
information, the goal is to obtain a features vector that maximises the between-class
separation, while minimising the within-class dispersion. In this sense, the features vector
obtained by applying ICA on the acquired signal is not optimal. The trouble lies in that
the extracted features contain a mix of information generated by several sources within
the set {01,...,04}. The reader should notice how the extraction of this information from
the resulting coloured noise signal becomes a much more complex task for BSS theory.
The situation becomes more complicated if a feature selection process is incorporated. The
added complexity lies in how the extracted components are selected to be a part of the new
calculated subspaces.

* On one hand, ICA is highly dependent on the values of skewness and kurtosis shown
by the distributions associated with the signals to be separated. In this sense, PCA is
most suitable to address the problem of dimensionality reduction of the feature space. By
other hand, although ICA and PCA provide similar benefits for this purpose, PCA used
alone can not be considered as a sources separation technique. Therefore, PCA must be
combined with BSS for both purposes.

¢ From a classification point of view both, the distances and angles of the input values, are
altered because the whitening process carried out by ICA. This fact contributes to increase
the within-class dispersion resulting in a greater uncertainty on the separation boundaries.
This dispersion will become even greater with the presence of outliers, for which ICA is
fully vulnerable.

* The acquired signal can be considered approximately stationary for short time intervals,
lower than 180 ms (Cevher et al., 2009). To process these type of signals, it is usual to
use a HMM model, as in speech processing occurs. Thus, HMM provides a suitable
model to extract hidden temporal information. This model is not supported by ICA,
because the time dependence is removed by considering the matrix X as a set of iid
random variables. Moreover, some discriminant information remains hidden in frequency.



334 Independent Component Analysis for Audio and Biosignal Applications

Therefore, because these two reasons, a T-F domain is most suitable for the BSS process
to apply. Finally, the linear model used to solve this BISS problem is suboptimal. The
application of BSS on a convolutive mixture model can better exploit the information
acquired by the sensor network.

The search for a successful solution that supports these ideas leads to the BISS-PCA method
described below.

3.4 BISS-PCA method

To better address the solution, therefore, the first step is to express the mixture model
as a function of the noise sources {01,...,05}. This new expression can be achieved by
reformulating Eq. (12) by means of the mixture model of Fig. 5.

Channel
Mixing

Sources
Model

Y

Additive Noise

Fig. 5. Suitable BSS model of convolutive mixture for the problem of classification of traffic
noise on intercity roads.

For this more suitable model, the signal provided by the j — th sensor can be expressed in
terms of the sources set {sy,...,s,} as

p
;; 1] TZ— )+€]( ) (20)

where r is the order of the FIR filter that models the mixture. The signal s; is in turn generated
by the noise sources set {01,...,04}. This last one can be characterised as an instantaneous
mixture, after applying a far-field approximation. This is a valid approximation, given that
the distances between the sources {o, ..., oq} are much smaller than the distance from this
set to the sensors network. So, Eq. (20) can be expressed as

P r—1
=Yy Y u Z Hop(n — k) + €j(n), (21)
i=1k=0
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where ] indicates the contributions of the noise source oj, on the signal s;. Thus, the above
expression can be reordered as

q9 7 r—1
xj(n) = bZ: Z%hf.‘ék hi-‘job(n —k) +¢j(n). (22)
—1i= ~0

This last equation already allows to express the BISS problem as a function of {0y,...,04}. To
do this, since the goal is to extract a feature vector closest to the noise sources related with the
event to be classified, this vector will be different from Eq. (11). With this consideration, the
BISS problem consists in finding {; = [{;1, - - , (], by solving

Gi(n) = ¢(0p(n)) = ¢(Ti(x(n))) = L(T;(HY[H(z)]o(n) + e(n))). (23)

To achieve a better solution, it is proposed to carry out the features projection on
subspaces closer to the sources {o0y,...,05}, by means of a three-stage strategy (see
(Mato-Méndez & Sobreira-Seoane, 2011) for more detail). The first stage deals with the
segmentation of the acquired signal, by selecting a fragment of signal centred in the event to
classify. For finding discriminative information nearest to these sources, an abstracted features
vector ¢; = [Yi1, Yo, - -, Yif] T is extracted after removing energy unrelated to the event into
a T-F domain by adapting the technique proposed in (Rickard et al., 2001). The last step deals
with the suppression of possible correlation between the components of ; by projecting them
on the directions of maximum variance. This goal can be efficiently achieved by means of
the Karhunen-Loeve Transformation (KLT) transformation. It was originally proposed by Kari
Karhunen y Michel Loeve (Karhunen, 1946; Loeve, 1945) as a method of development in series
for continuous random processes. Widely used in signal processing, it is commonly applied
in pattern recognition by means of the linear transformation {; = A;’ ¢;. The goal is to obtain
the values of the matrix A; verifying that R¢, is diagonal. Thus,

Ry, = E[7:0;"] = E[Aipi(Aigpi)T] = AE[piT|A;T = ARy, AT (24)

It is sufficient with assign to the columns of the matrix A; the eigenvectors of the matrix Ry,.
So that an orthogonal basis can be achieved by means of them, because Ry, is a symmetric

matrix. It is achieved thus that Ry, = A;, diagonal matrix formed by the eigenvalues L of Ry,

Although PCA (Fukunaga, 1990; Jackson, 1991) is usually identified as the same technique,
it differs in the calculation components of the matrix A; when applying the transform KLT.
In this case, columns of the matrix A; are matched with the eigenvectors of the covariance
matrix of ;. The calculation is performed by obtaining each component so as to maximise
the variance of the dataset

f
G =Y aplvi=1,..f, (25)
k=1

2
under the restriction E ”i‘(l =1,VI =1,...,f. Before proceed it is necessary to achieve
k=1
a set of data having zero mean. So that centring the data by means of a mean estimator is
previously needed. After this adjust, the estimation of the covariance matrix will match the

autocorrelation matrix, so that Ly, = Ry, = E {wip;"}. Thus both, the set of eigenvalues

! The set of eigenvalues of the matrix A; also be positive because Ry, is a positive definite matrix.



336 Independent Component Analysis for Audio and Biosignal Applications

{Ai1, ..., Aig} and the set of associated eigenvectors {a;1,...,4;s} can be easily calculated. In
this way we achieve to project the original data on the new subspace obtained, by means of
Ci = a)py, Y1 =1,...,f. Its variance will then given by agﬂ = E[(3] — E*[Cq] = E[C3] = Au,
being also verified that

f f
D Elwil = 3 A (26)
I=1 I=1
Once the eigenvalues are sorted in descending order of weight, the d eigenvectors
corresponding with the d major eigenvalues are chosen. These eigenvectors are the ones which
define the set of “Principal Components”.

This strategy allows to reduce the dimensionality of the features space by projecting the
original data on the directions of maximum variance, as it is shown in Fig. (3). (a). This
is made while minimising the cost in loss of information associated with the process: taking
into account that A; is an orthogonal matrix, ¢; can be expressed as

f
i =Aili =) Cyay, (27)
=1
and ; as
d
$i =) Cuaq. (28)
=1
The error is limited to
. f p 2 f 2
E [H‘I’i — i } =E |||} Cuaq— Y Caay| | =E || Y. Qi (29)
=1 =1 I=d+1
Substituting the values of {;; by {;; = aiTl Yy, V1=d+1,...,f,itis easily obtained that
o f . . f . f
E [Hll’i — il } = Y apElpiwilag = ) ajrgag =) Ay (30)
I=d+1 I=d+1 I=d+1

Then it follows from the above expression how the loss of residual information is minimised,
in an optimal way, according to the least squares criterion.

4. Advances

The BSS-PCA algorithm summarises the concepts addressed through this chapter. This
algorithm shows an accuracy of 94.83 % in traffic noise classification, drastically improving
results achieved before. In addition, BSS-PCA allows to obtain a substantial reduction in
uncertainty assigned by CNOSSOS-EU to this task for the prediction of the noise level
emitted by traffic road. This uncertainty is calculated by considering most usual methods
in vehicle counts. A full analysis on the benefits of this classifier can be found in
(Mato-Méndez & Sobreira-Seoane, 2011).

The BISS-PCA method has been recently extended into a new research work. A new technique
has been developed, achieving greater discriminative capability for a different set of features
that the one used by BISS-PCA. Fig. 6 shows an example of the discriminative capability
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Fig. 6. Improvements (figures (b), (d), and (f)) in the separation boundaries for following

vehicle classes: motorcycles (figures (a) and (b)), and cars (figures (c)-(f)).
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analysed before (figures (a), (c) and (e)) and after (figures (b), (d) and (f)) applying this new
technique. By means of this example, we want to show the effect of this technique over one
feature (SR) working alone and combined with another feature (MFCCj3 or SBERy). These
three features are fully described in the work cited above. It can be observed (figure (a)) how
SR shows no between-class discriminative capability for the motorcycle class. After applying
the new technique, however, a decision boundary appears. This fact allows now be able to
discriminate between two classes (figure (b)). By other hand, the discriminative capability
of an isolated feature is generally lower than shown by one subset of the features vector.
Figures (c) and (d) correspond to cars class, for which SR is applied in combination with
MEFCCs3. It can be observed how the new technique improves the separability degree for this
combination of features. Finally, a suitable selection (SR combined with SBER,) leads to a
better discrimination of all classes considered (motorcycles, cars and trucks). An example of
this is shown in figures (e) and (f) for cars class. The separability between this class and both,
motorcycle class and truck class, is clearly improved after applying this new technique (figure

(£).

5. Conclusions

The application of the existing BSS techniques requires a thorough study of the problem to
solve. In many cases, however, the BSS problem is simplified by identifying its mixture model.
The first part of this chapter has been devoted to review this issue, which has allowed better
understand the need for additional information about the problem to be solved. After it, a new
BSS problem has been introduced and discussed. This problem appears in situations for which
the variables to extract are presented as implicit functions of the original sources. For this
reason, we have named this new problem as Blind Implicit Source Separation (BISS). Achieving
a solution becomes a specially complex task when the original sources are identified with
noise sources. In these cases, the sources models used in BSS are no longer valid and the
separation problem needs to be reformulated. Throughout this chapter, a full characterisation
for the BISS problem has been presented.

An example of BISS problem occurs for the classification of traffic noise. Through the chapter,
a detailed description about it within an intercity context has been given. To solve it, a first
approximation has been proposed, by applying ICA to synthetic mixtures obtained from the
signal acquired by a sensor network. After a results analysis, however, it has been shown how
ICA does not optimally solves this problem.

After this, a thorough study on how better solve the BISS problem is conducted. As result,
a novel feature extraction technique has been then introduced. This technique is used
in embedded form by the BSS-PCA classifier developed (Mato-Méndez & Sobreira-Seoane,
2011). Its excellent performance lies in its conception, robustly solving the BISS problem.
Unlike other methods described in the state of the art in pattern recognition, this algorithm
combines the use of both, an abstracted features vector and the application of BSS on the
acquired signal. The compact design of this technique gives rise to the BISS-PCA method
that has been introduced in this chapter. It has been explained how this method allows the
extraction of discriminative information from the set of original noise sources. Unlike ICA, for
which this information remains masked, this new technique allows emerge it. The features
space therefore wins in resolution while a dimensionality reduction is performed.

Detected by us in pattern recognition problems, the new BISS concept opens an interesting
multidisciplinary research field. This new approach allows to optimise the extraction of
discriminative information that otherwise remains hidden. For classification purposes, the
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BISS-PCA method introduced in this chapter can be extended to other application contexts.
This work has been addressed in a recent research. As a result, a new technique solving
the BISS problem has been achieved, allowing a highest resolution on the between-class
boundaries for a different set of features that the one used by BISS-PCA. An example of the
improvements has been shown at the end of this chapter. The results of this new research
work are expected to appear soon published, so the reader is invited from this moment to
have a look.
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