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1. Introduction

For speech applications, blind source separation provides an efficient strategy to enhance the
target signal and to reduce the background noise in a noisy environment. Most ICA-based
blind source separation (BSS) algorithms are designed under the assumption that the target
and interfering signals are spatially located. When the number of interfering signals is small,
one of the BSS outputs is expected to provide an excellent estimation of the target signal.
Hence, the overall algorithm behaves as an "ideal" noise-reduction algorithm. However,
when the number of interfering signals increases, problem known as the cocktail party effect,
or when the background noise is diffusive (i.e., non-point-source noise), this BSS output is
no longer a good estimation of the target signal. (Takahashi et al., 2009) showed that in
a two-output ICA-based BSS algorithm under these adverse environments, one BSS output
includes a mixture of the target signal and residual noise related to the interfering signals,
while the other output provides an accurate estimation of the background noise. This
particular property validates the experimental results achieved by different post processing
strategies to enhance the BSS output associated to the target signal (Noohi & Kahaei, 2010;
Parikh et al., 2010; Parikh & Anderson, 2011; Park et al., 2006). These methods are based on
Wiener filtering (Kocinski, 2008; Noohi & Kahaei, 2010; Park et al., 2006), spectral subtraction
(Kocinski, 2008), least-square (LS) minimization (Parikh et al., 2010), and perceptual post
processing (Parikh & Anderson, 2011). All these methods take advantage of a reliable
background noise estimator obtained at one of the BSS outputs.

The above BSS-based noise-reduction methods provide a single output, which means that the
direction of arrival of the target signal (also known as binaural cue or localization cue) is lost
in the enhanced signal. There are some applications such as the new generation of hearing
aids, called binaural hearing aids, which demands noise-reduction algorithms that preserve
localization cues. These binaural hearing aids are targeted for hearing-impaired people who
suffer from hearing losses at both ears. A binaural hearing aid consists of two hearing devices,
one per each ear, and a wireless link to exchange information between both hearing devices.
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This wireless link can be used to synchronize the processing performed by both hearing aids
or to exchange the signals received at each side. The latter allows the use of multi-microphone
noise-reduction algorithms such as BSS-based noise reduction algorithms. The perceptual
advantages of a binaural processing over independent non-synchronized hearing aids have
been extensively documented by (Moore, 2007; Smith et al., 2008; Van den Bogaert et al., 2006).
These perceptual studies showed subject preference for those algorithms that preserve the
direction of arrival (localization cues) of the target and interfering signals. Hence, this chapter
addresses the problem about the preservation of the localization cues in noise-reduction
algorithms based on BSS, whose main target application is a binaural hearing aid.

This chapter includes an overview of the state-of-the-art BSS-based noise-reduction
algorithms that preserve localization cues. This overview describes in detail five BSS
algorithms to recover the localization cues: BSS constrained optimization (Aichner et al.,
2007; Takatani et al., 2005), spatial-placement filter (Wehr et al., 2008; 2006), post processing
based on adaptive filters (Aichner et al., 2007), post processing based on a Wiener filter (Reindl
et al., 2010), and perceptually-inspired post processing (Marin-Hurtado et al., 2011; 2012). This
chapter also discusses the advantages and limitations of each method, and presents the results
of a comparative study conducted under different kinds of simple and adverse scenarios:
multi-talker scenario, diffusive noise, babble noise. Performance of these algorithms is
evaluated in terms of signal-to-noise ratio (SNR) improvement, subjective sound quality, and
computational cost. The comparative study concludes that the perceptually-inspired post
processing outperforms the adaptive-filter-based and the Wiener-filter-based post processing
in terms of SNR improvement, noise reduction, and computational cost. Therefore, the
perceptually-inspired post processing is outlined as a good candidate for the implementation
of a binaural hearing aid. A discussion about the proposed future work and improvements in
the proposed methods are also addressed at the end of this chapter.

2. The problem of preservation of localization cues in blind source separation

This section presents a general overview of a blind source separation (BSS) process, and its
problem with respect to the spatial placement of the separated sources in the output of the
BSS algorithm.

Suppose a BSS system with P sensors. In the frequency domain, a source signal s1(ω) is
perceived at the sensor array as

x(ω) =

⎡

⎢

⎣

x1(ω)
...

xP(ω)

⎤

⎥

⎦
= h1(ω)s1(ω) (1)

where xp(ω), p = 1, ..., P, are the signals at each sensor, and h1(ω) is a vector that describes
the propagation from the point source to each sensor. In particular for a hearing aid with
one microphone per hearing device, i.e., P = 2, this vector is called the head-related transfer
function (HRTF). In a binaural system, the preservation of these HRTFs is critical since they
provide information to the human auditory system about the direction of arrival of the target
signals.
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When Q sources are present in the environment, the input vector x(ω) at the sensor array is
given by

x(ω) =
Q

∑
q=1

hq(ω)sq(ω) =

⎡

⎢

⎣

h11(ω) · · · h1Q(ω)
...

. . .
...

hP1(ω) · · · hPQ(ω)

⎤

⎥

⎦

⎡

⎢

⎣

s1(ω)
...

sQ(ω)

⎤

⎥

⎦
= H(ω)s(ω), (2)

where H(ω) = [h1(ω) · · ·hQ(ω)], is called the mixing matrix, and the vector s(ω) holds the
frequency components of each source signal. For BSS-based noise-reduction applications, the
source s1 is typically assigned to the target signal, and the sources sq, q = 2, . . . , Q, are related
to the interfering signals.

The purpose of any blind source separation algorithm is to recover the source signals sq(ω)
from the mixture x(ω) by means of a linear operation denoted by the unmixing matrix W (ω),

y(ω) =

⎡

⎢

⎣

y1(ω)
...

yP(ω)

⎤

⎥

⎦
=

⎡

⎢

⎣

w11(ω) · · · w1Q(ω)
...

. . .
...

wP1(ω) · · · wPQ(ω)

⎤

⎥

⎦

⎡

⎢

⎣

x1(ω)
...

xP(ω)

⎤

⎥

⎦
= W (ω)x(ω), (3)

where the elements of the matrix W (ω) denote FIR filters designed to separate the source
signals (Fig. 1). These filter weights are designed by an optimization process, where
the minimization of the mutual information between the source signals is one of the most
successful methods to derive these filter weights (Haykin, 2000). This chapter does not include
a detailed description about the methods to estimate the unmixing matrix W , except those to
recover the localization cues in the BSS filter (Section 3.1).

The whole process can be described by

y(ω) = W (ω)H(ω)s(ω) = C(ω)s(ω), (4)

where C(ω) = W (ω)H(ω). When the number of the sources and sensors is identical, i.e.,
P = Q, the problem is well-posed, and the matrix C(ω) becomes diagonal. In this case,
y(ω) ≈ s(ω) or equivalently yp(ω) = ŝp(ω), p = 1, . . . , P, and ŝp(ω) is an estimate of the
source signal. Hence, the localization cues of each source signal are lost after the blind source
separation. For example, if a binaural hearing aid with one microphone per hearing device,
i.e., P = 2, is used to cancel out the interfering signal in an environment with one target
and one interfering signal, i.e., Q = 2, the BSS outputs are expected to be y1(ω) = ŝ1(ω)
and y2(ω) = ŝ2(ω). Then, the output y1(ω) holds an estimate of the target signal. If the
signal y1(ω) is applied simultaneously to the left and the right ear, the signal is heard coming
always from the front. To avoid this issue, a spatial placement of the estimate ŝ1 is required at
the output of the entire process. This recovery of the localization cues is described by

z(ω) =

[

z1(ω)
z2(ω)

]

= h1(ω)ŝ1(ω) (5)

where z1 and z2 are the signals to deliver to the left and right channel, respectively, and h1

denotes the HRTF for the target signal. The above process can be performed by different
approaches. A first approach is to modify the derivation of the BSS filter weights, W̃ , such
as the output of the BSS algorithm, z(ω) = W̃ (ω)H(ω)s(ω) is constrained to be z(ω) ≈

211
Preservation of Localization Cues in BSS-Based Noise Reduction: 
Application in Binaural Hearing Aids



4 Will-be-set-by-IN-TECH

Fig. 1. General description of the blind source separation process for P �= Q (top); and
two-sources and two-sensors P = Q = 2 (bottom).

h1(ω)s1(ω). These methods are discussed in the Section 3.1. Another approach, is to use a
BSS post processing such as the output y1(ω) is placed spatially by means of a filter b(ω) such
as

z(ω) = b(ω)y1(ω) (6)

that ensures the fulfillment of the condition (5). This filter, called spatial-placement filter, is
addressed in the Section 3.2. Another approach to recover the localization cues is to estimate
a set of noise-suppression gains from the BSS outputs, and to apply these noise-suppression
gains to the unprocessed signals. These methods are presented in the Sections 3.3 through
3.5, and are shown to provide more advantages than the BSS constrained optimization or the
spatial-placement filter.

Up to this point the problem about recovery of the localization cues has been discussed for the
case when P = Q but in many practical applications, such as noise reduction, this condition
cannot be met in adverse environments. In these environments, the number of interfering
signals is larger than the number of sources, Q > P. This situation, called the undetermined
case, leads to an ill-conditioned problem. Although the performance of the BSS algorithm
is degraded for an undetermined case, the strategies to recover the localization cues in the
undetermined case are exactly the same as described above. The main difference between
both cases is regarding to the preservation of the localization cues for the interfering signals.
These issues are described in detail in the next section.

3. BSS-based binaural noise-reduction algorithms

Most BSS algorithms are designed to support more than two sensors. As a general rule,
increasing the number of sensors can separate more interfering sources but at expenses of
increasing the computational complexity. In speech enhancement applications, for some
adverse environments, the number of interfering signals is typically larger than the number of
sources, Q > P, or even worse, the interfering signals are non-point noise sources, e.g., babble
noise. Hence, increasing the number of sensors cannot improve significantly the quality of
the source separation performed by the BSS algorithm. For this reason, a wide range of
BSS-based speech enhancement algorithms are proposed for two-output BSS systems. Using
two-output BSS algorithms provides additional advantages for some applications such as
binaural hearing aids since the computational complexity and the wireless-link bandwidth
can be reduced.

212 Independent Component Analysis for Audio and Biosignal Applications



Preservation of Localization Cues in BSS-Based Noise Reduction: Application in Binaural Hearing Aids 5

When two-output BSS algorithms are used in noise-reduction applications, the primary
BSS output provides an estimate of the target signal, and the secondary BSS output, an
estimate of the interfering signals. However, the estimate of the target signal does not
provide information about the direction of arrival, and additional strategies are required
to recover these localization cues. The approaches proposed in (Takatani et al., 2005) and
(Aichner et al., 2007) employ a constrained optimization to derive the BSS filter weights.
Unfortunately, these methods have shown a poor performance based on subjective tests
(Aichner et al., 2007). More recent approaches use a BSS post processing stage to recover
the localization cues and to enhance the target signal (Aichner et al., 2007; Marin-Hurtado
et al., 2011; Reindl et al., 2010; Wehr et al., 2006). In these post-processing methods, the BSS
outputs are used to compute noise-suppression gains that enhance the target signal. These
post-processing methods have shown to be successful in the recovery of the localization cues
and the reduction of the background noise, which is explained by the theoretical analysis
conducted in (Takahashi et al., 2009) for two-output ICA-based BSS algorithms. In (Takahashi
et al., 2009), authors showed that the estimate of the interfering signals is close to the true
value whereas the estimate of the target signal includes a large amount of residual noise.
Hence, when the estimate of the interfering signals is used in the post processing stage to
compute the noise-suppression gains, the background noise can be significantly reduced.

In the BSS post-processing methods, depending on how these noise-suppression gains are
applied to obtain the enhanced signal, it is possible to distinguish two groups. In the first
group, these gains are applied to enhance the BSS output corresponding to the estimate
of the target signal (Fig. 2a). In the second group, these gains are applied directly to the
unprocessed signals (Fig. 2b). In BSS-based binaural speech enhancement applications, these
noise-suppression gains are used not only to enhance the speech signal but also to recover the
direction of arrival (or localization cues) of the speech signal. Although both groups of post
processing are successful to recover the localization cues of the target signal, experimental
and theoretical analysis show that the first group, in which BSS noise-suppression gains are
applied to the BSS outputs, cannot recover the localization cues for the interfering signals
(Aichner et al., 2007; Marin-Hurtado et al., 2012; Reindl et al., 2010; Wehr et al., 2008). In this
case, the interfering signals are usually mapped to the direction of arrival of the target signal.
This effect is not a desirable feature for binaural hearing aids, in which the displacement of
the localization cues is identified as annoying through perceptual experiments (Moore, 2007;
Smith et al., 2008; Sockalingam et al., 2009). On the other hand, the BSS post-processing
methods that apply the noise-reduction gains to the unprocessed signals are shown to be
successful in the recovery of the localization cues for both target and interfering signals
simultaneously (Marin-Hurtado et al., 2012; Reindl et al., 2010).

3.1 BSS constrained optimization

As mentioned in the Section 2, localization cues can be recovered by using a constrained
optimization in the derivation of the BSS filter weights, W̃ , such as the BSS output z(ω) =
W̃ (ω)H(ω)s(ω) is constrained to be z(ω) ≈ h1(ω)s1(ω), where s1 and h1 are the target
signal and its HRTF.

In (Takatani et al., 2005), authors proposed a BSS algorithm using the structure shown in Fig.
3, which uses a cost function that involves two terms,

J (n) = Jy(n) + βJỹ(n). (7)

213
Preservation of Localization Cues in BSS-Based Noise Reduction: 
Application in Binaural Hearing Aids



6 Will-be-set-by-IN-TECH

Fig. 2. BSS post processing to recover the localization cues: Post processing that enhances the
BSS output (top), and post processing that enhances the unprocessed signals (bottom).

The first term, Jy(n), is related to the classical source separation algorithms by minimization
of the mutual information between the output channels y1 and y2, y(n) = [y1(n) y2(n)]

T ,
and the second term, Jỹ(n), is the minimization of the mutual information between the
combination of the channels, ỹ(n) = [ỹ1(n) ỹ2(n)]

T ,

ỹ1(n) = x1(n − l)− y1(n)

ỹ2(n) = x2(n − l)− y2(n),

where l is a time delay to compensate the processing delay introduced by the unmixing
filters w, and the parameter β controls a trade-off between both cost functions. The cost
functions Jy(n) and Jỹ(n) are based on the statistical independence measurement given by
the Kullback-Leibler divergence (KLD) or relative entropy, (Takatani et al., 2005)

Jy(n) = E

{

log
p̂y,P(y(n))

∏
P
q=1 p̂y,1(yq(n))

}

(8)

and

Jỹ(n) = E

{

log
p̂y,P(ỹ(n))

∏
P
q=1 p̂y,1(ỹq(n))

}

(9)

where p̂y,P(.) is the estimate of the P-dimensional joint probability density function (pdf) of
all channels, p̂y,1(.) is the estimate of the the uni-variate pdfs, and E{.} is the expected value.

A disadvantage of the Takatani et al.’s method is the huge computational cost and the
slow convergence. An alternative solution proposed by (Aichner et al., 2007) replaces the
minimization of the mutual information of the combined channels, ỹ, by a minimization of
the minimum mean-square error (MMSE) of the localization cues,

J (n) = Jy(n) + γE ‖x(n − l)− y(n)‖2 , (10)

where Jy(n) is given by (8), γ is a trade-off parameter, and l is a time delay to compensate
the processing delay introduced by the BSS algorithm (Fig. 4). The rationale behind the above
method is that localization cues of the target signal in BSS inputs, x(n), must be kept in the
BSS outputs, y(n), which is equivalent to minimize the MMSE between the input and output.

214 Independent Component Analysis for Audio and Biosignal Applications
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Fig. 3. Block diagram of the BSS constrained optimization to recover the localization cues
proposed by (Takatani et al., 2005).

Fig. 4. Block diagram of the BSS constrained optimization to recover the localization cues
proposed by (Aichner et al., 2007).

Although the subjective test conducted in (Aichner et al., 2007) showed that both methods
can preserve the localization cues of the target signal, both methods cannot preserve the
localization cues of the suppressed interfering signals, and the interfering signals are heard
strongly distorted. In terms of noise reduction, the BSS constrained optimization method
proposed in (Aichner et al., 2007) provides better performance than (Takatani et al., 2005).

3.2 Post processing based on spatial-placement filter

The main disadvantage of the BSS constrained optimization algorithms is their high
computational cost. This issue can be solved by the spatial-placement filter introduced in
(6), Section 2. A block diagram of the spatial-placement filter is shown in Fig. 5. The
purpose of this filter is to recover the localization cues that are lost in the BSS output related
to the target signal. If the BSS output holding the estimate of the target signal is y1(ω), the
spatial-placement filter, b(ω), z(ω) = b(ω)y1(ω) must satisfy (5), i.e., in the ideal case,

b(ω)y1(ω) = h1(ω)s1(ω). (11)

According to (2), the HRTF h1(ω) corresponds to the first column of the mixing matrix H(ω),

h1(ω) = H(ω)e1 (12)

215
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Fig. 5. Block diagram of the spatial-placement filter to recover the localization cues.

with e1 = [1 0 ... 0]T . From (4),

H(ω) = W−1(ω)C(ω), (13)

Thus, replacing (12) and (13) in (11),

b(ω)y1(ω) = W−1(ω) [C(ω)e1s1(ω)] (14)

where the term in brackets C(ω)e1s1(ω) = W (ω)H(ω)e1s1(ω) = W (ω)h1(ω)s1(ω) is the
output of the BSS algorithm when only the target signal is present in the environment. In
other terms, the term in brackets becomes e1y1(ω). Thus,

b(ω) = W−1(ω)e1 (15)

or in other words, the coefficients of the spatial-placement filter correspond to the first column
of the inverse matrix W−1.

A practical implementation of (15) requires the regularization of the inverse matrix to avoid
an unstable algorithm. However, even using this regularization, the method in (15) is
impractical for the recovery of the localization cues (Wehr et al., 2006). For example, suppose
an environment with two sources, one target signal, s1, and one interfering signal, s2. In this
environment, the signals perceived in the sensor array are given by

x = h1s1 + h2s2 =

[

h11

h21

]

s1 +

[

h12

h22

]

s2 (16)

Hence, in an ideal binaural noise-reduction system, the spatial-placement filter is expected
to provide an output with structure similar as (16) but scaling down the term related to the
interfering signal.

If a two-output BSS algorithm is used to cancel out the interfering signal, the output of the
spatial-placement filter,

z(ω) = W−1(ω)e1y1(ω) = W−1(ω)e1

P

∑
j=1

c1jsj , (17)

is described in terms of the matrix elements cij and hij as

z =

[

h11

h21

]

s1 −
c21

c22

[

h12

h22

]

s1 +
c12

c11

[

h11

h21

]

s2 (18)
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where the above derivation used the facts that W−1(ω) = H(ω)C−1(ω), and C becomes a

diagonal matrix in the determined case, i.e., ‖c11c22‖
2 ≫ ‖c12c21‖

2. In the above equations,
the variable ω is omitted for mathematical convenience. In (18) is clear that the target signal,
s1, is mapped to the desired direction of arrival, h1s1 = [h11 h21]

Hs1. On the other hand, the
interfering signal, s2, is scaled by a factor c12/c11 but it is also mapped to the direction of
arrival of the target signal, which suggests that the localization cues for s2 are not preserved.
Another critical problem of this spatial-placement filter arises from the second term in (18).
This term suggests that the target signal, s1, is also mapped to the direction of arrival of the
interfering signal and scaled by a factor c21/c22.

To avoid the regularization of the inverse matrix W−1 and the mapping of the target signal
into the direction of arrival of the interfering signal, (Wehr et al., 2008; 2006) proposed to use
the adjoint of the mixing matrix, H , as unmixing matrix, i.e., W (ω) = adj {H(ω)}. Under
this assumption, the spatial-placement filter that satisfies (11) is given by

b(ω) = adj {W (ω)} e1 (19)

Then the output of the spatial-placement filter is given by

z(ω) = adj {W (ω)} e1

P

∑
j=1

c1jsj (20)

Again, for an environment with one target and one interfering signal, the output of the
spatial-placement filter of a two-output BSS algorithm is given by (Wehr et al., 2006)

z = det{W (ω)}

([

h11

h21

]

s1 +
c12

c11

[

h11

h21

]

s2

)

. (21)

This equation shows that localization cues of the target signal, s1, can be recovered correctly.
However, the localization cues of the interfering signal are lost since the interfering signal
is mapped to the direction of arrival of the target signal. The effect of this displacement in
the localization cues for the interfering signal was evaluated in (Aichner et al., 2007) by a
subjective test. Results showed that the post processing based on spatial-placement filter can
be outperformed by a post processing based on adaptive filter, which is discussed in the next
section.

3.3 Post processing based on adaptive filter

Up to this point the approaches discussed to recover the localization cues, BSS constrained
optimization and BSS post processing using spatial-placement filter, fail to recover the
localization cues of the interfering signals even under the determined case, i.e., when the
number of source signals and sensors is the same, P = Q. In these methods, the localization
cues of the interfering signals are usually mapped to the direction of arrival of the target signal.

To avoid the displacement of the localization cues for the interfering signals, different authors
have reported the use of noise-suppression gains applied to the unprocessed signals rather
than apply noise-suppression gains to the BSS outputs as in the spatial-placement filter. The
first approach proposed to recover efficiently the localization cues was reported by (Aichner
et al., 2007), which uses adaptive filters to cancel out the background noise. A block diagram
of the method proposed in (Aichner et al., 2007) is shown in Fig. 6. In this approach, a BSS
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Fig. 6. BSS post processing based on adaptive filters. In this figure y2 provides an estimate of
the interfering signals û(n).

algorithm provides an estimate of the interfering signals, û(n), and this estimate is used as
input for two adaptive filters, one for each side. The desired inputs for these adaptive filters
are the unprocessed signals at the left and right channel. Then, the error signals provide
enhanced signals in which the localization cues can be preserved.

This post processing can be used together any BSS algorithm. The original description of this
algorithm uses the BSS algorithm described in (Aichner et al., 2006). On the other hand, the
adaptive filters are designed in the DFT domain to minimize the time-averaged error (Aichner
et al., 2007):

JAF(n) = (1 − λ)
n

∑
i=0

λn−i
R−1

∑
k=0

∣

∣zp(k, i)
∣

∣

2
(22)

where zp(k, i), p ∈ {1, 2}, represents the DFT of the output of the algorithm at the frequency
bin k and time index i; 0 < λ < 1 is a forgetting factor; and R is the DFT length. The filter
coefficients derived from (22) are given by

bp(k, n) =
rux(k, n)

ruu(k, n)
(23)

where

rux(k, n) = λrux(k, n − 1) + xp(k, n) u(k, n)

ruu(k, n) = λruu(k, n − 1) + |u(k, n)|2 ;

xp(k, n) is the DFT of the input signal at the frequency bin k, time index n, and microphone p;
and u(k, n) is the DFT of the BSS output related to the interfering signals.

3.3.1 Limitations

In (Aichner et al., 2007), authors compared the BSS constrained optimizations given in (7)
and (10), the spatial-placement filter given in (20), and the post processing based on adaptive
filters given in (23), concluding that the post processing based on adaptive filters outperforms
the other methods and preserves efficiently the localization cues.

The experimental results of the Aichner’s study were conducted only for environments with
two sources. Further research identified some problems in the BSS post processing based
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on adaptive filters. In (Reindl et al., 2010), a theoretical analysis of the adaptive-filter-based
post processing shows that the noise reduction can be performed efficiently only under the
determined case, i.e., when P ≥ Q. In the undetermined case, P < Q, the noise reduction is
possible only if the interfering signals are located at the same position.

To show the above statements lets consider a two-input BSS algorithm. In this algorithm we
assume that the BSS output y2 holds the estimate of the interfering signals, û(ω) = y2(ω).
This estimate in the frequency domain is given by

û(ω) = w11(ω)x1(ω) + w21(ω)x2(ω) =
2

∑
p=1

wp1(ω)xp(ω). (24)

In the general case, xp(ω) is described by (2),

xp(ω) = eT
p

Q

∑
q=1

hq(ω)sq(ω) =
Q

∑
q=1

hpq(ω)sq(ω). (25)

Independent on the algorithm selected for the BSS algorithm, the target signal, s1, can be
assumed to be perfectly canceled out in û(ω), which is expressed through

û(ω) =
2

∑
p=1

wp1(ω)
Q

∑
q=2

hpq(ω)sq(ω) (26)

The output of the adaptive filters can be obtained by means of

zp(ω) = xp(ω)− bp(ω)û(ω) p ∈ {1, 2} . (27)

Thus, replacing (25) and (26) in (27),

zp(ω) = h1p(ω)s1(ω) +
Q

∑
q=2

[

hqp(ω)− bp(ω)cq(ω)
]

sq(ω) (28)

where
cq(ω) = w11(ω)hq1(ω) + w21(ω)hq2(ω) . (29)

From (28), to cancel out all interfering point sources, the frequency response of the adaptive
filters must satisfy the condition

Q

∑
q=2

[

hqp(ω)− bp(ω)cq(ω)
]

sq(ω) = 0 (30)

In the determined case, P = Q = 2, the above equation can be satisfied if bp(ω) =
h2p(ω)
c2(ω)

.

In the non-determined case, Q > P, it is necessary to satisfy the following simultaneous
conditions,

bp(ω) =
h2p(ω)

c2(ω)
∩ bp(ω) =

h3p(ω)

c3(ω)
∩ · · · ∩ bp(ω) =

hQp(ω)

cQ(ω)
(31)
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or equivalently,
h2p(ω)

c2(ω)
=

h3p(ω)

c3(ω)
= · · · =

hQp(ω)

cQ(ω)

For the particular case of two interfering sources, Q = 3, and two microphones, P = 2,

h2p(ω)

c2(ω)
=

h3p(ω)

c3(ω)

which leads to

w21(ω) [h21(ω)h32(ω)− h22(ω)h31(ω)] = 0

w11(ω) [h22(ω)h31(ω)− h21(ω)h32(ω)] = 0

Avoiding the trivial solution, these equations are true if h21(ω)h32(ω) − h22(ω)h31(ω) = 0,
i.e., only if the interfering sources are located at the same position since h21(ω) = h31(ω)
and h32(ω) = h22(ω). Hence, the performance of this post-processing method is fair in
multiple-source environments such as babble noise.

Furthermore, a subjective evaluation in (Marin-Hurtado et al., 2011) showed that
the adaptive-filter-based post processing cannot preserve the localization cues in the
undetermined case. In this case, the interfering signals are mapped to the direction of
arrival of the target signal. These experimental findings are explained by a mathematical
derivation in (Marin-Hurtado et al., 2012), which is based on an analysis of the interaural
transfer function (ITF). The magnitude of the ITF is called interaural level differences (ILD),
and its phase is called interaural time differences (ITD). To preserve the localization cues,
any post-processing method should ensure an output ITF similar to the input ITF for all
frequencies, i.e., ITFin(ω) = ITFout(ω) ∀ω. These ITFs are defined by the ratios

ITFin(ω) =
x1(ω)

x2(ω)
; ITFout(ω) =

z1(ω)

z2(ω)
(32)

In the post processing based on adaptive filters, the input and output ITF for every interfering
signal are defined as

ITFin
q (ω) �

hq1(ω)

hq2(ω)
; ITFout

q (ω) �
yq1(ω)

yq2(ω)
(33)

where
yqp(ω) =

[

hqp(ω)− bp(ω)cq(ω)
]

sq(ω).

Thus,
ITFout

q (ω) = ITFin
q (ω) + Dq(ω)

where q = 2, ..., Q and

Dq(ω) =

[

b2(ω)hq1(ω)− b1(ω)hq2(ω)
]

cq(ω)
[

hq2(ω)− b2(ω)cq(ω)
]

hq2(ω)

is the ITF displacement. In other words, the perceived direction of arrival for each interfering
signal is shifted from its original position. In the determined case, the conditions given by
(31) are satisfied, which leads to an ITF displacement Dq(ω) = 0. On the other hand, an ITF
displacement Dq(ω) �= 0 is obtained in the undetermined case since the conditions (31) are
not met.
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Fig. 7. Post processing based on Wiener filter.

3.4 Post processing based on Wiener filter

The methods described in the previous sections cannot preserve the localization cues for both
target and interfering signals simultaneously in the undetermined case. In most of the cases,
the interfering signals are mapped to the direction of arrival of the target signal. For other
algorithms, such as the post processing based on adaptive filters, the localization cues can
only be preserved under certain conditions in which the number of source signals is equal or
lower than the number of sensors (determined case). From the perceptual viewpoint, these
methods are impractical for binaural hearing aids since the displacement of the localization
cues has been identified as annoying for hearing-impaired subjects.

In (Reindl et al., 2010), authors proposed an alternative post-processing stage based on Wiener
filter to recover the localization cues. In this method, the BSS outputs are used to compute the
Wiener filter gains, and these gains are applied simultaneously to the unprocessed signals
(Fig. 7). This method is based on the fact that an ICA-based BSS algorithm provides a good
estimate for the interfering signals, i.e., the BSS algorithm provides a good noise estimator.
Since the Wiener filter gains are applied symmetrically to both sides, this method is ensured
to preserve the localization cues for both target and interfering signals simultaneously.

The Wiener filter gains are computed by (Reindl et al., 2010)

gReindl(ω) = max

{

1 − αω
Sn̂n̂(ω)

Sv1v1 (ω)Sv2v2 (ω)
, 1

}

(34)

where Sn̂n̂(ω), Sv1v1 (ω), and Sv2v2 (ω) are the power spectral densities (PSD) of the estimate
of the interfering signals (26), and the outputs of the intermediate unmixing filters v1(ω) =
w11(ω)x1(ω) and v2(ω) = w21(ω)x2(ω). If the BSS output that holds the noise estimate n̂(ω)
is y1(ω), the signals v1(ω) and v2(ω) take the forms v1(ω) = w12(ω)x1(ω) and v2(ω) =
w22(ω)x2(ω). These PSDs can be updated by means of a first order estimator,

Sn̂n̂(ω, n) = λSn̂n̂(ω, n − 1) + (1 − λ) |n̂(ω, n)|2

Sv1v1 (ω, n) = λSv1v1 (ω, n − 1) + (1 − λ) |w11(ω)x1(ω)|2

Sv2v2 (ω, n) = λSv2v2 (ω, n − 1) + (1 − λ) |w21(ω)x2(ω)|2

where λ is a time constant to smooth the estimator, and αω is a frequency-dependent trade-off
parameter to control the roll-off of the noise reduction. Finally, the enhanced outputs are
obtained by

z1(ω) = gReindl(ω)x1(ω)

z2(ω) = gReindl(ω)x2(ω)
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Fig. 8. Perceptually-inspired post processing to preserve the localization cues.

Experimental results in (Reindl et al., 2010) and (Marin-Hurtado et al., 2012) showed
that this method can preserve the localization cues for both target and interfering signals
simultaneously; however, the performance of this method is slightly below the performance
of the post processing based on adaptive filters (Marin-Hurtado et al., 2012).

3.5 Perceptually-inspired post processing

In the previous sections, different BSS post-processing methods were discussed to recover
the localization cues. All the above methods can preserve the localization cues of the target
signal efficiently. However, only the BSS post-processing method based on Wiener filter can
preserve the localization cues for both target and interfering signals simultaneously. This
section discusses an alternative BSS post-processing method that preserves both localization
cues. In this case, a perceptually-inspired post processing (BSS-PP) is used to compute a set
of time-domain gains from the BSS outputs, and these gains are applied to the unprocessed
signals (Fig. 8) (Marin-Hurtado et al., 2011; 2012). The BSS post processing used in
(Marin-Hurtado et al., 2011; 2012) is an adaptation of the method in (Parikh & Anderson,
2011). This post processing is selected since it outperforms other BSS post processing for
monaural speech enhancement applications. This post processing is modified so that it can be
used for a binaural hearing aid (Marin-Hurtado et al., 2012):

1. To preserve the localization cues, the gains obtained by the BSS and perceptual
post-processing algorithm described in (Parikh & Anderson, 2011) are applied to the
unprocessed signals received at each side (Figure 8).

2. To achieve low processing delay, the system is implemented assuming real-time operating
constraints, with the envelopes (ep and es), SNR estimates, and gain parameters
updated in the frame-by-frame basis, while the gains and outputs are computed in the
sample-by-sample basis. In (Parikh & Anderson, 2011), gains are computed assuming an
entire knowledge of the signal.

3. To minimize artifacts and to achieve more quality outputs, it is necessary to hold a
long-term history for the maximum values of the primary envelope (ep). Different tests
show that the length of this memory should be at least one second.

4. To estimate the SNR, first-order estimators of the signal and noise PSD are used, and the
SNR is computed as the ratio of these PSDs.

This perceptually-inspired BSS post processing is shown in Figure 8. Signals received at the
left, x1, and right, x2, microphones are passed through a BSS algorithm to get u1 and u2. An
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output selection algorithm identifies which BSS output contains the separated target signal
(y1), or primary channel, and the separated interfering signal (y2), or secondary channel.
These outputs, y1 and y2, are analyzed using an auditory filter bank, and then, the envelope
in each sub-band is extracted. These envelopes are used to estimate the SNR and to compute
the noise-suppression gains. The SNR and gains are computed separately for each sub-band.
These noise-suppression gains expand the dynamic range of each sub-band by lowering the
noise floor. These gains are finally applied simultaneously to the unprocessed signals by
time-domain multiplication, and the outputs from each sub-band are summed together to
produce the enhanced signals for the left and right ear.

To reduce computational complexity and processing delay in the BSS stage, an info-max BSS
algorithm that uses adaptive filters to minimize the mutual information of the system outputs
is used. This algorithm is described by the following set of equations (Marin-Hurtado et al.,
2012):

u1(n + 1) = x1(n) +w
T
12(n)u2(n) (35)

u2(n + 1) = x2(n) +w
T
21(n)u1(n) (36)

w12(n + 1) = w12(n)− 2μ tanh(u1(n + 1))u2(n) (37)

w21(n + 1) = w21(n)− 2μ tanh(u2(n + 1))u1(n) , (38)

where x1 and x2 are the signals received at the left and right microphones, w12 and w21

are vectors of length Nw describing the unmixing filter coefficients, and u1(n) and u2 are
vectors of length Nw whose elements are the previous outputs of the BSS algorithm, uj(n) =

[uj(n) uj(n − 1) · · · uj(n − Nw + 1)]T , j = 1, 2, and n is the time index. To determine which BSS
output contains the target signal, the time-average energy of the envelopes of the signals u1

and u2 are compared, and then, the output with higher time-average energy is selected as
primary channel y1. This time-average energy is computed by

uenv
j (n) = ηenvuenv

j (n − 1) + (1 − ηenv)u
2
j (n) (39)

where ηenv is a time constant. This update takes place every N samples.

The outputs of the BSS algorithm, y1 and y2, as well as the unprocessed input signals at the
left and right microphones, x1 and x2, are passed through a filter bank that resembles the
auditory system. This filter bank was implemented using forth-order Butterworth filters. At
22 kHz sampling rate, each filter bank provides 24 sub-bands. At the output of the filter banks,
the vectors xj(l, k) and yj(l, k) of length N, j = 1, 2, are obtained, where l corresponds to the
frame index and k to the sub-band number. Although the signals x and y are obtained in the
sample-by-sample basis, they are analyzed in non-overlapped frames of length N to compute
the gain parameters as we will show next.

For each output yj(l, k), the envelope is extracted using a full-wave rectifier followed by a
low-pass filter. In particular, the primary envelope vector ep(l, k) is extracted from y1(l, k),
and the secondary envelope vector es(l, k) from y2(l, k). The low-pass filters are implemented
using a first-order IIR filter whose cutoff frequency is selected to be a fraction of the
corresponding bandwidth of the band (Parikh & Anderson, 2011). These cutoff frequencies
are set to 1/5, 1/8 and 1/15 of the bandwidth of low, medium and high-frequency bands,
respectively. These fractions ensure that the envelope tracks the signal closely but at the same
time does not change too rapidly to cause abrupt gain changes that introduce modulation.
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The final outputs at the left, z1, and the right, z2, side are computed using the time-domain
gains gl,k produced by the perceptual post-processing stage:

zj(l) = ∑
k

gl,k ◦ xj(l, k) (40)

where ◦ denotes the element-wise product. The vector form emphasizes that the gains are
computed using parameters updated on a frame-by-frame basis. However, these outputs can
be computed on a sample-by-sample, reducing the processing delay.

In (Parikh & Anderson, 2011), inspired by a perceptual modeling, these gains modify the
envelope of each sub-band ek(t) such that êk(t) = βeα

k (t). To provide noise reduction, the
maximum envelope value is preserved (i.e., êkmax

= ekmax
) while the minimum envelope value

is lowered (i.e., êkmin
= Kekmin

, where K is an expansion coefficient). Using the previous ideas,
(Parikh & Anderson, 2011) developed a method to estimate α and β from the entire signal.
To provide a realistic implementation, equations in (Parikh & Anderson, 2011) are modified
to a vector form to state the update of α and β is the frame-by-frame basis every N samples
(Marin-Hurtado et al., 2012):

gk,l = βl,kep(l, k)(αl,k−1). (41)

The factors α and β are computed as

βl,k = max(epmax(k))
(1−αk,l) (42)

αk,l = 1 − log K/ log Ml,k , (43)

where Ml,k is the SNR at k-th sub-band and l-th frame, and epmax(k), a vector that holds the
maximum values of the primary envelopes, is obtained from the previous Nmax frames:

epmax(k) = [max(ep(l, k)) ... max(ep(l − Nmax, k))] (44)

To avoid computational overflow and preserve the binaural cues, the value of α is constrained
in the range α = [0, 5]. To minimize artifacts and achieve better quality outputs, the history
stored in the vector epmax should hold at least one second, but two-seconds memory, i.e.
Nmax = ⌈2 fs/N⌉, is recommended. Since α and β are fixed for a given frame, these gains
can also be computed in the sample-by-sample basis.

To estimate the SNR at the given sub-band and frame, the signal and noise power are
obtained from the envelopes of the primary and secondary channel. This approach reduces
miss-classification errors in the SNR estimation when the input SNR is low. To obtain a reliable
noise estimate, the noise power is updated using a rule derived from the noise PSD estimator
proposed in (Ris & Dupont, 2001):

Pe = ‖es(l, k)‖2

i f |Pe − Pv(l − 1, k)| < ǫ
√

σv(l − 1, k)

Pv(l, k) = λvPv(l − 1, k) + (1 − λv)Pe (45)

σv(l, k) = δσv(l − 1, k) + (1 − δ) |Pe − Pv(l − 1, k)|2

else

Pv(l, k) = Pv(l − 1, k)

σv(l, k) = σv(l − 1, k)

end
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where Pv(l, k) is the noise power at the k-th sub-band and l-th frame, σv(l, k) is an estimate of
the variance of Pv, λ and δ are time constants to smooth the estimation, and ǫ is a threshold
coefficient. Finally, the frame SNR is estimated by

Ml,k = max

(

Px(l, k)

Pv(l, k)
− 1 , 1

)

(46)

where Px is the power of the primary channel estimated by

Px(l, k) = λxPx(l − 1, k) + (1 − λx)
∥

∥ep(l, k)
∥

∥

2
(47)

The values λv = 0.95, λx = 0.9, δ = 0.9, and ǫ = 5 are selected in (Marin-Hurtado et al., 2012)
to achieve good performance.

The performance of the BSS-PP depends on the tuning of two parameters: K and N. Whereas
K controls the expansion of the dynamic range, N defines how often the parameters to
compute the noise-suppression gains are updated. A detailed analysis of the effect of these
parameters on the SNR improvement and sound quality is presented in (Marin-Hurtado et al.,
2012). In summary, K = 0.01 and N = 8192 show to be suitable for all scenarios. The
mathematical proof that localization cues are preserved in the BSS-PP algorithm is included
in (Marin-Hurtado et al., 2012).

3.5.1 Advantages and limitations

In the BSS-PP method, the noise-suppression gains are computed to expand the dynamic
range of the noisy signal, in such a way that the maximum signal level is maintained while
the noise level is pushed down. The maximum signal level is estimated from the primary
channel, and the noise level from the secondary channel. Theoretical analysis conducted in
(Takahashi et al., 2009) show that ICA-based BSS algorithms such as the algorithm used in the
BSS-PP method provides an accurate noise estimate under non-point-source noise scenarios
(e.g., diffusive or babble noise). Therefore, the performance of this method under these
scenarios is expected to be high. Since BSS-PP tracks the envelopes of the target speech and
noise level simultaneously, it is expected a good performance under highly non-stationary
environments. On the other hand, when the interfering signals are few point sources, the BSS
algorithm can provide accurate noise estimation only if the target signal is dominant. Thus,
the performance of the BSS-PP algorithm is expected to be low under these scenarios at very
low input SNR. Fortunately, these kind of scenarios are uncommon. All the above statements
are verified through experiments discussed in the next section. In general, the BSS-PP
method shows to be efficient in the removal of background noise, provides an acceptable
speech quality, preserves the localization cues for both target and interfering signals, and
outperforms existing BSS-based methods in terms of SNR improvement and noise reduction
(Marin-Hurtado et al., 2012).

4. Comparative study

This chapter discussed different methods to preserve the localization cues in a binaural
noise-reduction system based on BSS. These methods are summarized in the Table 1. Based on
common features of the algorithms, these methods can be classified in three categories: BSS
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Fig. 9. Number of operations for BSS-PP, Reindl-10, and Aichner-07 per input sample
grouped into additions (ADD), multiplications (MPY), divisions (DIV), hyperbolic tangent
(TANH), and power raise (POW).

constrained optimization, spatial-placement filters, and BSS post processing to enhance the
unprocessed signals. In the first category, the BSS filter weights, wqp, are designed to perform
source separation as well as to preserve the localization cues. In the second category, the
BSS output corresponding to the estimate of the target signal is enhanced by a FIR filter that
restores the localization cues. In the third category, the BSS outputs are used to compute
noise-suppression gains that enhance the unprocessed signals. Under the third category,
we can include the post-processing methods based on adaptive filters, Wiener filter, and
perceptually-inspired processing.

Different reports have been shown that methods based on BSS constrained optimization and
spatial-placement filters are unable to provide simultaneous preservation of localization cues
for the target and interfering signals. In addition, most of these methods perform a mapping
of the direction of arrival of the interfering signals to the direction of arrival of the target
signal, which may be perceptually annoying. On the contrary, most methods belonging to
the third category, BSS post processing to enhance the unprocessed signals, can preserve
the localization cues for both target and interfering signals simultaneously under certain
conditions. In particular, among the different methods analyzed, the BSS post-processing
method based on Wiener filter and the perceptually-inspired post processing are the only
methods able to preserve these localization cues simultaneously.

Since the gains and outputs are computed in the sample-by-sample basis, the processing delay
is very small (< 1 ms) in the BSS-PP method compared to other BSS-based post-processing
methods such as the method based on adaptive filters, Aichner-07, (Section 3.3), and the
method based on Wiener filter, Reindl-10, (Section 3.4). In Aichner-07 and Reindl-10 methods,
the processing delay is around 6 ms. In addition, the computational complexity of BSS-PP is
significantly smaller than Aichner-07 and Reindl-10 (Fig. 9).

4.1 Experiment

Among the different methods discussed in this chapter, only Aichner-07, Reindl-10, and
BSS-PP are evaluated in this experiment. This selection takes into account only the BSS
post-processing methods capable of preserving the localization cues for the target and
interfering signals simultaneously under certain environmental conditions (Table 1). These
methods are implemented in Matlab and tested under different scenarios. Simulations to
discern the performance of these techniques are conducted under the following scenarios:
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Method Strategy
Preserve

Target
Cues

Preserve
Noise Cues

Comp.
Cost

Processing
Delay

Ref.

Takatani-05
BSS constrained

optimization
Yes No High ?

(Takatani et al.,
2005)

Aichner-07B
BSS constrained

optimization
Yes No High ?

(Aichner et al.,
2007)

Wehr-06A
Spatial-placement

filter
No

Mapped to
target DoA

Medium ? (Wehr et al., 2006)

Wehr-06B
Spatial-placement

filter
Yes

Mapped to
target DoA

Medium ? (Wehr et al., 2006)

Aichner-07
Post processing

based on adaptive
filters

Yes
Under
certain

conditions
Medium ∼ 6 ms

(Aichner et al.,
2007)

Reindl-10
Post processing
based on Wiener

filter
Yes Yes Medium ∼ 6 ms

(Reindl et al.,
2010)

BSS-PP
Perceptually-inspired

post processing
Yes Yes Low ∼ 1 ms

(Marin-Hurtado
et al., 2012)

Table 1. Summary of the binaural noise-reduction methods based on BSS. Processing delay is estimated for a system working at 16
kHz sampling frequency. Question mark is included for the methods not analyzed in the comparative study.
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1. Single source under constant-SNR diffusive noise. This scenario is widely used to test
virtually all binaural noise-reduction techniques. This background noise is generated by
playing uncorrelated pink noise sources simultaneously at 18 different spatial locations.

2. Single source under babble (or cafeteria) noise. The background noise corresponds to a
real recording in a cafeteria.

3. Multi-talker. In this scenario, four distinguishable speakers are placed at different
azimuthal positions: 40o, 80o, 200o and 260o.

The above scenarios are generated by filtering the target signal with the HRTF measured for
a KEMAR manikin in absence of reverberation (Gardner & Martin, 1994). The target signal is
placed at eight different azimuthal angles: 0o, 30o, 90o, 120o, 180o, 240o, 270o and 330o, where
0o corresponds to the front of the KEMAR, 90o corresponds to the right ear, and 270o to the
left ear. Target signals are speech recordings of ten different speakers and sentences taken
from the IEEE sentence database (IEEE Subcommittee, 1969). For all scenarios, the interfering
signals are added to the target signal at different SNR.

Since the HRTF database in (Gardner & Martin, 1994) is for non-reverberant environments,
a secondary database using reverberant conditions is created using the HRTF recordings
described in (Jeub et al., 2009; RWTH Aachen University, 2010). This database is included
since it is widely known that the performance of the majority of the noise-reduction
algorithms is degraded significantly when reverberation is present. This database assumes
a babble noise scenario and the following rooms: studio (RT60 = 0.12s), meeting room
(RT60 = 0.23s), office (RT60 = 0.43s), and lecture room (RT60 = 0.78s).

The performance of these techniques is analyzed using the broadband intelligibility-weighted
SNR improvement (∆SNR-SII) (Greenberg et al., 1993). For the subjective test, a MUSHRA
(multiple stimulus test with hidden reference and anchor) test is used to assess the overall
sound quality. The protocol in (ITU-R, 2003) is used for the subjective test.

4.2 Performance evaluation

SNR improvement for diffusive, babble, and multi-talker scenarios is plotted in Figures 10-12.
In general, the perceptually-inspired post-processing method (BSS-PP) outperforms the other
BSS-based noise-reduction methods in most scenarios.

The poor performance of BSS-PP in the multi-talker scenario at low input SNR is explained
by the errors introduced by a wrong selection of the primary output. When an ideal output
selection algorithm is used (dashed line in Fig. 12), the performance of BSS-PP is similar
or better than that of the other BSS-based methods. The output selection algorithm can
be made more robust by using a direction-of-arrival-estimation algorithm or a permutation
algorithm at expenses of increasing the computational complexity. However, scenarios with
very few interfering signals at input SNR < 0 dB such as the multi-talker scenario of Fig. 12 are
very uncommon, and they are not challenging for the auditory system without any hearing
aid. Likewise, binaural noise-reduction methods are useful for challenging scenarios such as
babble noise at low input SNR. Since BSS-PP provides an excellent performance under these
scenarios (Fig. 11), the output-selection algorithm used by BSS-PP is enough for a large set of
practical applications.

Up to this point the performance of all methods has been verified under non-reverberant
scenarios. For reverberant scenarios, Fig. 13 shows that for a large reverberant room
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Fig. 10. SNR improvement under diffusive noise scenario.
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Fig. 11. SNR improvement under babble noise scenario.
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Fig. 12. SNR improvement under multi-talker scenario. The dashed line is the performance
for an ideal output-selection algorithm.

(RT60 = 0.78s), BSS-PP provides an acceptable SNR improvement and outperforms the other
existing methods for input SNR ≥ 0 dB. Results for other reverberant rooms are included in
(Marin-Hurtado et al., 2012).

A subjective test is conducted to assess the subjective sound quality of the methods under
study. These results are summarized in the Fig. 14. Sound quality is graded in the scale
[0, 100], with 100 the highest value corresponding to a clean signal. To perform the grading,
the subject listened to the samples that included clean speech, unprocessed speech in babble
noise at an input SNR of 0 dB, and enhanced speech processed by Aichner-07, Reindl-10,
and BSS-PP methods. The reference and hidden reference signals are unprocessed noisy
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Fig. 13. SNR improvement under babble noise scenario in a lecture room (reverberant
condition RT60 = 0.78s).
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Fig. 14. Subjective test results for speech quality. Reference: speech in babble noise; anchor:
noisy speech distorted according to (ITU-R, 2003).

speech while the anchor signal is noisy speech distorted according to (ITU-R, 2003). All
samples are five-seconds long, and they are presented randomly to the subject. A total of 20
normal-hearing subjects participated in the experiment. Results show that there is a distortion
in the speech quality for all methods, and a subject preference for the speech quality of the
unprocessed noisy signal. The methods providing the lowest noise reduction (Aichner-07 and
Reindl-10) achieved the best speech quality, and the methods with the highest noise reduction
(BSS-PP), the lowest speech quality. However, the speech quality of BSS-PP is higher than the
speech quality of the anchor signal (an artificially-distorted speech signal).

5. Conclusions

This chapter described different binaural BSS-based noise-reduction algorithms that are
promising for the reduction of the background noise and the preservation of the direction
of arrival of the target and interfering signals. The preservation of the direction of arrival,
also known as localization cues, is an important issue for some applications such as binaural
hearing aids. In these devices, the displacement or lost of these localization cues is reported
as perceptually annoying by hearing-impaired users.

The methods reported in the literature to preserve the localization cues in a binaural BSS-based
noise-reduction algorithm can be classified into three categories: a) BSS algorithms based
on contrained optimization to preserve the localization cues (Section 3.1); b) restoration
of the localization cues by means of post processing applied to the BSS output related to
the target signal (e.g., spatial-placement filter on Section 3.2); and c) enhancement of the
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unprocessed inputs by noise-reduction gains computed from the BSS outputs (e.g., adaptive
filters, Wiener filter, and perceptual post-processing methods described on Sections 3.3,
3.4, and 3.5). All methods proposed in the literature can preserve the localization cues
for the target signal. However, the methods belonging to the first and second category,
BSS constrained optimization and spatial-placement filters, cannot preserve the localization
cues for the interfering signals. In most cases, these localization cues are mapped to the
direction of arrival of the target signal, which suggests that these algorithms are not practical
for binaural hearing aids. On the contrary, binaural BSS-based noise-reduction algorithms
belonging to the third category, i.e., those methods that compute noise-suppression gains
from the BSS outputs and apply these gains to the unprocessed signals, can preserve the
localization cues for both target and interfering signals simultaneously. This preservation is
identified through subjective and theoretical analysis. This chapter described three methods
belonging to the third category: post processing with adaptive filters (Aichner-07), post
processing with Wiener filter (Reindl-10), and perceptually-inspired post processing (BSS-PP).
An experimental evidence, confirmed through mathematical analysis, showed the post
processing based on adaptive filters (Aichner-07) works only in the determined case, i.e., when
the number of source signals is equal o lower than the number of sensors. On the contrary, the
methods based on Wiener-filter post processing (Reindl-10) and perceptually-inspired post
processing (BSS-PP) preserve the localization cues even in the undetermined case.

A comparative study conducted with the Aichner-07, Reindl-10, and BSS-PP methods under
different environments showed that BSS-PP outperforms the other methods in terms of SNR
improvement and noise reduction. In addition, the BSS-PP method provides a significant
reduction in the number of operations compared to the other two methods, and its processing
delay is very small. Hence, the BSS-PP turns out a feasible solution for a binaural hearing
aid. However, there are two limitations in the BSS-PP method. First, the subjective sound
quality is acceptable, with a subjective sound quality graded slightly below the subjective
sound quality of the Aichner-07 and Reindl-10 methods. Second, the BSS algorithm demands
wireless transmission at full rate. This issue is also present in the Aichner-07 and Reindl-10
methods.

6. Future work

Although the BSS-PP method is a promising binaural noise-reduction algorithm, it is
necessary to solve two issues to obtain a practical implementation for a binaural hearing
aid. First, to improve the sound quality, the dynamic range expansion performed by the post
processing stage must include additional information to take into account a sound quality
criteria, or use another perceptual model. Second, to reduce the transmission bandwidth,
it is necessary to develop distributive or reduced bandwidth BSS algorithms, or to employ
strategies other than BSS to estimate the target and interfering signals.

Most processing in the BSS-PP method can be easily replaced by an analog processing except
the BSS algorithm. A mixed-signal solution may reduce computational complexity and power
consumption. To obtain a full-analog solution, analog BSS algorithms have to be developed.

Although most BSS-based noise-reduction algorithms such as Reindl-10 and BSS-PP were
not initially designed to deal with reverberant conditions, their performance under
these environments is acceptable. Hence, their performance could be improvement by
modifications in the mathematical framework to take into account the effect of reverberation.
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Finally, it is known that the speech intelligibility in noise-reduction applications can be
improved by applying a binary mask to the unprocessed signal (Loizou & Kim, 2011).
Hence, binary masking can be combined with a BSS algorithm in order to obtain a
source separation algorithm that reduces the background noise and improves the speech
intelligibility simultaneously. Although some attempts have been explored in (Han et al., 2009;
Jan et al., 2011; Mori et al., 2007; Takafuji et al., 2008), these methods are unable to preserve the
localization cues for both target and interfering signals simultaneously. Hence, it is necessary
to develop post processing algorithms to preserve the localization cues in BSS-based binary
masking algorithms.
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