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1. Introduction 

The goal of Blind Source Separation (BSS) is to estimate latent sources from their mixed 
observations without any knowledge of the mixing process. Under the assumption of 
statistical independence of hidden sources, the task in BSS is to obtain Independent 
Components (IC) from the mixed signals. Such algorithms are called ICA-based BSS 
algorithms [1, 2]. ICA-based BSS has been well studied in the fields of statistics and 
information theory for different applications, including wireless communication and 
biomedicine. However, as speech and audio signal mixtures in a real reverberant 
environment are generally convolutive mixtures, they involve a structurally much more 
challenging task than instantaneous mixtures, which are prevalent in many other 
applications [3, 4]. Such a mixing situation is generally modeled with impulse responses 
from sound sources to microphones. In a practical room situation, such impulse responses 
can have thousands of taps even with an 8 kHz sampling rate, and this makes the 
convolutive problem difficult to solve. Blind speech separation is applicable to the 
realization of noise-robust speech recognition, high quality hands-free telecommunication 
systems and hearing aids. 

Various efforts have been devoted to the separation of convolutive mixtures. They can be 
classified into two major approaches: time-domain BSS [5, 6] and frequency-domain BSS [7]. 
With time-domain BSS, a cost function is defined for time-domain signals, and optimized 
with convolutive separation filters. However, the optimization with convolutive separation 
filters is not as simple as BSS for instantaneous mixtures, and generally computationally 
expensive. With frequency-domain BSS, time-domain mixed signals observed at 
microphones are converted into frequency-domain time-series signals by a short-time 
Fourier transform (STFT). However, choosing the length of STFT has relationship with the 
length of room impulse response [8]. The merit of these approaches is that the ICA 
algorithm becomes simple and can be performed separately at each frequency by any 
complex-valued instantaneous ICA algorithm [9-11]. However, the drawbacks of frequency-
domain ICA are the permutation and scaling ambiguities of an ICA solution. In the 
frequency-domain ICA, different permutations at different frequencies lead to re-mixing of 
signals in the final output. Also, different scaling at different frequencies leads to distortion 
of the frequency spectrum of the output signal. For the scaling problem, in one method, the 
output is filtered by the inverse of the separation filter [12]. For the permutation problem, 
spatial information, such as the direction-of-arrivals (DOA) of sources, can be estimated and 
used [13, 14]. Another method utilizes the coherency of the mixing matrices in several 
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adjacent frequencies [15]. For non-stationary sources such as speech, many methods exploit 
the dependency of separated signals across frequencies to solve the permutation problem 
[16, 17]. We propose a method for the permutation problem, by maximizing the correlation 
of power ratio measure of each bin frequency with the average of previous bin frequencies 
[18].  

This chapter deals with the frequency-domain BSS for convolutive mixtures of speech 
signals. We begin by formulating the BSS problem for convolutive mixtures in Section 2. 
Section 3 provides an overview of the frequency-domain BSS. Section 4 discusses Principal 
Component Analysis (PCA) as a pre-processing step. Fast ICA algorithm for complex-
valued signals is discussed in Section 5. We then present several important techniques along 
with our proposed method for solving the permutation problem in Section 6. Section 7 
introduces a common method for the scaling problem. Section 8 considers ways of choosing 
the STFT length for a better performance of the separation problem. In Section 9, we 
compare our proposed method in the permutation problem with some other conventional 
methods by conducting several experiments. Finally, Section 10 concludes this chapter. 

2. Mixing process and convolutive BSS 

Convolutive mixing arises in acoustic scenarios due to time delays resulting from sound 

propagation over space and the multipath generated by reflections of sound from different 

objects, particularly in rooms and other enclosed settings. If we denote by ( )js t  the signal 

emitted by the j-th source (1 )j N≤ ≤ , ( )ix t  the signal recorded by the i-th microphone 

(1 )i M≤ ≤ , and  ( )ijh t the impulse response from source j to sensor i , we have: 

 ( ) ( ) ( )
1

.
N

i ij j
j

x t h s t
τ

τ τ
=

= −  (1) 

We can write this equation into a more elegant form as: 

 ( ) ( ) ( )x h s ,t t
τ

τ τ= −  (2) 

where ( )h t  is an unknown M N× mixing matrix. Now, the goal of a convolutive BSS is to 

obtain separated signals ( ) ( )1 ,..., Ny t y t , each of which corresponds to each of the source 

signals. The task should be performed only with M observed mixtures, and without 

information on the sources and the impulse responses: 

 ( ) ( ) ( )
1

,
M

j ji i
i

y t b x t
τ

τ τ
=

= −  (3) 

where ( )jib t represents the impulse response of the multichannel separation system. 

Convolutive BSS as applied to speech signal mixtures involves relatively-long multichannel 

FIR filters to achieve separation with even moderate amounts of room reverberation. While 

time-domain algorithms can be developed to perform this task, they can be difficult to code 

primarily due to the multichannel convolution operations involved [5, 6]. One way to 

simplify the conceptualization of the convolutive BSS algorithms is to transform the task 
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into the frequency domain, as convolution in time becomes multiplication in frequency. 

Ideally, each frequency component of the mixture signal contains an instantaneous mixture 

of the corresponding frequency components of the underlying source signals. One of the 

advantages of the frequency-domain BSS is that we can employ any ICA algorithm for 

instantaneous mixtures, such as the information maximization (Infomax) approach [19] 

combined with the natural gradient [20], Fast ICA [21], JADE [22], or an algorithm based on 

non-stationarity of signals [23]. 

3. Frequency-domain convolutive BSS 

This section presents an overview of the frequency-domain BSS approach that we consider 

in this chapter. First, each of the time-domain microphone observations ( )jx t is converted 

into frequency-domain time-series signals ( ),jX k f  by a short-time Fourier transform 

(STFT) with a K-sample frame and its S-sample shift: 

 ( ) ( )win  2, ,i ft
j j

st

S
X k f x t t k e

f

π− 
= − 

 
  (4) 

for all discrete frequencies 
1 1

0, ,...,
K

f f fs sK K
 
 
 

−
∈ , and for frame index k. The analysis 

window win( )t  is defined as being nonzero only in the K-sample interval 

1 1
,( 1)

2 2s s

K K

f f

 
− − 
 

 and tapers smoothly to zero at each end of the interval, such as a 

Hanning window win
21

( ) 1 cos
2

sft t
K

π 
= + 

 
. 

If the frame size K is long enough to cover the main part of the impulse responses ijh , the 

convolutive model (2) can be approximated as an instantaneous model at each frequency [8, 24]: 

 ( ) ( ) ( )X H S, , ,k f f k f=  (5) 

where H( )f is an M N× mixing matrix in frequency domain, and ( )X ,k f and ( )S ,k f are 

vectors of observations and sources in frequency domain, respectively. Notice that, the 

convolutive mixture problem is reduced to a complex but instantaneous mixture problem 

and separation is performed at each frequency bin by: 

 ( ) ( ) ( )Y B X, , ,k f f k f=               (6) 

where B( )f is an N M× separation matrix. As a basic setup, we assume that the number of 

sources N is no more than the number of the microphones M, i.e., N M≤ . However, in a 

case with N M> that is referred to as underdetermined BSS, separating all the sources is a 

rather difficult problem [25]. 

We can limit the set of frequencies to perform the separations by 
1 1

0, ,...,
2

s sf f
K

 
 
 

due to the 

relationship of complex conjugate: 
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     ( )*( , ) , , 1,..., / 2 1 .j s j s

m K m
X k f X k f m K

K K

− 
= = − 

 
            (7) 

We employ the complex-valued instantaneous ICA to calculate the separation matrix B( )f . 

Section 5 describes the detailed procedure for the complex-valued ICA used in our 

implementation and experiments. However, the ICA solution at each frequency bin has 

permutation and scaling ambiguity. In order to construct proper separated signals in time 

domain, frequency-domain separated signals originating from the same source should be 

grouped together. This is the permutation problem. Also, different scaling at different 

frequencies leads to distortion of the frequency spectrum of the output signal. This is the 

scaling problem. There are some methods to solve the permutation and scaling problems 

[12-18]. After solving the permutation and the scaling problem, the time-domain output 

signals ( )iy t are calculated with an inverse STFT (ISTFT) of the separated signals ( ),iY k f . 

The flow of the frequency-domain BSS is shown in Figure 1.  
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1
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y t
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1

M

x t

x t

 
 
 
  



 

Fig. 1. System structure for the frequency-domain BSS 

4. Pre-processing with principal component analysis 

It is known that choosing the number of microphones more than the number of sources 

improves the separation performance. This is termed as the overdetermined case, in which 

the dimension of the observed signals is greater than the number of sources.  Many methods 

have been proposed to solve the overdetermined problem. In a typical method, the subspace 

procedure is used as a pre-processing step for ICA in the framework of BSS [15, 26, 27]. The 

subspace method can be understood as a special case of principal component analysis (PCA) 

with M N≥ , where M and N denote the number of observed signals and source signals, 

respectively. This technique reduces room reflections and ambient noise [15]. Also, as pre-

processing, PCA improves the convergence speed of ICA. Figure 2 shows the use of PCA as 

pre-processing to reduce the dimension of microphone signals.  

In the PCA process, the input microphone signals are assumed to be modeled as: 

 X A S n( , ) ( ) ( , ) ( , ),k f f k f k f= +                   (8) 

where the (m,n)-th element of A( )f  is the transfer function from the n-th source to the m-th 

microphone as: 
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 ( ) ( ) ,2
, , .m ni f

m n m nA f T f e
π τ−

=               (9) 

( )fH ( )fU ( )fW ( )fP ( )fS( , )k fS

( , )k fX

( , )k fZ

( , )k fY

 

Fig. 2. The use of PCA as a pre-processing step in the frequency-domain BSS  

Here, the symbol , ( )m nT f is the magnitude of the transfer function. The symbol ,m nτ denotes 

the propagation time from the n-th source to the m-th microphone. The first term in Eq. (8),

A S( ) ( , )f k f , expresses the directional components in X( , )k f and the second term, n( , )k f , is a 

mixture of less-directional components which includes room reflections and ambient noise. 

The spatial correlation matrix R( )f of X( , )k f  is defined as: 

 R X X( ) [ ( , ) ( , )].Hf E k f k f=               (10) 

The eigenvalues of R( )f  are denoted as 1( ),..., ( )Mf fλ λ with 1( ) ,..., ( )Mf fλ λ≥ ≥ and the 

corresponding eigenvectors are denoted as e e1( ),..., ( )Mf f . Assuming that s( )t and n( )t are 

uncorrelated, the energy of the N directional signals s( )t is concentrated on the N dominant 

eigenvalues and the energy of n( )t is equally spread over all eigenvalues. In this case, it is 

generally satisfied that: 

 1 1( ),..., ( ) ( ),..., ( ).N N Mf f f fλ λ λ λ+>>
                (11) 

The vectors 1 1( ),..., ( ) and ( ),..., ( )N N Mf f f f+e e   e e   are the basis of the signal and noise 

subspaces, respectively. 

In the PCA method, the input signal is processed as: 

 Z U X( , ) ( ) ( , ),k f f k f=                      (12) 

that reduces the energy of n( )t in the noise subspace, and the PCA filter is defined as: 

 U Λ E

1

2( ) ( ) ( ),Hf f f
−

=                       (13) 

where   

 ( ) [ ]Λ  E1 1( ) ( ),..., ( ) , ( ) ( ),..., ( ) .N Nf diag f f f e f e fλ λ= =                (14) 



 
Independent Component Analysis for Audio and Biosignal Applications 142 

The PCA filtering of X( , )k f reduces the dimension of input signal to the number of sources 

N which is equivalent to a spatially whitening operation, i.e., Z Z I{ ( , ) ( , )}HE k f k f = where I 

is the N N× identity matrix. 

5. Complex-valued fast fixed-point ICA        

The ICA algorithm used in this chapter is fast fixed-point ICA (fast ICA). The fast ICA 

algorithm for the separation of linearly mixed independent source signals was presented in 

[21]. This algorithm is a computationally efficient and robust fixed-point type algorithm for 

independent component analysis and blind source separation. However, the algorithm in 

[21] is not applicable to frequency-domain ICA as these are complex-valued. In [9], the 

fixed-point ICA algorithm of [21] has been extended to involve complex-valued signals.  The 

fast fixed-point ICA algorithm is based on the assumption that when the non-Gaussian 

signals get mixed, it becomes more Gaussian and thus its non-Gaussianization can yield 

independent components. The process of non-Gaussianization consists of two-steps, 

namely, pre-whitening or sphering and rotation of the observation vector. Sphering is half 

of the ICA task and gives spatially decorrelated signals. The process of sphering (pre-

whitening) is accomplished by the PCA stage as described in the previous section. The task 

remaining after whitening involves rotating the whitened signal vector Z( , )k f such that 

Y W Z( , ) ( ) ( , )k f f k f= returns independent components. For measuring the non-

Gaussianity, we can use the negentropy-based cost function: 

 ( ){ }w Z 2| | ,HJ E G=                       (15) 

where = +( ) log(0.01 )G t t [9]. 

The elements of the matrix W w w1( ,..., )N=  are obtained in an iterative procedure. The 

fixed-point iterative algorithm for each column vector w is as follows (the frequency index 

f and frame index k are dropped hereafter for clarity):  

 w y w Z w Z w Z w Z w Z w
2 2 2 2*( ) ,H H H H HE g E g g

        ′= − +        
        

  (16) 

where (.)g  and (.)g′  are first- and second-order derivatives of G: 

    
2 2 2

1 .5
( ) , ( ) .

(0.01 ) (0.01 )

o
g t g t

t t
′= =

+ +
           (17) 

After each iteration, it is also essential to decorrelate W to prevent its convergence to the 

previously converged point. The decorrelation process to obtain W for the next iteration is 

obtained as [9]: 

 W W W W 1/2( ) .H −=                          (18) 

Then, the separation matrix is obtained by the product of U( )f and W( ) :f  
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 B W U( ) ( ) ( ).f f f=                              (19) 

6. Solving the permutation problem 

In order to get separated signals correctly, the order of separation vectors (position of rows) 

in B( )f  must be the same at each frequency bin. This is called permutation problem. In this 

section, we review various methods which have already been proposed to solve 

permutation problem.  

6.1 Solving permutation by Direction of Arrival (DOA) estimation 

Some methods for permutation problem use the information of source locations, such as 
direction of arrival (DOA). In the totally blind setup, DOA cannot be known so it is 
estimated from the directivity pattern of the separation matrix. In this method, the effect of 
room reverberation is neglected, and the elements of the mixing matrix in Eq. (9) can be 
written as the following expression: 

 ( ) ( ) ,2
, , ,

1
,  ( sin ),m ni f

m n m n m n m nA f T f e d
c

π τ τ θ−
= ≡          (20)  

where ,m nτ is the arriving lag with respect to the n-th source signal from the direction of nθ , 

observed at the m-th microphone located at md , and c is the velocity of sound. Microphone 

array and sound sources are shown in Figure 3. 

 

Fig. 3. Configuration of a microphone array and sound sources 

From the standpoint of array signal processing, directivity patterns (DP) are produced in the 

array system. Accordingly, directivity patterns with respect to ( )nmB f are obtained at every 

frequency bin to extract the DOA of the n-th source signal. The directivity pattern ( , )nF f θ is 

given by [13]: 
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 [ ]
1

( , ) ( ).exp 2 sin / .
M

n nm m
m

F f B f i fd cθ π θ
=

=                 (21) 

The DP of the separation matrix contains nulls in each source direction. Figure 4 shows an 
example of directivity patterns at frequency bins  f1 and f2 plotted for two sources. As it is 
observed, the positions of the nulls vary at each frequency bin for the same source direction. 
Hence, in order to solve the permutation problem and sort out the different sources, the 
separation matrix at each frequency bin is arranged in accordance with the directions of nulls. 

1f f=

2f f=

Source1 Source2

Gain

Gain

θ

Source1

Source1

Source1 Source2 Source2

Source2

θθ

θ

Permutation

 

Fig. 4. Examples of directivity patterns 

This method is not always effective in the overdetermined case, because the directions 

giving the nulls of the directivity patterns of the separation matrix B( )f  do not always 

correspond to the source directions. Figure 5 shows the directivity pattern for the case  

(  2, 2M N= = ) , and the overdetermined case (  8, 2M N= = ). 

6.1.1 Closed-form formula for estimating DOAs 

The DOA estimation method by the directivity pattern has three problems, a high 
computational cost, the difficulty of using it for mixtures of more than two sources, and for 
overdetermined case in which the number of microphones is more than the number of 
sources. Instead of plotting directivity patterns and searching for the minimum as a null 
direction, some propose a closed-form formula for estimating DOAs [16]. In principle, this 
method can be applied to any number of source signals as well as to the overdetermined 
case. It can be shown that the DOAs for sources are estimated by the following relation [16]:  

 
( )

 

B

B

1

1

1

arg

arccos ,
2

jk

j k

k

j jfc d d
θ

π

−

−

′

−
′

  
  

     =
−

                   (22) 
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where, jd and jd ′ are the positions of sensors jx and jx ′ . 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-20

-10

0

10

20

30

40

50

60

DOA(deg)

G
a
in

 (
d
B

)

Directivitiy pattern for 2 sources and 8 microphones

 

Fig. 5. The directivity patterns for the case ( 2, 2M N= = ), and the overdetermined case  

( 8, 2M N= = ) 

If the absolute value of the input variable of arccos(.) is larger than 1, kθ becomes complex and 

no direction is obtained. In this case, formula (22) can be tested with another pair j and j′ . 

If N M< , the Moore–Penrose pseudoinverse B+  is used instead of B 1− . Based on these 
DOA estimations, the permutation matrix is determined. In this process, no reverberation is 
assumed for the mixing signals. Therefore, for the reverberant case the method based on 
DOA estimation is not efficient.  

6.2 Permutation by interfrequency coherency of mixing matrix 

Another method to solve the permutation problem utilizes the coherency of the mixing 

matrices in several adjacent frequencies [15]. For the mixing matrix A( )f in the Eq. (8), the 

n-th column vector (location vector of the n-th source) at frequency f  has coherency with 

that at the adjacent frequency 0f f f= − Δ . Therefore, the location vector a ( )n f is a 0( )n f

which is rotated by the angle nθ as depicted in Figure 6(a). Accordingly, nθ is expected to be 

the smallest for the correct permutation as shown in Figure 6. Based on this assumption, 

permutation is solved so that the sum of the angles 1 2{ , ,..., }Nθ θ θ between the location 

vectors in the adjacent frequencies is minimized. An estimate of the mixing matrix 

Α a a1
ˆ ˆ ˆ( ) [ ( ),..., ( )]Nf f f=  can be obtained as the pseudoinverse of the separation matrix as: 

 A Bˆ ( ) ( ).f f+=                                                (23) 

For this purpose, we define a cost function as [15]: 

 
a a

P       
a a

0

01

ˆ ˆ( ) ( )1
( ) cos , cos .

ˆ ˆ( ) . ( )

HN
n n

n n
n nn

f f
F

N f f
θ θ

=

= =                  (24) 
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This cost function is calculated for all arranges of columns of mixing matrix 

Α a a1
ˆ ˆ ˆ( ) [ ( ),..., ( )]Nf f f=  and the permutation matrix P is obtained by maximizing it. 

1θ

1θ2θ

2θ

1( )fa

1( )fa

1 0( )fa
1 0( )fa

2 0( )fa
2 0( )fa

2 ( )fa

2 ( )fa

(a) Correct Permutation (b) Incorrect Permutation  

Fig. 6. The column vectors of the mixing matrix in two adjacent frequencies, with correct 
and incorrect permutations 

To increase the accuracy of this method, the cost function is calculated for a range of 
frequencies instead of the two adjacent frequencies and a confidence measure is used to 
determine which permutation is correct [15].     

The mixing matrix is defined as the transfer function of direct path from each source to each 
microphone where the coherency of mixing matrices is used in several adjacent frequencies 
to obtain the permutation matrix. 

This method assumes that the spectrum of microphone signals consists of the directional 

components and reflection components of sources and employs the subspace method to 

reduce the reflection components. However, if the reflection components are not reduced by 

the subspace method, the mixing matrix consists of indirect path components, and the 

method will not be efficient. 

6.3 A new method to solve the permutation problem based on power ratio measure 

Another group of permutation methods use the information on the separated signals which 
are based on the interfrequency correlation of separated signals. Conventionally, the 
correlation coefficient of separated signal envelopes has been employed to measure the 
dependency of bin-wise separated signals. Envelopes have high correlations at neighboring 
frequencies if separated signals correspond to the same source signal. Thus, calculating such 
correlations helps us to align permutations. A simple approach to the permutation alignment 
is to maximize the sum of the correlations between neighboring frequencies [16]. The method 
in [12] assumes high correlations of envelopes even between frequencies that are not close 
neighbors and so it does not limit the frequency range in which correlations are calculated. 

However, this assumption is not satisfied for all pairs of frequencies. Therefore, the use of 
envelopes for maximizing correlations in this way is not a good choice. Recently, the power 
ratio between the i-th separated signal and the total power sum of all separated signals has 
been proposed as another type of measure [17]. In this approach, the dependence of bin-wise 
separated signals can be measured more clearly by calculating correlation coefficients with 
power ratio values rather than with envelopes. This is shown by comparing Figures 7 and 8.  
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Fig. 7. Correlation coefficients between the separated signal envelopes 

 

Fig. 8. Correlation coefficients between the power ratios of separated signals 

This method uses two optimization techniques for permutation alignment; a rough global 
optimization and a fine local optimization. In rough global optimization, a centroid is 
calculated for each source as the average value of power ratio with the current permutation. 
The permutations are optimized by an iterative maximization between the power ratio 
measures and the current centroid. In fine local optimization, the permutations are obtained 
by maximizing the correlation coefficients over a set of frequencies consisting of adjacent 
frequencies and harmonic frequencies. Here, the experiments show that the fine local 
optimization alone does not provide good results in permutation alignment. But using both 
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global and local optimization achieves almost optimal results. This method, however, is 
somewhat complicated for calculating the permutations. 

In our proposed method, we take a rather simple technique to compute the permutation 
matrices. Here, we assume that the correlation coefficients of power ratios of bin-wise 
separated signal to be high if they come from the same source for each two frequencies even 
if they are not close together. Therefore, we extend the frequency range for calculating 
correlation to all previous frequencies, where the permutation was solved for them. We 
decide on the permutation by maximizing the correlation of power ratio measure of each bin 
frequency with the average of power ratio measures of previous bin frequencies, iteratively 
with increasing frequency. Therefore, this criterion is not based on local information and 
does not have the drawback of propagation of mistakes by the computation of permutation 
at each frequency. 

If the separation works well, the bin-wise separated signals Y Y1( , ),..., ( , )Nk f k f  are the 

estimations of the original source signals S S1( , ),..., ( , )Nk f k f  up to the permutation and 

scaling ambiguity. Thus, the observation vector X( , )k f can be represented by the linear 

combination of the separated signals as: 

 X A Y a
1

( , ) ( ) ( , ) ( ) ( , ),
N

i i
i

k f f k f f Y k f
=

= =        (25) 

where the mixing matrix A a a1( ) [ ( ),..., ( )]Nf f f=  is the pseudoinverse of the separation 

matrix B( )f : 

 A B( ) ( ) .f f +=                       (26) 

Now, we use the power ratio measure as given by [17]:   

 
a

a

2

2

1

( ) ( , )
( , ) .

( ) ( , )

i i
i N

n nn

f Y k f
powRatio k f

f Y k f
=

=


               (27) 

In the following, ( ) ( , )lf
i liv k powRatio k f= denotes the power ratio measure obtained at 

frequency ( )/l sf l K f=  ( 0,..., /2)l K= , where sf  is the sampling rate. 

The details of the proposed method are as follows: 

1. Obtain 0 ( )f
iv k , ( 1,..., )i N= , set 1l = .  

2. Obtain ( )lf
iv k  and

 
( ) ( )l gf

i i
g T

c k v k
∈

=  ( 1,..., )i N= , where 
0 1{ ,..., }lT f f −= . 

3. Obtain all permutation matrices P  ( )1,2,...,e e N= . Permutation matrix is an N N×  
matrix where in each row and each column there is one nonzero element of unit value. 
For example, for a case of 2 sources, the permutation matrices are:  

 P  P1 2

1 0 0 1
, .

0 1 1 0

   
= =   
   

                  (28) 

4. Obtain u P vl lf f
e=  for all permutation matrices. 
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5. Determine the permutation matrix that maximizes the correlation of power ratio 
measure of current frequency bin with the average of power ratio measures of previous 
bin frequencies: 

 ( )
P

P
1

arg max , .l l

e

N
f f

i i
i

u cρ
=

=             (29) 

6. Then, process the separated signal Y( , )lk f  with the permutation matrix at the bin 

frequency lf : 

 
Y P Y( , ) ( ) ( , ).l l lk f f k f←

                                (30) 

7. Set 1l l= + , and return to step 2), if / 2l K< . 

The steps of the proposed method are shown in the block diagram of Figure 9. 

1 1

1( ) ( ) ( ) ( )l l lf f f

lk k f k− −

−← +c c P v

( ) ( )l lf f

ek k=u P v

1

( ) arg max ( , )l l

e

N
f f

l i i

i

f u cρ
=

= 
P

P

1l l= +

/ 2l K<

1l =

( ) ( )0 0f f
k k=c v

 

Fig. 9. The block diagram that describes our proposed method for solving the permutation 
problem 
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7. Scaling problem 

The scaling problem can be solved by filtering individual outputs of the separation filter by 

the inverse of B( )f  separately [12]. In the overdetermined case, (i.e., M N> ), the 

pseudoinverse of B( )f , denoted as B( )f + , is used instead of the inverse of B( )f . This is 

due to the fact that in this case, because of employing the subspace method B( )f  is not 

square. The scaling matrix can be expressed as: 

 S ,1 ,( ) [ ,..., ],m m Nf diag B B+ +=                            (31) 

where ,m nB+  denotes the ( , ) - thm n  element of B( )f + .   

8. Suitable length of STFT for better separation 

It is commonly believed that the length of STFT (i.e., frame size), K, must be longer than P to 

estimate the unmixing matrix for a P-point room impulse response. The reasons for this belief 

are: 1) A linear convolution can be approximated by a circular convolution if 2 ,K P> and 2) If 

we want to estimate the inverse system of a system with impulse response of P-taps long, we 

need an inverse system that is Q-taps long, where Q P> . If we assume that the frame size is 

equal to the length of unmixing filter, then we should have K P> . Moreover, when the filter 

length becomes longer, the number of separation matrices to be estimated increases while the 

number of samples for learning at each frequency bin decreases. This violates the assumption 

of independence in the time series at each bin frequency, and the performance of the ICA 

algorithm becomes poor [8]. Therefore, there is an optimum frame size determined by a trade-

off between maintaining the assumption of independence and the length of STFT that should 

be longer than the room impulse response length in the frequency-domain BSS. Section 9 

shows this understanding by some experiments. 

9. Experimental results 

The experiments are conducted to examine the effectiveness of the proposed permutation 
method [18]. We use two experimental setups. Setup A is considered to be a basic one, in 
which there are two sources and two microphones. In setup B, we have two sources and 
eight microphones, and discuss the effect of a background interference noise on our 
proposed method. Table 1 summarizes the configurations common to both setups. As the 
original speech, we use the wave files from ‘TIMIT speech database’ [28] to test the 
performance of different BSS algorithms. The lengths of the speech signals are 4 seconds. We 
have the voice of three male and three female speakers in our experiments and the 
investigations are carried out for nine different combinations of speakers. The image method  

 

room dimension L = 3.12 m, W = 5.73 m, H = 2.70 m 

direction of arrivals 30 and -40 

window function Hamming 

sample rate 16000 Hz 

Table 1. Common Experimental Configuration 
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has been used to generate multi-channel Room Impulse Responses [29]. Microphone signals 
are generated by adding the convolutions of source signals with their corresponding room 
impulse responses. Figure 10 shows the layout of the experimental room for setup B. For the 
setup A, we use only two microphones m1 and m2 shown in the figure.  

 

Fig. 10. Experimental Setup B 

9.1 Evaluation criterion 

For the computation of the evaluation criterion, we start by the decomposition of ( )iy t (i.e., 

the estimation of ( )is t ): 

 target interf noise ,iy s e e= + +                  (32) 

where targets  is a version of ( )is t  modified by mixing and separating system, and interfe  and 

noisee  are respectively the interference and noise terms. Figure 11 shows the source, the 

microphone, and the separated signals. 

We use Signal-to-Interference Rate (SIR) as performance criterion by computing energy 

ratios between the target signal and the interference signal expressed in decibels [30]:  

  

2

10 2
SIR = 10 log .i

s

e

target

interf

                     (33) 

To calculate targets , we set the signals of all sources and noises to zero except ( )is t  and 

measure the output signal. In the same way, to calculate interfe , we set ( )is t  and all noise 

signals to zero and obtain the output signal.  
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Setup A: The case of 2-Sources and 2-Microphones 

In this experiment, we use only two microphones m1 and m2 in Figure 10. In this case, the 
reverberation time of the room is set to 130 ms. The frame length and frame shift in the STFT 
analysis are set to 2048 and 256 samples, respectively. Three different methods for the 
permutation problem are applied on 9 pairs of speech signals. The results of our simulations 
are shown in Figure 12. In the MaxSir approach, we select the best permutation by 
maximizing SIR at each frequency bin for solving perfectly the permutation ambiguity [16]. 
This gives a rough estimate of the upper bound of the performance.  

Ns

1s

1Mh

Mx

1y

Ny

11h

1n

1x

Mn  

Fig. 11. Block diagram of the separating system 

As seen from Figure 12, the results with Murata’s method [12] are sometimes very poor, but 
our proposed method [18] offers almost the same results as that of MaxSir. Figure 13 shows 
SIRs at each frequency for the 8th pair of speech signals, obtained by the proposed method 
and Murata’s method. The change of signs of SIRs in this figure shows the regions of 
permutation misalignments. Here, we see the permutation misalignments below 500 Hz 
obtained by Murata’s method, whereas the proposed method has almost perfect 
permutation alignment. This shows that it is not always true to assume that frequencies not 
in close proximity have a high correlation of envelopes. 

Setup B: The case of 2-Sources and 8-Microphones  

In this experiment, we compare the separation performance of our proposed method with 
those of three other methods, namely, the Interfrequency Coherency method (IFC) [15], the 

DOA approach with a closed -form formula [17], and MaxSir for the case of 2-Sources and 8-
Microphones [17]. To avoid aliasing in the DOA method, we select the distance between the 
microphones to be 2 cm. All these experiments are performed for three reverberation times 

RT = 100 ms, 130 ms, and 200 ms. Before assessing different separation techniques, we first 

obtain the optimum frame length of STFT at each reverberation time. Then, we evaluate the 
proposed method in noisy and noise-free cases. 

Optimum length of STFT for better separation 

To show what frame length of STFT is suitable for better performance of BSS, we perform 

separation experiments at three reverberation times of RT = 100 ms, 130 ms, and 200 ms, and 

by different lengths of STFT. Since the sampling rate is 16 kHz, these reverberation times 

correspond to P = 1600, 2080, and 3200 taps, respectively.  
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Fig. 12. The separation results of 9 pairs of speech signals for three different methods of 
permutation problem: Murata’s method, proposed method, and MaxSir 

 

Fig. 13. SIRs measured at different frequencies for the proposed method and the Murata’s 
method 

Figure 14 shows the room impulse responses 11h  for 100 ms, 130 ms, and 200 ms.RT =  We 

vary the length of STFT by K = 512, 1024, 2048, 4096, and 8192 with corresponding frame 

shifts of S = 64, 128, 256, 512, and 1024, respectively. The best permutation is selected by 

maximizing SIR at each frequency bin. In this way, the results are ideal under the condition 

that the permutation problem is solved perfectly. The experimental results of SIR for 

different lengths of STFT are shown in Figure 15. These values are averaged over all nine 

combinations of speakers to obtain average values of SIR1 and SIR2. As it is observed from 

this figure, in the case of 100 msRT =  we obtain the best performance with 1024K = . For  
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Fig. 14. The room impulse responses 11h  for 100 ms, 130 ms, and 200 msRT =  
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Fig. 15. The experimental results of SIR for different lengths of STFT  

the reverberant conditions with 130, and 200 ms,RT =  the best performance is realized with 
2048, and 4096K =   , respectively. Figure 16 shows the average of neg-entropy (Eq. 15) as a 

measurement of independence. We see that by longer lengths of STFT the independence is 
smaller, and the performance of the fixed-point ICA is poorer [8]. 

 

Fig. 16. The average of neg-entropy as a measurement of independence 

Evaluation results without background noise 

In this section, we compare our proposed method with three methods, namely, IFC, DOA, 
and MaxSir in the case of 2-Sources and 8-Microphones without the background noise. We 
select the optimum length of STFT obtained in the previous experiment for each of the three 
reverberation times. Figure 17 shows the separation results for nine pairs of speech signals  
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(a) 

 
(b) 

Fig. 17. The separation results of 9 pairs of speech signals (a) with 100 msRT = and (b) with 

200 msRT =  as the reverberation times, for four different methods of the permutation 

problem: the Interfrequency Coherency method (IFC), the DOA method, the proposed 

method, and the MaxSir method 

in the cases where the reverberation times of the room are 100, and 200 msRT =  , 
respectively. We observe that, when the reverberation time is 100 ms, the separation results 
for each of the three methods, i.e., IFC, DOA, and proposed methods, are close to the perfect 
solution obtained by MaxSir. For the reverberant case of 200 ms,RT = the separation 
performances of IFC and DOA are not good, but the results of SIR for the proposed method 
are close to the MaxSir approach.  
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In the IFC method, to use the coherency of the mixing matrices in adjacent frequencies, the 

mixing matrix should have the form of the transfer function of direct path from each source  

to each microphone. However, this condition can hold, if the subspace filter reduces the 

energy of the reflection terms. The performance of the subspace method depends on both  

the array configuration and the sound environment. In our experiments, the subspace method  

could not reduce the reflection components, and the performance of the IFC method is  

poor for the reverberant case. However, in the case of 100 msRT =  the energy of the  

reflection components is low and the IFC method has good performance. The SIRs at each  

frequency for four methods in the case of 200 msRT = are shown in Figure 18. We see a large  

 

 

 

Fig. 18. SIRs measured at each bin frequency for 4 methods: the proposed method, the 

Interfrequency Coherency method (IFC), the DOA method, and the MaxSir method for the 

case of 200 msRT =  
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number of frequencies with permutation misalignments for the IFC and DOA methods. 
As observed from the simulation results, the proposed approach outperforms the IFC and 
the DOA methods, where we achieve the best performance in the sense of SIR-
improvement. 

Evaluation results with background noise 

In this part of experiments, we add the restaurant noise from the Noisex-92 database [31] 

with input SNRs of 5 dB, and 20 dB to the microphone signals. Here, again the optimum 

window length for the STFT analysis is chosen for each three reverberation times. Figures 19 

and 20 show the average SIRs obtained for the proposed, IFC, DOA, and MaxSir methods 

for the reverberation times of 100 ms, 130 ms, and 200 msRT =  , respectively with input SNRs 

of 5 dB and 20 dB. It is observed that under the experimental conditions of input SNR = 20 

dB and reverberation time of 100 ms, all of the methods, i.e., the proposed, IFC, and DOA 

give the same separation results. However, as the reverberation time increases, the 

performance of IFC and DOA decreases. At the reverberation time of 200 ms, the average 

SIR of the proposed method is slightly reduced. Also, as it is expected, the comparison of 

Figures 19 and 20 shows that in lower values of input SNRs, the performance of source 

separation methods decreases. This shows that the ICA-based methods have in general poor 

separation results in noisy conditions.  

 

 

 
 
 

Fig. 19. Average of SIRs for the proposed, IFC, DOA, and MaxSir methods for three 

reverberation times of 100 ms, 130 ms, and 200 msRT =  , respectively, obtained at the input 

SNR of 20 dB 
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Fig. 20. Average of SIRs for the proposed, IFC, DOA, and MaxSir methods for three 

reverberation times of 100 ms, 130 ms, and 200 msRT =  , respectively, obtained at the input 

SNR of 5 dB 

10. Conclusion 

This chapter presents a comprehensive description of frequency-domain approaches to the 
blind separation of convolutive mixtures. In frequency-domain approach, the short-time 
Fourier transform (STFT) is used to convert the convolutive mixtures in time domain to 
instantaneous mixtures at each frequency. In this way, we can use each of the complex-
valued ICA at each frequency bin. We use the fast ICA algorithm for complex-valued 
signals. The key feature of this algorithm is that it converges faster than other algorithms, 
like natural gradient-based algorithms, with almost the same separation quality. We employ 
PCA as pre-processing for the purpose of decreasing the noise effect and dimension 
reduction. Also, we see that the length of STFT affects the performance of frequency-domain 
BSS. If the length of STFT becomes longer, the number of coefficients to be estimated 
increases while the number of samples for learning at each frequency bin decreases. This 
causes that the assumption of independence in the time series at each bin frequency to 
collapse, and the performance of the ICA algorithm to become poor. As a result, we select 
for the frame size an optimum value which is obtained by a trade-off between maintaining 
the assumption of independence and the length of STFT in the frequency-domain BSS. 

We focus on the permutation alignment methods and introduce some conventional methods 
along with our proposed method to solve this problem. In the proposed method, we 
maximize the correlation of power ratio measure of each bin frequency with the average of 
power ratio measures of previous bin frequencies, iteratively with increasing frequency. In 
the case of 2-sources and 2-microphones, by conducting source separation experiments, we 
compare the performance of our proposed method with Murata’s method which is based on 
envelope correlation. The results of this comparison show that it is not always true to 

Tr=100ms Tr=130ms Tr=200ms
0

2

4

6

8

10

12

14

16

18

20
average of SIRs for 4 methods for 3 reverberation time ISNR=5dB

 

 

IFC

DOA

proposed

maxsir



 
Independent Component Analysis for Audio and Biosignal Applications 160 

assume that frequencies not in close proximity have a high correlation of envelopes. In 
another overdetermined case of experiment, the proposed method is compared with the 

DOA, IFC and MaxSir methods. Here, we see that in the reverberant room with high SNR 

values, the proposed method outperforms other methods. Finally, even though the 
performance of our proposed method degrades under reverberant conditions with high 
background noise (low SNRs), the experiments show that the separation results of the 
proposed method are still satisfactory. 

11. Future directions 

In this chapter, we have used PCA as a pre-processing technique for the purpose of 

decreasing the effect of background noise and dimension reduction. This approach assumes 

that the noise and the signal components are uncorrelated and the noise component is 

spatially white. Practically, the performance of PCA depends on both the array 

configuration and the sound environment. 

From the results of the experiments, it is clear that two factors affect the performance of BSS 

methods; background noise and room reverberation. These factors are those that significantly 

influence the enhancement of audio signals. Therefore, as a future work, we should consider 

other pre-processing techniques in ICA-based BSS that besides performing dimension 

reduction also help to decrease the effect of colored noise as well as room reverberation. 
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