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Non-Negative Matrix Factorization with  
Sparsity Learning for Single Channel  

Audio Source Separation 

Bin Gao and W.L. Woo 
School of Electrical and Electronic Engineering, Newcastle University,  

England, United Kingdom 

1. Introduction 

1.1 Single channel source separation (SCSS) 

In this chapter, the special case of instantaneous underdetermined source separation 

problem termed as single channel source separation (SCSS) is focused. In general case and 

for many practical applications (e.g. audio processing) only one-channel recording is 

available and in such cases conventional source separation techniques are not appropriate. 

This leads to the SCSS research area where the problem can be simply treated as one 

observation instantaneous mixed with several unknown sources: 

 
=

=
1

( ) ( )
sN

i
i

y t x t  (1) 

where = 1, , si N  denotes number of sources and the goal is to estimate the sources ( )ix t  

when only the observation signal ( )y t  is available. This is an underdetermined system of 

equation problem. Recently, new advances have been achieved in SCSS and this can be 
categorized either as supervised SCSS methods or unsupervised SCSS methods. For supervised 
SCSS methods, the probabilistic models of the source are trained as a prior knowledge by 
using some or the entire source signals. The mixture is first transformed into an appropriate 
representation, in which the source separation is performed. The source models are either 
constructed directly based on knowledge of the signal sources, or by learning from training 
data (e.g. using Gaussian mixture model construct source models either directly based on 
knowledge of signal sources, or by learning from isolated training data). In the inference 
stage, the models and data are combined to yield estimates of the sources. This category 
predominantly includes the frequency model-based SCSS methods [1, 2] where the prior 
bases are modeled in time-frequency domain (e.g. spectrogram or power spectrogram), and 
the underdetermined-ICA time model-based SCSS method [3] which the prior bases are 
modeled in time domain. For unsupervised SCSS methods, this denotes the separation of 
completely unknown sources without using additional training information. These methods 
typically rely on the assumption that the sources are non-redundant, and the methods are 
based on, for example, decorrelation, statistical independence, or the minimum description 
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length principle. This category includes several widely used methods: Firstly, the CASA-
based unsupervised SCSS methods [4] whose goal is to replicate the process of human 
auditory system by exploiting signal processing approaches (e.g. notes in music recordings) 
and grouping them into auditory streams using psycho-acoustical cues. Secondly, the 
subspace technique based unsupervised SCSS methods using NMF [5, 6] or independent 
subspace analysis (ISA) [7] which usually factorizes the spectrogram of the input signal into 
elementary components. Of special interest, EMD [8] based unsupervised SCSS methods 
which can separate audio mixed signal in time domain and recover sources by combing 
other data analysis tools, e.g. independent component analysis (ICA) [9] or principle 
component analysis (PCA). 

1.2 Unsupervised SCSS using NMF 

In this book chapter, we propose a new NMF method for solving unsupervised SCSS 

problem. In a conventional NMF, given a data matrix [ ] ×
+= ∈ℜ1 , , K L

LY y y  with >, 0k lY , 

NMF factorizes this matrix into a product of two non-negative matrices: 

 ≈Y DH  (2) 

where ×
+∈ℜ KD  and ×

+∈ℜ LH  where K and L represent the total number of rows and 

columns in matrix Y , respectively. If   is chosen to be = L , no benefit is achieved at all. 

Thus the idea is to determine < L  so that the matrix D  can be compressed and reduced to 

its integral components such as ×KD  is a matrix containing a set of dictionary vectors, and 

× LH  is an encoding matrix that describes the amplitude of each dictionary vector at each 

time point. A popular approach to solve the NMF optimization problem is the multiplicative 

update (MU) algorithm by Lee and Seung [10]. The MU update rule for Least square (LS) 

distance is given by: 

 ← 
T

T

YH
D D

DHH
 and ← 

T

T

D Y
H H

D DH
 (3) 

Multiplicative update-based families of parameterized cost functions such as the Beta 
divergence [11], and Csiszar’s divergences [12] have also been presented as well. A 
sparseness constraint [13, 14] can be added to the cost function, and this can be achieved by 
regularization using the L1-norm. Here, ‘sparseness’ refers to a representational scheme 
where only a few units (out of a large population) are effectively used to represent typical 
data vectors [15]. In effect, this implies most units taking values close to zero while only few 

take significantly non-zero values. Several other types of prior over D  and H  can be 

defined e.g. in [16, 17], it is assumed that the prior of D  and H  satisfy the exponential 
density and the prior for the noise variance is chosen as an inverse gamma density. In [18], 

Gaussian distributions are chosen for both D  and H . The model parameters and 
hyperparameters are adapted by using the Markov chain Monte Carlo (MCMC) [19-21]. In 
all cases, a fully Bayesian treatment is applied to approximate inference for both model 
parameters and hyperparameters. While these approaches increase the accuracy of matrix 
factorization, it only works efficient when large sample dataset is available. Moreover, it 
consumes significantly high computational complexity at each iteration to adapt the 
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parameters and its hyperparameters. Regardless of the cost function and sparseness 
constraint being used, the standard NMF or SNMF models [22] are only satisfactory for 
solving source separation provided that the spectral frequencies of the analyzed audio 
signal do not change over time. However, this is not the case for many realistic audio 
signals. As a result, the spectral dictionary obtained via the NMF or SNMF decomposition is 
not adequate to capture the temporal dependency of the frequency patterns within the 
signal. The recently developed two-dimensional sparse NMF deconvolution (SNMF2D) 

model [23, 24] extends the NMF model to be a two-dimensional convolution of D  and H  
where the spectral dictionary and temporal code are optimized using the least square cost 
function with sparse penalty:  

 λ− +  2
, ,

,

1
: ( ) ( )

2
LS k l k l

k l

C fY Z H  (4) 

for ∀ ∈ ∀ ∈,k K l L  where 
φ τ
τ φ

τ φ

↓ →

= 
,

Z D H , τ τ τ

τ

=  2
, , ,

,

( )k d k d k d
k

D D D  and ( )f H  can be any 

function with positive derivative such as α α− >( 0)L norm  given by 

ααφ
α

φ

 = =  
 


1/

,
, ,

( ) d l
d l

f H H H . Here 
φ
τ
↓
D  denotes the downward shift which moves each 

element in the matrix τD  down by φ  rows, and 
τ
φ

→

H  denotes the right shift which moves 

each element in the matrix φH  to the right by τ  columns.  The SNMF2D is effective in single 

channel audio source separation (SCASS) because it is able to capture both the temporal 
structure and the pitch change of an audio source. However, the drawbacks of SNMF2D 

originate from its lack of a generalized criterion for controlling the sparsity of H . In 
practice, the sparsity parameter is set manually. When SNMF2D imposes uniform sparsity 
on all temporal codes, this is equivalent to enforcing each temporal code to be identical to a 
fixed distribution according to the selected sparsity parameter. In addition, by assigning the 
fixed distribution onto each individual code, this is equivalent to constraining all codes to be 
stationary. However, audio signals are non-stationary in the TF domain and have different 
temporal structure and sparsity. Hence, they cannot be realistically enforced by a fixed 
probability distribution. These characteristics are even more pronounced between different 
types of audio signals. In addition, since the SNMF2D introduces many temporal shifts, this 
will result in more temporal codes to deviate from the fixed distribution. In such situation, 
the obtained factorization will invariably suffer from either under- or over-sparseness which 
subsequently lead to ambiguity in separating the audio mixture. Thus, the above suggests 
that the present form of SNMF2D is still technically lacking and is not readily suited for 
SCASS especially mixtures involving different types of audio signals. 

In this chapter, an adaptive sparsity two-dimensional non-negative matrix factorization is 
proposed. The proposed model allows: (i) overcomplete representation by allowing many 
spectral and temporal shifts which are not inherent in the NMF and SNMF models. Thus, 
imposing sparseness is necessary to give unique and realistic representations of the non-

stationary audio signals. Unlike the SNMF2D, our model imposes sparseness on H  element-
wise so that each individual code has its own distribution. Therefore, the sparsity parameter can 
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be individually optimized for each code. This overcomes the problem of under- and over-sparse 
factorization. (ii) Each sparsity parameter in our model is learned and adapted as part of the 
matrix factorization. This bypasses the need of manual selection as in the case of SNMF2D. The 
proposed method is tested on the application of single channel music separation and the results 
show that our proposed method can give superior separation performance. 

The chapter is organized as follows: In Section II, the new model is derived. Experimental 
results coupled with a series of performance comparison with other NMF techniques are 
presented in Section III. Finally, Section IV concludes the paper. 

2. Adaptive sparsity two-dimensional non-negative matrix factorization 

In this section, we derive a new factorization method termed as the adaptive sparsity two-
dimensional non-negative matrix factorization. The model is given by 

 

φ φτ ττ φ τ φ
τ φ τ φ

τ φ τ φ

↓ ↓→ →

= = = = =

= + = +    
max max max max max

0 0 1 0 0

d

d d
d

Y D H V D H V  (5) 

where ( ) ( )φ φ φ φ φ φλ λ
= =

= −∏∏
max max

, , ,
1 1

  | exp
d l

d l d l d l
d l

pH H λ H . In (5), it is worth pointing out that each 

individual element in φH  is constrained to an exponential distribution with independent decay 

parameter φλ ,d l . Here, τ
dD  is the dth column of τD , φ

dH  is the dth row of φH  and V  is assumed 

to be independently and identically distributed (i.i.d.) as Gaussian distribution with noise 

having variance σ 2 . The terms maxd , τmax , φmax  and maxl  are the maximum number of 

columns in τD , τ  shifts, φ  shifts and column length in Y , respectively. This is in contrast 

with the conventional SNMF2D where φλ ,d l  is simply set to a fixed constant i.e. φλ λ=,d l  for all 

φ, ,d l . Such setting imposes uniform constant sparsity on all temporal codes φH  which 

enforces each temporal code to be identical to a fixed distribution according to the selected 

constant sparsity parameter. The consequence of this uniform constant sparsity has already 

been discussed in Section I. In Section III, we will present the details of the sparsity analysis for 

source separation and evaluate its performance against with other existing methods. 

2.1 Formulation of the proposed adaptive sparsity NMF2D 

To facilitate such spectral dictionaries with adaptive sparse coding, we first define 
τ =   max0 1D D D D  , φ =   max0 1H H H H and φ =   max1 2λ λ λ λ , and then 

choose a prior distribution ( ),p D H  over the factors { },D H  in the analysis equation. The 

posterior can be found by using Bayes’ theorem as 

 ( ) ( ) ( )
( )

σ
σ =

2

2
, , ,

, , ,
p p

p
P

Y D H D H λ
D H Y λ

Y
 (6) 
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where the denominator is constant and therefore, the log-posterior can be expressed as 

 ( ) ( ) ( )σ σ= + +2 2log , , , log | , , log , constp p pD H Y λ Y D H D H λ  (7) 

where ‘ const ’ denotes constant. The likelihood of the observations given D  and H  can be 

written1 as:  

 ( )
φ τ
τ φ

τ φ

σ σ
πσ

↓ → 
 = − −
 
 


2

2 2

2

1
| , , exp 2

2
d d

d F

p Y D H Y D H  (8) 

where .
F

 denotes the Frobenius norm. The second term in (7) consists of the prior 

distribution of D  and H  where they are jointly independent. Each element of H  is 
constrained to be exponential distributed with independent decay parameters, namely,  

 ( ) ( )φ φ φ

φ

λ λ= −∏∏∏ , , ,| expd l d l d l
d l

p H λ H  so that φ φ

φ

λ=  , ,
, ,

( ) d l d l
d l

f H H  (9) 

Hence, the negative log likelihood serves as the cost function defined as: 

 

( )
φ τ
τ φ

τ φ

φ τ
τ φ φ φ

τ φ φ

σ

λ
σ

↓ →

↓ →

∝ − +

= − +



 

2

2

2

, ,2
, ,

1

2

1

2

d d
d F

d d d l d l
d d lF

L fY D H H

Y D H H

 (10) 

The sparsity term ( )f H  forms the L1-norm regularization which is used to resolve the 

ambiguity by forcing all structure in H  onto D . Therefore, the sparseness of the solution in 

(9) is highly dependent on the regularization parameter φλ ,d l .  

2.1.1 Estimation of the dictionary and temporal code 

In (10), each spectral dictionary was constrained to unit length. This can be easily satisfied 

by normalizing each spectral dictionary according to τ τ τ

τ

=  2
, , ,

,

( )k d k d k d
k

D D D  for all 

[ ]∈  max1 , ,d d . With this normalization, the two-dimensional convolution of the spectral 

dictionary and temporal codes is now represented as 
φ τ
τ φ

τ φ

↓ →

= 
d d

d

Z D H . The derivatives of 

(10) corresponding to τD  and φH  of the adaptive sparsity factorization model are given by: 

                                                 
1 To avoid cluttering the notation, we shall remove the upper limits from the summation terms. The 
upper limits can be inferred from (5). 
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( )

τ
τ

τ

τ

=


 ,

,
2

,
,

k d
k d

k d
k

D
D

D

 (12) 

In (11), superscript ‘ T ’ denotes matrix transpose, ‘  ’ is the element wise product and 

( )⋅diag  denotes a matrix with the argument on the diagonal. The column vectors of τD  will 

be factor-wise normalized to unit length. 

2.1.2 Estimation of the adaptive sparsity parameter 

Since 
τ
φ

→

H  is obtained directly from the original sparse code matrix φ
→0

H , it suffices to 

compute just for the regularization parameters associated with φ
→0

H . Therefore, we can set 

the cost function in (10) with τ =max 0  as 

 ( ) ( ) ( ) ( )
φ φφ

φφ φ

φ φσ

↓

= =

 
= − ⊗ +  

 
 
max max

2

2
0 0

1
( )

2
F

F Vec Vec Vec
T

H Y I D H λ H  (13) 

with ⋅( )Vec  represents the column vectorization, ‘⊗ ’ is the Kronecker product, and I  is the 

identity matrix. Defining the following terms: 
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 (14) 

Thus, (13) can be rewritten in terms of h  as 

 
σ

= − +
2

2

1
( )

2 F
F T

h y Dh λ h  (15) 
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Note that h  and λ  are vectors of dimension × 1R  where φ= × × +max max max( 1)R d l . To 

determine λ , we use the Expectation-Maximization (EM) algorithm and treat h  as the 

hidden variable where the log-likelihood function can be optimized with respect to λ . 

Using the Jensen’s inequality, it can be shown that for any distribution ( )Q h , the log-

likelihood function satisfies the following [25-27]: 

 ( ) ( )
( )

( )
σ

σ
 
 ≥  
 


2

2
, | , ,

ln | , , ln
p

p Q d
Q

y h λ D
y λ D h h

h
 (16) 

One can easily check that the distribution that maximizes the right hand side of (16) is given 

by ( ) ( )σ= 2| , , ,Q ph h y λ D  which is the posterior distribution of h . In this paper, we 

represent the posterior distribution in the form of Gibbs distribution: 

 ( ) ( ) ( )= −  = −    
1

exp where exph
h

Q F Z F d
Z

h h h h  (17) 

The functional form of the Gibbs distribution in (17) is expressed in terms of ( )F h  and this 

is crucial as it will enable us to simplify the variational optimization of λ . The maximum 

likelihood estimation of λ  can be expressed by 

 

( )
( ) ( )

σ=

= 

2arg max ln | , ,

arg max ln |

ML p

Q p d

λ

λ

λ y λ D

h h λ h
 (18) 

Similarly, 

 

( ) ( ) ( )( )
( ) ( )

σ

σ

σ σ

σ

= +

=





2

2

2 2

2

arg max ln | , , ln |

arg max ln | , ,

ML Q p p d

Q p d

h y h D h λ h

h y h D h
 (19) 

Since each element of H  is constrained to be exponential distributed with independent 

decay parameters, this gives ( ) ( )λ λ= −∏| expp p p
p

p hh λ  and therefore, (18) becomes: 

 ( )( )λ λ= −arg max lnML
p p pQ h d

λ
λ h h  (20) 

The Gibbs distribution ( )Q h  treats h  as the dependent variable while assuming all 

other parameters to be constant. As such, the functional optimization of λ  in (20) is 

obtained by differentiating the terms within the integral with respect to λp  and the end 

result is given by 



 
Independent Component Analysis for Audio and Biosignal Applications 

 

98

 
( )

λ =


1
p

ph Q dh h
 for = 1,2, ,p R  (21) 

where λp  is the pth element of λ . Since ( )
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σπσ

 
= − −  

 0

22
/2 2

2

1 1
| , , exp

22
N

p y h D y Dh  

where = ×oN K L , the iterative update rule for σ 2
ML  is given by 
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Despite the simple form of (21) and (22), the integral is difficult to compute analytically and 

therefore, we seek an approximation to ( )Q h . We note that the solution h  naturally 

partition its elements into distinct subsets Ph  and Mh  consisting of components ∀ ∈p P  

such that = 0ph , and components ∀ ∈m M  such that > 0mh . Thus, the ( )F h  can be 

expressed as following: 

( ) ( )
σ

σ σ σ
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 (23) 

In (23), the term 
2

y  in G  is a constant and the cross-term ( ) ( )M PM P

T
D h D h  measures the 

orthogonality between M MD h  and P PD h . where PD  is the sub-matrix of D  that 

corresponds to Ph , MD  is the sub-matrix of D  that corresponds to Mh . In this work, we 

intend to simply the expression in (23) by discounting the contribution from these terms and 

let ( )F h  be approximated as ≈ +( ) ( ) ( )M PF F Fh h h . Given this approximation, ( )Q h  can be 

decomposed as 
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with ( ) = − expP P PZ F dh h  and ( ) = − expM M MZ F dh h . Since =Ph 0  is on the 

boundary of the distribution, this distribution is represented by using the Taylor expansion 

about the MAP estimate, MAP
h : 
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 (25) 

 

where 
σ
=

2

1
P P P

T
Λ D D , 

σ
=

2

1 T
Λ D D . We perform variational approximation to ( )P PQ h  by 

using the exponential distribution: 

 ( ) ( )
∈

≥ = −∏
1ˆ 0 exp /P p pP
pp P

Q h u
u

h  (26) 

 

The variational parameters { }= puu  for ∀ ∈p P  are obtained by minimizing the Kullback-

Leibler divergence between PQ  and ˆ
PQ : 
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In Eqn. (27). 
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 (29) 

with   denotes the expectation under ( )ˆ
P PQ h  distribution [28] such that =p m p mh h u u  

and =p ph u  which leads to: 

 
∈

+ −1ˆ ˆmin ln
2p

pP
u

p P

u
T T

b u u Λu  (30) 

where 
σ

 
= − +  
 

2

1ˆ MAP
P

P

T
b Λh D y λ  and ( )= +ˆ

P PdiagΛ Λ Λ . The optimization of (30) can 

be accomplished be expanding (30) as follows: 

 ( )
( )

∈ ∈
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
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

2

ˆ
1ˆ, ln
2
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Taking the derivative of ( ),G u u  in (31) with respect to u  and setting it to be zero, we have: 

 
( )

+ − =




ˆ
1ˆ 0

p
p p

p p

u b
u u

Λu
 (32) 

The above equation is equivalent to the following quadratic equations: 

 
( )

+ − =



2

ˆ
ˆ 1 0

p
p p p

p

u b u
u

Λu
 (33) 

Solving (33) for pu  leads to the following update: 
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( )

− + +

←


2

ˆ
ˆ ˆ 4

ˆ2

p
p p

p

p p

p

b b
u

u u
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 (34) 

As for components Mh , since none of the non-negative constraints are active, we 

approximate ( )M MQ h  as unconstrained Gaussian with mean MAP
Mh . Thus using the 

factorized approximation ( ) ( ) ( )= ˆ
P MP MQ Q Qh h h  in (21), we obtain the following: 
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for = 1,2, ,p R  and MAP
ph  is the pth element of sparse code Ph  computed from (11) and its 

covariance C  is given by  
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,
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u
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 (36) 

Thus, the update rule for σ 2  computed from (22) can be obtained as 

 ( ) ( ) ( )σ  = − − +  

 
2

0

1
Tr
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T T
y Dh y Dh D DC  where 
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∈

 MAP
p

p
p

h if p M
h

u if p P
 (37) 

The specific steps of the proposed method can be summarized as the following table:  

 

1. Initialize τD  and φH  with nonnegative random values. 

2. Define τ τ τ

τ

=  2
, , ,

,

( )k d k d k d
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φ τ
τ φ
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d d
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
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. 

7. Repeat steps 2 to 6 until convergence. 

Table 1. Proposed Adaptive Sparsity NMF2D 
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3. Single channel audio source separation 

3.1 TF representation 

The classic spectrogram decomposes signals to components of linearly spaced frequencies. 
However, in western music, the typically used frequencies are geometrically spaced. Thus, 
obtaining an acceptable low-frequency resolution is absolutely necessary, while a resolution 
that is geometrically related to the frequency is desirable, although not critical. The constant Q 
transform as introduced in [29], tries to solve both issues. In general, the twelve-tone equal 
tempered scale which forms the basis of modern western music divides each octave into 
twelve half notes where the frequency ratio between each successive half note is equal [23]. 

The fundamental frequency of the note which is Qk  half note above can be expressed as 

= ⋅ 24
fund 2 Q

Q

kQ
kf f . Taking the logarithmic, this gives = +fundlog log log 2

24Q

QQ
k

k
f f . Thus, in a 

log-frequency representation the notes are linearly spaced. In our method, the frequency axis 
of the obtained spectrogram is logarithmically scaled and grouped into 175 frequency bins in 

the range of 50Hz to 8kHz (given = 16kHzsf ) with 24 bins per octave and the bandwidth 

follows the constant-Q rule. Figure 1 shows an example of the estimated spectral dictionary D  

and temporal code H  based on SNMF2D method on the log-frequency spectrogram. 

 

Fig. 1. The estimated spectral dictionary and temporal code of piano and trumpet mixture 
log-frequency spectrum using SNMF2D. 
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3.2 Source reconstruction  

The Figure 2 shows the framework of the proposed unsupervised SCSS methods. The single 

channel audio mixture is constructed by several unknown sources, namely 
=

= 
max

1

( ) ( )
d

d
d

y t x t . 

where =  max1, ,d d  denotes the sources number and = 1,2, ,t T  denotes the time index. 

The goal is to estimate the sources ( )dx t  when only the observation signal ( )y t  is available. 

The mixture is then transformed into a suitable representation e.g. Time-Frequency (TF) 

representation. Thus the mixture ( )y t  is given by 
=

= 
max

1

( , ) ( , )
d

s d s
d

Y f t X f t  where ( , )sY f t  and 

( , )d sX f t  denote the TF components obtained by applying the short time Fourier transform 

(STFT) on ( )y t  and ( )dx t , respectively, e.g. ( ) ( )( )=, sY f t STFT y t . The time slots are given 

by = 1,2, ,s st T  while frequency bins by = 1,2, ,f F . Since each component is a function 

of st  and f , we represent this as [ ] =
== 


1,2, ,
1,2, ,( , )

s s

f F
s t TY f tY  and [ ] =

== 


1,2, ,
1,2 , ,( , )

s s

f F
d d s t TX f tX . The 

power spectrogram is defined as the squared magnitude STFT and hence, its matrix 

representation is given by 
=

≈ 
max

.2.2

1

d

d
d

Y X  where the superscript ‘ ⋅ ’ represents element wise 

operation. The frequencies scale of power spectrogram 
.2

Y  can be mapped into log-

frequency scale which described in Section III A and this will result log-frequency power 

spectrogram 
=

=
 .2 .2

1

sN

d
d

Y X . The matrices we seek to determine are { }
=

 .2

1

sN

d
d

X  which will 

be obtained during the feature extraction process by using the proposed matrix factorization 

as 
φ τ
τ φ

τ φ

↓ →

= .2

d d dX D H  where  τ
dD  and φ

dH  are estimated using (11) and (12). Once these 

matrices are estimated, we form the dth binary mask according to =( , ) 1d sW f t  if 

> .2 .2
( , ) ( , )d s j sX f t X f t  ≠d j and zero otherwise to approach source separation. Finally, the 

estimated time-domain sources are obtained as ( )ξ −= •


 1
d dx W Y  where ( )ξ − •1  denotes the 

inverse mapping of the log-frequency axis to the original frequency axis and followed by the 

inverse STFT back to the time domain. [ ]=  (1), , ( )d d dx x T
T

x  denotes the dth estimated 

audio sources in the time-domain.  

 

Fig. 2. A framework for the proposed unsupervised SCSS methods. 
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3.3 Efficiency of source extraction in TF domain 

In this sub-section, we will analyze how different sparsity factorization methods impact on 

the source extraction performance in TF domain for SCASS. For separation, one generates 

the TF mask corresponding to each source and applies the generated mask to the mixture to 

obtain the estimated source TF representation. In particular, when the sources have no 

overlap in the TF domain, an optimum mask ( , )opt
sdW f t  (optimal source extractor) exists 

which allows one to extract the dth original source from the mixture as 

 =( , ) ( , ) ( , )opt
d s s sdX f t W f t Y f t  (38) 

Given any TF mask ( , )d sW f t  (source extractor) such that ≤ ≤0 ( , ) 1d sW f t  for all ( , )sf t , we 

define the efficiency of source extraction (ESE) in the TF domain for target source ( )dx t  in 

the presence of the interfering sources β
= ≠

= 
max

1,

( ) ( )
d

d j
j j d

t x t  as 

 ( )ψ −
2 2

2 2

( , ) ( , ) ( , ) ( , )

( , ) ( , )

d s d s d s d sF F
d

d s d sF F

W f t X f t W f t B f t
W

X f t X f t
 (39) 

where ( ),d sX f t  and ( , )d sB f t  are the TF representations of ( )dx t  and β ( )d t , respectively. 

The above represents the normalized energy difference between the extracted source and 

interferences. We also define the ESE of the mixture with respect to all the maxd  sources 

as 

 ( )ψ
=

Ω = 
max

max 1

1 d

i
d

W
d  (40) 

Eqn. (39) is equivalent to measuring the ability of extracting the dth source ( , )d sX f t  from the 

mixture ( , )sY f t  given the TF mask ( , )d sW f t . Eqn. (40) measures the ability of extracting all 

the maxd  sources simultaneously from the mixture. To further study the ESE, we use the 

following two criteria [30]: (i) preserved signal ratio (PSR) which determines how well the 

mask preserves the source of interest and (ii) signal-to-interference ratio (SIR) which 

indicates how well the mask suppresses the interfering sources: 

 
2

2

( , ) ( , )

( , )

d

d

d s d sX F
W

d s F

W f t X f t
PSR

X f t
 and 

2

2

( , ) ( , )

( , ) ( , )

d

d

d s d sX F
W

d s d s F

W f t X f t
SIR

W f t B f t
 (41) 

Using (41), (39) can be expressed as ( )ψ = −d d d

d d d

X X X
d W W WW PSR PSR SIR . Analyzing the terms 

in (39), we have 
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[ ]
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 ∞ ∩ =∅
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 ,  supp supp

d
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d
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dX d

W opt
dd

d d dX
W

d d d

if W W
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if W W

if W X B
SIR

finite if W X B

 (42) 

where ‘supp’ denotes the support. When ( )ψ = 1dW  (i.e. = 1d

d

X
WPSR  and = ∞d

d

X
WSIR ), this 

indicates that the mixture ( )y t  is separable with respect to the dth source ( )dx t . In other 

words, ( , )d sX f t  does not overlap with ( , )d sB f t  and the TF mask ( , )d sW f t  has perfectly 

separated the dth source ( , )d sX f t  from the mixture ( , )sY f t . This corresponds to 

=( , ) ( , )opt
d s sdW f t W f t  in (38). Hence, this is the maximum attainable ( )ψ dW  value. For 

other cases of d

d

X
WPSR  and d

d

X
WSIR , we have ( )ψ < 1dW . Using the above concept, we can 

extend the analysis for the case of separating maxd  sources. A mixture ( )y t  is fully separable 

to all the N sources if and only if Ω = 1  in (40). For the case Ω < 1 , this implies that some of 
the sources overlap with each other in the TF domain and therefore, they cannot be fully 

separated. Thus, Ω  provides the quantitative performance measure to evaluate how 
separable the mixture is in the TF domain. In the following, we show the analysis of how 
different sparsity factorization methods affect the ESE of the mixture. 

4. Results and analysis 

4.1 Experiment set-up 

The proposed method is tested by separating music sources. Several experimental 
simulations under different conditions have been designed to investigate the efficacy of the 
proposed method. All simulations and analyses are performed using a PC with Intel Core 2 
CPU 6600 @ 2.4GHz and 2GB RAM. MATLAB is used as the programming platform. We 
have tested the proposed method in the wider types of music mixtures. All mixed signals 
are sampled at 16 kHz sampling rate. 30 music signals including 10 jazz, 10 piano and 10 
trumpet signals are selected from the RWC [31] database. Three types of mixture have been 
generated: (i) jazz mixed with piano, (ii) jazz mixed with trumpet, (iii) piano mixed with 
trumpet. The sources are randomly chosen from the database and the mixed signal is 
generated by adding the chosen sources. In all cases, the sources are mixed with equal 
average power over the duration of the signals. The TF representation is computed by 
normalizing the time-domain signal to unit power and computing the STFT using 2048 
point Hanning window FFT with 50% overlap. The frequency axis of the obtained 
spectrogram is then logarithmically scaled and grouped into 175 frequency bins in the range 
of 50Hz to 8kHz with 24 bins per octave. This corresponds to twice the resolution of the 
equal tempered musical scale. For the proposed adaptive sparsity factorization model, the 
convolutive components in time and frequency are selected to be (i) For piano and trumpet 

mixture { }τ = 0, ,3  and { }φ = 0, ,31 , respectively; (ii) For piano and jazz mixture 

{ }τ = 0, ,6  and { }φ = 0, ,9 , respectively; (iii) For trumpet and jazz mixture { }τ = 0, ,6  

and { }φ = 0, ,9 , respectively. The corresponding sparse factor was determined by (35). We 
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have evaluated our separation performance in terms of the signal-to-distortion ratio (SDR) 
which is one form of perceptual measure. This is a global measure that unifies source-to-
interference ratio (SIR), source-to-artifacts ratio (SAR) and source-to-noise ratio (SNR). 
MATLAB routines for computing these criteria are obtained from the SiSEC’08 webpage [32, 
33]. 

4.2 Impact of adaptive and fixed sparsity 

In this implementation, we have conducted several experiments to compare the 
performance of the proposed method with SNMF2D under different sparsity regularization. 
In particular, Figures 3 and 4 show the separated sources by using the proposed method in 
terms of spectrogram and time-domain representation, respectively. 

 
 
 
 
 
 

 
 
 

 
 
 

Fig. 3. Spectrogram of the mixed signal (top panel), the recovered trumpet music and piano 
music (middle panels) and original trumpet music and piano music (bottom panels).  
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Fig. 4. Time domain of the mixed signal (top panel), the recovered trumpet music and piano 
music (middle panels) and original trumpet music and piano music (bottom panels). 

To investigate this further, the impact of sparsity regularization on the separation results 
in terms of the SDR under different uniform regularization has been undertaken and the 
results are plotted in Figure 4. In this implementation, the uniform regularization is 

chosen as = 0,0.5, ,10c  for all sparsity parameters i.e. φλ λ= =,d l c . The best result is 

retained and tabulated in Table I. In the case of the proposed method, it assigns a 
regularization parameter to each temporal code which is individually and adaptively 
tuned to yield the optimal number of times the spectral dictionary of a source recurs in 

the spectrogram. The sparsity on φ
dH  is imposed element-wise in the proposed model so 

that each individual code in φ
dH  is optimally sparse in the L1-norm. In the conventional 

SNMF2D method, the sparsity is not fully controlled but is imposed uniformly on all the 
codes. The ensuing consequence is that the temporal codes are no longer optimal and this 
leads to ‘under-sparse’ or ‘over-sparse’ factorization which eventually results in inferior 
separation performance. 
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Fig. 5. Separation results of SNMF2D by using different uniform regularization. 

In Figure 5, the results have clearly indicated that there are certain values of λ  where the 

SNMF2D performs with exceptionally good results. In the case of piano and trumpet 

mixtures, the best performance is obtained when λ  ranges from 0.5 to 2 where the highest 

SDR is 8.1dB. As for jazz and piano mixtures, the best performance is obtained when λ  

ranges from 1.0 to 2.5 where the highest SDR is 7.2dB and for jazz and trumpet mixtures, the 

best performance is obtained when λ  ranges from 2 to 3.5 where the highest SDR is 8.6dB. 

On the contrary, when λ  is set too high, the separation performance tends to degrade. It is 

also worth pointing out that the separation results are coarse when the factorization is non-
regularized. Here, we see that (i) for piano and trumpet mixtures, the SDR is only 6.2dB, (ii) 
for jazz and piano mixtures, the SDR is only 5.6dB, (iii) for jazz and trumpet mixtures, the 
SDR is only 4.7dB. From above, it is evident that uniform sparsity scheme gives varying 

performance depending on the value of λ  which in turn depends on the type of mixture. 

Hence, this poses a practical difficulty in selecting the appropriate level sparseness 
necessary for matrix factorization to resolve the ambiguity between the sources in the TF 
domain. 

The overall comparison results between the adaptive and uniform sparsity methods have 
been summarized in Figure 6. According to the table, SNMF2D with adaptive sparsity tends 
to yield better result than the uniform sparsity-based methods. We may summarize the 
average performance improvement of our method against the uniform constant sparsity 
method: (i) For the piano and trumpet music, the improvement per source in terms of the 
SDR is 2dB (ii) For the piano and jazz music, the improvement per source in terms of SDR is 
1.3dB. (iii) For the trumpet and jazz music, the improvement per source in terms of SDR is 
1.1dB.  
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Fig. 6. SDR results comparison between adaptive and uniform sparsity methods. 

4.2.1 Adaptive behavior of sparsity parameter 

In this sub-section, the adaptive behavior of the sparsity parameters by using the 

proposed method will be demonstrated. Several sparsity parameters have been selected to 

illustrate its adaptive behavior. In the experiment, all sparsity parameters are initialized 

as φλ =, 5d l  for all φ, ,d l  and are subsequently adapted according to (35). After 300 

iterations, the sparsity parameters converge to their steady-states. We have plotted the 

histogram of the converged adaptive sparsity parameters in Figure 7. The figure suggests 

that the histogram can be represented as a bimodal distribution that each element code 

has its own sparseness. In addition, it is worth pointing out that in the case of piano and 

trumpet mixture the SDR result rises to 10dB when φλ ,d l  is adaptive. This represents a 2dB 

per source improvement over the case of uniform constant sparsity (which is only 8.1dB 

in Figure 6). On the separate hand, when no sparsity is imposed onto the codes the SDR 

result immediately deteriorates to approximately 6dB. This represents a 4dB per source 

depreciation compared with the proposed adaptive sparsity method. From above, the 

results are ready to suggest that the performances of source separation have been 

undermined when the uniform constant sparsity scheme is used. On the contrary, 

improved performances can be obtained by allowing the sparsity parameters to be 

individually adapted for each element code. This is evident based on source separation 

performance as indicated in Figure 6. 



 
Independent Component Analysis for Audio and Biosignal Applications 

 

110 

 

Fig. 7. The histogram of the converged adaptive sparsity parameter. 

4.2.2 Efficiency of source extraction in TF domain 

In this sub-section, we will analyze the efficiency of source extraction based on SNMF2D 
and the proposed method. Binary masks are constructed using the approach discussed in 
Section III B for each of the both methods. To ensure fair comparison, we generate the ideal 
binary mask (IBM) [34] from the original source which is used as a reference for comparison. 
The IBM for a target source is found for each TF unit by comparing the energy of the target 
source to the energy of all the interfering sources. Hence, the ideal binary mask produces the 
optimal signal-to-distortion ratio (SDR) gain of all binary masks and thus, it can be 
considered as an optimal source extractor in TF domain. The comparison results between 
IBM, uniform sparsity and proposed adaptive sparsity are tabulated in Table II. 

 

Fig. 8. Overall ESE performance 
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In Figure 8, the results of ESE for each mixture type are obtained by averaging over 100 

realizations. From listening performance test, any ( )ψ > 0.8dW  indicates acceptable quality 

of source extraction performance in TF domain. Therefore, it is noted from the results in 

Figure 7 that both IBM and the proposed method satisfy this condition. In addition, the 

proposed method yields better ESE improvement against the uniform sparsity method. The 

average improvement results have been summarized as follows: (i) For the piano and 

trumpet music, 18.4%. (ii) For the piano and jazz music 26.5%. (iii) For the trumpet and jazz 

music, 20.6%. In addition, the average SIR of the proposed method exhibits much a higher 

value than the uniform sparsity SNMF2D. This clearly shows that the amount of 

interference between any two sources is lesser for the proposed method. Therefore, the 

above results unanimously indicate that the proposed adaptive sparsity method leads to 

higher ESE results than the uniform constant sparsity method.  

4.3 Comparison with other sparse NMF-based SCASS methods 

In Section IV B, analysis has been carried out to investigate effects between adaptive sparsity 

and uniform constant sparsity on source separation. In this evaluation, we compare the 

proposed method with other sparse NMF-based source separation methods. These consist of 

the followings: 

• SNMF [13]. The uniform constant sparsity parameter is progressively varied from 0 to 

10 with every increment of 0.1 (i.e. λ = 0,0.1,0.2, ,10 ) and the best result is retained 

for comparison. 

• Automatic Relevance Determination NMF (NMF-ARD) [35] exploits a hierarchical 

Bayesian framework SNMF that amounts to imposing an exponential prior for pruning 

and thereby enables estimation of the NMF model order. The NMF-ARD assumes prior 

on H , namely, ( )λ λ λ= − ∏ max
,( | ) expl

d d ld l
d

p H H  and uses Automatic Relevance 

Determination (ARD) approach to determine the desirable number of components in 

D .  

• NMF with Temporal Continuity and Sparseness Criteria [14] (NMF-TCS) is based on 

factorizing the magnitude spectrogram of the mixed signal into a sum of components, 

which include the temporal continuity and sparseness criteria into the separation 

framework. In [14], the temporal continuity α  is chosen as [0,1,10,100,1000] , 

sparseness weight β  is chosen as [0,1,10,100,1000] . The best separation result is 

retained for comparison. 

Figure 9 summarizes the SDR comparison results between our proposed method and the 

above three sparse NMF methods. From the results, it can be seen that the above methods 

fail to take into account the relative position of each spectrum and thereby discarding the 

temporal information. Better separation results will require a proper model that can 

represent both temporal structure and the pitch change which occurs when an instrument 

plays different notes simultaneously. If the temporal structure and the pitch change are 

not considered in the model, the mixing ambiguity is still contained in each separated 

source.  
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Fig. 9. Performance comparison between other NMF based SCASS methods and proposed 

method 

 

Fig. 10. ESE comparison between other NMF based SCASS methods and the proposed 

method 

The improvement of our method compared with NMF-TCS, SNMF and NMF-ARD can be 
summarized as follows: (i) For the piano and trumpet music, the average improvement per 
source in terms of the SDR is 6.3dB. (ii) For the piano and jazz music, the average 
improvement per source in terms of SDR is 5dB. (iii) For the trumpet and jazz music, the 
average improvement per source in terms of SDR is 5.4dB. In the case of ESE (Figure 10), the 
proposed method exhibits much better average ESE of approximately 106.9%, 138.8% and 
114.6% improvement with NMF-TCS, SNMF and NMF-ARD, respectively. Analyzing the 
separation results and ESE performance, the proposed method leads to the best separation 
performance for both recovered sources. The SNMF method performs with poorer results 
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whereas the separation performance by the NMF-TCS method is slightly better than the 
NMF-ARD and SNMF methods. Our proposed method gives significantly better 
performance than the NMF-TCS, SNMF and NMF-ARD methods. The spectral dictionary 
obtained via NMF-TCS, SNMF and NMF-ARD methods are not adequate to capture the 
temporal dependency of the frequency patterns within the audio signal. In addition, the 
NMF-TCS, SNMF and NMF-ARD do not model notes but rather unique events only. Thus if 
two notes are always played simultaneously they will be modeled as one component. Also, 
some components might not correspond to notes but rather to the model e.g. background 
noise.  

4.4 Comparison with underdetermined-based ICA SCSS method 

In the underdetermined-ICA SCSS method [3], the key point is to exploit the prior 
knowledge of the sources such as the basis functions to generate the sparse codes. In this 
work, these basis functions are obtained in two stages: (i) Training stage: the basis functions 
are obtained by performing ICA on each concatenated sources. In this experiment, we 
derive a set of 64 basis functions for each type of source. These training data exclude the 
target sources which have been exclusively used to generate the mixture signals. (ii) 
Adaptation stage: the obtained ICA basis functions from the training stage are further 
adapted based on the current estimated sources during the separation process. In this 
method, both the estimated sources and the ICA basis functions are jointly optimized by 
maximizing the log-likelihood of the current mixture signal until it converges to the steady-
state solution. If two sets of basis functions overlap significantly with each other, the 
underdetermined-ICA SCSS method is less efficient in resolving the mixing ambiguity 
between sources. The improvement of proposed method compared with underdetermined-
ICA SCSS method can be summarized as follows: (i) For the piano and trumpet music, the 
average improvement per source in terms of the SDR is 4.3dB. (ii) For the piano and jazz 
music, the average improvement per source in terms of SDR is 4dB. (iii) For the trumpet and 
jazz music, the average improvement per source in terms of SDR is 4.2dB. 

 

Fig. 11. Performance underdetermined-ICA SCSS method and proposed method 



 
Independent Component Analysis for Audio and Biosignal Applications 

 

114 

The performance of the underdetermined-ICA SCSS method relies on the ICA-derived time 
domain basis functions. High level performance can be achieved only when the basis 
functions of each source are sufficiently distinct. However, the result becomes considerably 
less robust in separating mixture where the original sources are of the same type e.g. 
mixture of music with music. 

5. Conclusion 

The chapter has presented an adaptive strategy to sparsifying the non-negative matrix 
factorization. The impetus behind this work is that the sparsity achieved by conventional 
SNMF and SNMF2D is not enough; in such situations it might be useful to control the 
degree of sparseness explicitly. In the proposed method, the regularization term is 
adaptively tuned using a variational Bayesian approach to yield desired sparse 
decomposition, thus enabling the spectral dictionary and temporal codes of non-stationary 
audio signals to be estimated more efficiently. This has been verified concretely based on 
our simulation results. In addition, the proposed method has yielded significant 
improvements in single channel music separation when compared with other sparse NMF-
based source separation methods. Future work could investigate the extension of the 
proposed method to separate non-stationary (here non-stationary refers to the sources not 
located in the fixed places, e.g. the speakers are talking while on the move) and reverberant 
mixing model. For non-stationary reverberant mixing model, this gives  

τ
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where τ( , )i rm t  is the finite impulse response of causal filter at t  time and τ r  is the time 

delay. The expanded adaptive sparsity non-negative matrix factorization can then be 

developed to estimate mixing  im  and sources  ix , respectively. 
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