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1. Introduction

Consider a situation in which we have a number of sources emitting signals which are

interfering with one another. Familiar situations in which this occurs are a crowded room
with many people speaking at the same time, interfering electromagnetic waves from mobile

phones or crosstalk from brain waves originating from different areas of the brain. In each of

these situations the mixed signals are often incomprehensible and it is of interest to separate

the individual signals. This is the goal of Blind Source Separation (BSS). A classic problem

in BSS is the cocktail party problem. The objective is to sample a mixture of spoken voices,

with a given number of microphones - the observations, and then separate each voice into a

separate speaker channel -the sources. The BSS is unsupervised and thought of as a black box

method. In this we encounter many problems, e.g. time delay between microphones, echo,

amplitude difference, voice order in speaker and underdetermined mixture signal.

Herault and Jutten Herault, J. & Jutten, C. (1987) proposed that, in a artificial neural network

like architecture the separation could be done by reducing redundancy between signals.

This approach initially lead to what is known as independent component analysis today.

The fundamental research involved only a handful of researchers up until 1995. It was

not until then, when Bell and Sejnowski Bell & Sejnowski (1995) published a relatively

simple approach to the problem named infomax, that many became aware of the potential

of Independent component analysis (ICA). Since then a whole community has evolved

around ICA, centralized around some large research groups and its own ongoing conference,

International Conference on independent component analysis and blind signal separation.

ICA is used today in many different applications, e.g. medical signal analysis, sound

separation, image processing, dimension reduction, coding and text analysis Azzerboni et al.

(2004); Bingham et al. (2002); Cichocki & Amari (2002); De Martino et al. (2007); Enderle et al.

(2005); James & Hesse (2005); Kolenda (2000); Kumagai & Utsugi (2004); Pu & Yang (2006);

Zhang et al. (2007); Zhu et al. (2006).

ICA is one of the most widely used BSS techniques for revealing hidden factors that underlie

sets of random variables, measurements, or signals. ICA is essentially a method for extracting

individual signals from mixtures. Its power resides in the physical assumptions that the

different physical processes generate unrelated signals. The simple and generic nature of
this assumption allows ICA to be successfully applied in diverse range of research fields.

In ICA the general idea is to separate the signals, assuming that the original underlying

source signals are mutually independently distributed. Due to the field’s relatively young
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age, the distinction between BSS and ICA is not fully clear. When regarding ICA, the basic

framework for most researchers has been to assume that the mixing is instantaneous and

linear, as in infomax. ICA is often described as an extension to PCA, that uncorrelates

the signals for higher order moments and produces a non-orthogonal basis. More complex
models assume for example, noisy mixtures, Hansen (2000); Mackay (1996), nontrivial

source distributions, Kab’an (2000); Sorenson (2002), convolutive mixtures Attias & Schreiner

(1998); Lee (1997; 1998), time dependency, underdetermined sources Hyvarinen et al. (1999);

Lewicki & Sejnowski (2000), mixture and classification of independent component Kolenda

(2000); Lee et al. (1999). A general introduction and overview can be found in Hyvarinen et al.

(2001).

1.1 ICA model

ICA is a statistical technique, perhaps the most widely used, for solving the blind source

separation problem Hyvarinen et al. (2001); Stone (2004). In this section, we present the basic

Independent Component Analysis model and show under which conditions its parameters

can be estimated. The general model for ICA is that the sources are generated through

a linear basis transformation, where additive noise can be present. Suppose we have N

statistically independent signals, si(t), i = 1, ..., N. We assume that the sources themselves

cannot be directly observed and that each signal, si(t), is a realization of some fixed probability

distribution at each time point t. Also, suppose we observe these signals using N sensors,

then we obtain a set of N observation signals xi(t), i = 1, ..., N that are mixtures of the sources.

A fundamental aspect of the mixing process is that the sensors must be spatially separated

(e.g. microphones that are spatially distributed around a room) so that each sensor records

a different mixture of the sources. With this spatial separation assumption in mind, we can

model the mixing process with matrix multiplication as follows:

x(t) = As(t) (1)

where A is an unknown matrix called the mixing matrix and x(t), s(t) are the two

vectors representing the observed signals and source signals respectively. Incidentally, the

justification for the description of this signal processing technique as blind is that we have no

information on the mixing matrix, or even on the sources themselves.

The objective is to recover the original signals, si(t), from only the observed vector xi(t). We

obtain estimates for the sources by first obtaining the Şunmixing matrixŤ W, where, W = A−1.

This enables an estimate, ŝ(t), of the independent sources to be obtained:

ŝ(t) = Wx(t) (2)

The diagram in Figure 1 illustrates both the mixing and unmixing process involved in BSS.

The independent sources are mixed by the matrix A (which is unknown in this case). We seek

to obtain a vector y that approximates s by estimating the unmixing matrix W. If the estimate

of the unmixing matrix is accurate, we obtain a good approximation of the sources.

The above described ICA model is the simple model since it ignores all noise components and

any time delay in the recordings.

4 Independent Component Analysis for Audio and Biosignal Applications
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Fig. 1. Blind source separation (BSS) block diagram. s(t) are the sources. x(t) are the
recordings, ŝ(t) are the estimated sources A is mixing matrix and W is un-mixing matrix

1.2 Independence

A key concept that constitutes the foundation of independent component analysis is statistical
independence. To simplify the above discussion consider the case of two different random
variables s1 and s2. The random variable s1 is independent of s2, if the information about the
value of s1 does not provide any information about the value of s2, and vice versa. Here s1

and s2 could be random signals originating from two different physical process that are not
related to each other.

1.2.1 Independence definition

Mathematically, statistical independence is defined in terms of probability density of the
signals. Consider the joint probability density function (pdf) of s1 and s2 be p(s1, s2). Let
the marginal pdf of s1 and s2 be denoted by p1(s1) and p2(s2) respectively. s1 and s2 are said
to be independent if and only if the joint pdf can be expressed as;

ps1,s2(s1, s2) = p1(s1)p2(s2) (3)

Similarly, independence could be defined by replacing the pdf by the respective cumulative
distributive functions as;

E{p(s1)p(s2)} = E{g1(s1)}E{g2(s2)} (4)

where E{.} is the expectation operator. In the following section we use the above properties to
explain the relationship between uncorrelated and independence.

1.2.2 Uncorrelatedness and Independence

Two random variables s1 and s2 are said to be uncorrelated if their covariance C(s1,s1) is zero.

C(s1, s2) = E{(s1 − ms1)(s2 − ms2)}

= E{s1s2 − s1ms2 − s2ms1 + ms1ms2}

= E{s1s2} − E{s1}E{s2}

= 0

(5)

5Introduction: Independent Component Analysis
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where ms1 is the mean of the signal. Equation 4 and 5 are identical for independent variables
taking g1(s1) = s1. Hence independent variables are always uncorrelated. How ever the
opposite is not always true. The above discussion proves that independence is stronger
than uncorrelatedness and hence independence is used as the basic principle for ICA source
estimation process. However uncorrelatedness is also important for computing the mixing
matrix in ICA.

1.2.3 Non-Gaussianity and independence

According to central limit theorem the distribution of a sum of independent signals with
arbitrary distributions tends toward a Gaussian distribution under certain conditions. The
sum of two independent signals usually has a distribution that is closer to Gaussian than
distribution of the two original signals. Thus a gaussian signal can be considered as a liner
combination of many independent signals. This furthermore elucidate that separation of
independent signals from their mixtures can be accomplished by making the linear signal
transformation as non-Gaussian as possible.

Non-Gaussianity is an important and essential principle in ICA estimation. To use
non-Gaussianity in ICA estimation, there needs to be quantitative measure of non-Gaussianity
of a signal. Before using any measures of non-Gaussianity, the signals should be normalised.
Some of the commonly used measures are kurtosis and entropy measures, which are
explained next.

• Kurtosis

Kurtosis is the classical method of measuring Non-Gaussianity. When data is preprocessed to
have unit variance, kurtosis is equal to the fourth moment of the data.

The Kurtosis of signal (s), denoted by kurt (s), is defined by

kurt(s) = E{s4} − 3(E{s4})2 (6)

This is a basic definition of kurtosis using higher order (fourth order) cumulant, this
simplification is based on the assumption that the signal has zero mean. To simplify things, we
can further assume that (s) has been normalised so that its variance is equal to one: E{s2} = 1.

Hence equation 6 can be further simplified to

kurt(s) = E{s4} − 3 (7)

Equation 7 illustrates that kurtosis is a nomralised form of the fourth moment E{s4} = 1. For
Gaussian signal, E{s4} = 3(E{s4})2 and hence its kurtosis is zero. For most non-Gaussian
signals, the kurtosis is nonzero. Kurtosis can be both positive or negative. Random variables
that have positive kurtosis are called as super Gaussian or platykurtotic, and those with negative
kurtosis are called as sub Gaussian or leptokurtotic. Non-Gaussianity is measured using the
absolute value of kurtosis or the square of kurtosis.

Kurtosis has been widely used as measure of Non-Gaussianity in ICA and related fields
because of its computational and theoretical and simplicity. Theoretically, it has a linearity
property such that

kurt(s1 ± s2) = kurt(s1)± kurt(s2) (8)

6 Independent Component Analysis for Audio and Biosignal Applications
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and
kurt(αs1) = α

4kurt(s1) (9)

where α is a constant. Computationally kurtosis can be calculated using the fourth moment
of the sample data, by keeping the variance of the signal constant.

In an intuitive sense, kurtosis measured how "spikiness" of a distribution or the size of the
tails. Kurtosis is extremely simple to calculate, however, it is very sensitive to outliers in
the data set. It values may be based on only a few values in the tails which means that its
statistical significance is poor. Kurtosis is not robust enough for ICA. Hence a better measure
of non-Gaussianity than kurtosis is required.

• Entropy

Entropy is a measure of the uniformity of the distribution of a bounded set of values, such
that a complete uniformity corresponds to maximum entropy. From the information theory
concept, entropy is considered as the measure of randomness of a signal. Entropy H of
discrete-valued signal S is defined as

H(S) = −∑ P(S = ai)logP(S = ai) (10)

This definition of entropy can be generalised for a continuous-valued signal (s), called
differential entropy, and is defined as

H(S) = −
∫

p(s)logp(s)ds (11)

One fundamental result of information theory is that Gaussian signal has the largest entropy
among the other signal distributions of unit variance. entropy will be small for signals that
have distribution concerned on certain values or have pdf that is very "spiky". Hence, entropy
can be used as a measure of non-Gaussianity.

In ICA estimation, it is often desired to have a measure of non-Gaussianity which is zero for
Gaussian signal and nonzero for non-Gaussian signal for computational simplicity. Entropy
is closely related to the code length of the random vector. A normalised version of entropy is
given by a new measure called Negentropy J which is defined as

J(S) = H(sgauss)− H(s) (12)

where sgauss is the Gaussian signal of the same covariance matrix as (s). Equation 12 shows
that Negentropy is always positive and is zero only if the signal is a pure gaussian signal.
It is stable but difficult to calculate. Hence approximation must be used to estimate entropy
values.

1.2.4 ICA assumptions

• The sources being considered are statistically independent

The first assumption is fundamental to ICA. As discussed in previous section, statistical
independence is the key feature that enables estimation of the independent components ŝ(t)

from the observations xi(t).

7Introduction: Independent Component Analysis
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• The independent components have non-Gaussian distribution

The second assumption is necessary because of the close link between Gaussianity and
independence. It is impossible to separate Gaussian sources using the ICA framework
because the sum of two or more Gaussian random variables is itself Gaussian. That is,
the sum of Gaussian sources is indistinguishable from a single Gaussian source in the ICA
framework, and for this reason Gaussian sources are forbidden. This is not an overly
restrictive assumption as in practice most sources of interest are non-Gaussian.

• The mixing matrix is invertible

The third assumption is straightforward. If the mixing matrix is not invertible then clearly the
unmixing matrix we seek to estimate does not even exist.

If these three assumptions are satisfied, then it is possible to estimate the independent
components modulo some trivial ambiguities. It is clear that these assumptions are not
particularly restrictive and as a result we need only very little information about the mixing
process and about the sources themselves.

1.2.5 ICA ambiguity

There are two inherent ambiguities in the ICA framework. These are (i) magnitude and scaling
ambiguity and (ii) permutation ambiguity.

• Magnitude and scaling ambiguity

The true variance of the independent components cannot be determined. To explain, we can
rewrite the mixing in equation 1 in the form

x = As

=
N

∑
j=1

ajsj
(13)

where aj denotes the jth column of the mixing matrix A. Since both the coefficients aj of the
mixing matrix and the independent components sj are unknown, we can transform Equation
13.

x =
N

∑
j=1

(1/αjaj)(αjsj) (14)

Fortunately, in most of the applications this ambiguity is insignificant. The natural solution
for this is to use assumption that each source has unit variance: E{sj2} = 1. Furthermore, the
signs of the of the sources cannot be determined too. This is generally not a serious problem
because the sources can be multiplied by -1 without affecting the model and the estimation

• Permutation ambiguity

The order of the estimated independent components is unspecified. Formally, introducing a
permutation matrix P and its inverse into the mixing process in Equation 1.

x = AP−1Ps

= A
′
s
′ (15)

8 Independent Component Analysis for Audio and Biosignal Applications
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Here the elements of P s are the original sources, except in a different order, and A′ = AP−1 is
another unknown mixing matrix. Equation 15 is indistinguishable from Equation 1 within the
ICA framework, demonstrating that the permutation ambiguity is inherent to Blind Source
Separation. This ambiguity is to be expected Ű in separating the sources we do not seek to
impose any restrictions on the order of the separated signals. Thus all permutations of the
sources are equally valid.

1.3 Preprocessing

Before examining specific ICA algorithms, it is instructive to discuss preprocessing steps that
are generally carried out before ICA.

1.3.1 Centering

A simple preprocessing step that is commonly performed is to ŞcenterŤ the observation vector
x by subtracting its mean vector m = E{x}. That is then we obtain the centered observation
vector, xc, as follows:

xc = x − m (16)

This step simplifies ICA algorithms by allowing us to assume a zero mean. Once the unmixing
matrix has been estimated using the centered data, we can obtain the actual estimates of the
independent components as follows:

ŝ(t) = A−1(xc + m) (17)

From this point on, all observation vectors will be assumed centered. The mixing matrix, on
the other hand, remains the same after this preprocessing, so we can always do this without
affecting the estimation of the mixing matrix.

1.3.2 Whitening

Another step which is very useful in practice is to pre-whiten the observation vector x.
Whitening involves linearly transforming the observation vector such that its components are
uncorrelated and have unit variance [27]. Let xw denote the whitened vector, then it satisfies
the following equation:

E{xwxT
w} = I (18)

where E{xwxT
w} is the covariance matrix of xw. Also, since the ICA framework is insensitive

to the variances of the independent components, we can assume without loss of generality
that the source vector, s, is white, i.e. E{ssT} = I

A simple method to perform the whitening transformation is to use the eigenvalue
decomposition (EVD) [27] of x. That is, we decompose the covariance matrix of x as follows:

E{xxT} = VDVT (19)

where V is the matrix of eigenvectors of E{xxT}, and D is the diagonal matrix of eigenvalues,
i.e. D = diag{λ1, λ2, ..., λn}. The observation vector can be whitened by the following
transformation:

xw = VD−1/2VT x (20)

9Introduction: Independent Component Analysis
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where the matrix D−1/2 is obtained by a simple component wise operation as D−1/2 =

diag{λ
−1/2
1 , λ

−1/2
2 , ..., λ

−1/2
n }. Whitening transforms the mixing matrix into a new one, which

is orthogonal

xw = VD−1/2VT As = Aws (21)

hence,

E{xwxT
w} = AwE{ssT}AT

w

= Aw AT
w

= I

(22)

Whitening thus reduces the number of parameters to be estimated. Instead of having to
estimate the n2 elements of the original matrix A, we only need to estimate the new orthogonal
mixing matrix, where An orthogonal matrix has n(n − 1)/2 degrees of freedom. One can
say that whitening solves half of the ICA problem. This is a very useful step as whitening
is a simple and efficient process that significantly reduces the computational complexity of
ICA. An illustration of the whitening process with simple ICA source separation process is
explained in the following section.

1.4 Simple illustrations of ICA

To clarify the concepts discussed in the preceding sections two simple illustrations of ICA are
presented here. The results presented below were obtained using the FastICA algorithm, but
could equally well have been obtained from any of the numerous ICA algorithms that have
been published in the literature (including the Bell and Sejnowsiki algorithm).

1.4.1 Separation of two signals

This section explains the simple ICA source separation process. In this illustration two
independent signals, s1 and s2, are generated. These signals are shown in Figure2. The
independent components are then mixed according to equation 1 using an arbitrarily chosen
mixing matrix A, where

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

0 200 400 600 800 1000
−1

−0.5

0

0.5

1
Original source “ s2 ”

 

 

Original source “ s1 ”

Fig. 2. Independent sources s1 and s2
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Fig. 3. Observed signals, x1 and x2, from an unknown linear mixture of unknown
independent components
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Estimated signal “ s1 ”

Estimated signal “ s2 ”

Fig. 4. Estimates of independent components

A =

(

0.3816 0.8678
0.8534 −0.5853

)

The resulting signals from this mixing are shown in Figure 3. Finally, the mixtures x1 and x2

are separated using ICA to obtain s1 and s2, shown in Figure 4. By comparing Figure 4 to
Figure 2 it is clear that the independent components have been estimated accurately and that
the independent components have been estimated without any knowledge of the components
themselves or the mixing process.

This example also provides a clear illustration of the scaling and permutation ambiguities
discussed previously. The amplitudes of the corresponding waveforms in Figures 2 and 4
are different. Thus the estimates of the independent components are some multiple of the
independent components of Figure 3, and in the case of s1, the scaling factor is negative. The
permutation ambiguity is also demonstrated as the order of the independent components has
been reversed between Figure 2 and Figure 4.

11Introduction: Independent Component Analysis
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Fig. 5. Original sources
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Fig. 6. Mixed sources

1.4.2 Illustration of statistical independence in ICA

The previous example was a simple illustration of how ICA is used; we start with mixtures
of signals and use ICA to separate them. However, this gives no insight into the mechanics
of ICA and the close link with statistical independence. We assume that the independent
components can be modeled as realizations of some underlying statistical distribution at
each time instant (e.g. a speech signal can be accurately modeled as having a Laplacian

12 Independent Component Analysis for Audio and Biosignal Applications
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Fig. 7. Joint density of whitened signals obtained from whitening the mixed sources
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Fig. 8. ICA solution (Estimated sources)

distribution). One way of visualizing ICA is that it estimates the optimal linear transform
to maximise the independence of the joint distribution of the signals Xi.

The statistical basis of ICA is illustrated more clearly in this example. Consider two random
signals which are mixed using the following mixing process:

(

x1

x2

)

=

(

1 2
1 1

)(

s1

s2

)

13Introduction: Independent Component Analysis



12 Will-be-set-by-IN-TECH

Figure 5 shows the scatter-plot for original sources s1 and s2. Figure 6 shows the scatter-plot of
the mixtures. The distribution along the axis x1 and x2 are now dependent and the form of the
density is stretched according to the mixing matrix. From the Figure 6 it is clear that the two
signals are not statistically independent because, for example, if x1 = -3 or 3 then x2 is totally
determined. Whitening is an intermediate step before ICA is applied. The joint distribution
that results from whitening the signals of Figure 6 is shown in Figure 7. By applying ICA, we
seek to transform the data such that we obtain two independent components.

The joint distribution resulting from applying ICA to x1 and x2 is shown in Figure 7. This is
clearly the joint distribution of two independent, uniformly distributed random variables.
Independence can be intuitively confirmed as each random variable is unconstrained
regardless of the value of the other random variable (this is not the case for x1 and x2. The
uniformly distributed random variables in Figure 8 take values between 3 and -3, but due to
the scaling ambiguity, we do not know the range of the original independent components.
By comparing the whitened data of Figure 7 with Figure 8, we can see that, in this case,
pre-whitening reduces ICA to finding an appropriate rotation to yield independence. This
is a simplification as a rotation is an orthogonal transformation which requires only one
parameter.

The two examples in this section are simple but they illustrate both how ICA is used and the
statistical underpinnings of the process. The power of ICA is that an identical approach can
be used to address problems of much greater complexity.

2. ICA for different conditions

One of the important conditions of ICA is that the number of sensors should be equal to
the number of sources. Unfortunately, the real source separation problem does not always
satisfy this constraint. This section focusses on ICA source separation problem under different
conditions where the number of sources are not equal to the number of recordings.

2.1 Overcomplete ICA

Overcomplete ICA is one of the ICA source separation problem where the number of sources
are greater than the number of sensors, i.e (n > m). The ideas used for overcomplete ICA
originally stem from coding theory, where the task is to find a representation of some signals
in a given set of generators which often are more numerous than the signals, hence the
term overcomplete basis. Sometimes this representation is advantageous as it uses as few
‘basis’ elements as possible, referred to as sparse coding. Olshausen and Field Olshausen
(1995) first put these ideas into an information theoretic context by decomposing natural
images into an overcomplete basis. Later, Harpur and Prager Harpur & Prager (1996) and,
independently, Olshausen Olshausen (1996) presented a connection between sparse coding
and ICA in the square case. Lewicki and Sejnowski Lewicki & Sejnowski (2000) then were the
first to apply these terms to overcomplete ICA, which was further studied and applied by Lee
et al. Lee et al. (2000). De Lathauwer et al. Lathauwer et al. (1999) provided an interesting
algebraic approach to overcomplete ICA of three sources and two mixtures by solving a
system of linear equations in the third and fourth-order cumulants, and Bofill and Zibulevsky
Bofill (2000) treated a special case (‘delta-like’ source distributions) of source signals after
Fourier transformation. Overcomplete ICA has major applications in bio signal processing,

14 Independent Component Analysis for Audio and Biosignal Applications
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due to the limited number of electrodes (recordings) compared to the number active muscles
(sources) involved (in certain cases unlimited).

Fig. 9. Illustration of “overcomplete ICA"

In overcomplete ICA, the number of sources exceed number of recordings. To analyse this,
consider two recordings x1(t) and x2(t) from three independent sources s1(t), s2(t) and s3(t).
The xi(t) are then weighted sums of the si(t), where the coefficients depend on the distances
between the sources and the sensors (refer Figure 9):

x1(t) = a11s1(t) + a12s2(t) + a13s3(t) (23)

x2(t) = a21s1(t) + a22s2(t) + a23s3(t)

The aij are constant coefficients that give the mixing weights. The mixing process of these
vectors can be represented in the matrix form as (refer Equation 1):

(

x1

x2

)

=

(

a11 a12 a13

a21 a22 a23

)

⎛

⎝

s1

s2

s3

⎞



The unmixing process and estimation of sources can be written as (refer Equation 2):

⎛

⎝

s1

s2

s3

⎞

 =

⎛

⎝

w11 w12

w21 w22

w31 w32

⎞



(

x1

x2

)

In this example matrix A of size 2×3 matrix and unmixing matrix W is of size 3×2. Hence
in overcomplete ICA it always results in pseudoinverse. Hence computation of sources in
overcomplete ICA requires some estimation processes.

2.2 Undercomplete ICA

The mixture of unknown sources is referred to as under-complete when the numbers of
recordings m, more than the number of sources n. In some applications, it is desired to
have more recordings than sources to achieve better separation performance. It is generally
believed that with more recordings than the sources, it is always possible to get better estimate
of the sources. This is not correct unless prior to separation using ICA, dimensional reduction

15Introduction: Independent Component Analysis
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is conducted. This can be achieved by choosing the same number of principal recordings as
the number of sources discarding the rest. To analyse this, consider three recordings x1(t),
x2(t) and x3(t) from two independent sources s1(t) and s2(t). The xi(t) are then weighted
sums of the si(t), where the coefficients depend on the distances between the sources and the
sensors (refer Figure 10):

Fig. 10. Illustration of “undercomplete ICA"

x1(t) = a11s1(t) + a12s2(t)

x2(t) = a21s1(t) + a22s2(t) (24)

x3(t) = a31s1(t) + a32s2(t)

The aij are constant coefficients that gives the mixing weights. The mixing process of these
vectors can be represented in the matrix form as:

⎛

⎝

x1

x2

x3

⎞

 =

⎛

⎝

a11 a12

a21 a22

a31 a32

⎞



(

s1

s2

)

The unmixing process using the standard ICA requires a dimensional reduction approach so
that, if one of the recordings is reduced then the square mixing matrix is obtained, which can
use any standard ICA for the source estimation. For instance one of the recordings say x3 is
redundant then the above mixing process can be written as:

(

x1

x2

)

=

(

a11 a12

a21 a22

)(

s1

s2

)

Hence unmixing process can use any standard ICA algorithm using the following:
(

s1

s2

)

=

(

w11 w12

w21 w22

)(

x1

x2

)

The above process illustrates that, prior to source signal separation using undercomplete ICA,
it is important to reduce the dimensionality of the mixing matrix and identify the required
and discard the redundant recordings. Principal Component Analysis (PCA) is one of the
powerful dimensional reduction method used in signal processing applications, which is
explained next.
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3. Applications of ICA

The success of ICA in source separation has resulted in a number of practical applications.
Some of these includes,

• Machine fault detection Kano et al. (2003); Li et al. (2006); Ypma et al. (1999);
Zhonghai et al. (2009)

• Seismic monitoring Acernese et al. (2004); de La et al. (2004)

• Reflection canceling Farid & Adelson (1999); Yamazaki et al. (2006)

• Finding hidden factors in financial data Cha & Chan (2000); Coli et al. (2005); Wu & Yu
(2005)

• Text document analysis Bingham et al. (2002); Kolenda (2000); Pu & Yang (2006)

• Radio communications Cristescu et al. (2000); Huang & Mar (2004)

• Audio signal processing Cichocki & Amari (2002); Lee (1998)

• Image processing Cichocki & Amari (2002); Déniz et al. (2003); Fiori (2003); Karoui et al.
(2009); Wang et al. (2008); Xiaochun & Jing (2004); Zhang et al. (2007)

• Data mining Lee et al. (2009)

• Time series forecasting Lu et al. (2009)

• Defect detection in patterned display surfaces Lu1 & Tsai (2008); Tsai et al. (2006)

• Bio medical signal processing Azzerboni et al. (2004); Castells et al. (2005);
De Martino et al. (2007); Enderle et al. (2005); James & Hesse (2005); Kumagai & Utsugi
(2004); Llinares & Igual (2009); Safavi et al. (2008); Zhu et al. (2006).

3.1 Audio and biomedical applications of ICA

Exemplary ICA applications in biomedical problems include the following:

• Fetal Electrocardiogram extraction, i.e removing/filtering maternal electrocardiogram
signals and noise from fetal electrocardiogram signals Niedermeyer & Da Silva (1999);
Rajapakse et al. (2002).

• Enhancement of low level Electrocardiogram components Niedermeyer & Da Silva (1999);
Rajapakse et al. (2002)

• Separation of transplanted heart signals from residual original heart signals Wisbeck et al.
(1998)

• Separation of low level myoelectric muscle activities to identify various gestures
Calinon & Billard (2005); Kato et al. (2006); Naik et al. (2006; 2007)

One successful and promising application domain of blind signal processing includes
those biomedical signals acquired using multi-electrode devices: Electrocardiography
(ECG), Llinares & Igual (2009); Niedermeyer & Da Silva (1999); Oster et al. (2009);
Phlypo et al. (2007); Rajapakse et al. (2002); Scherg & Von Cramon (1985); Wisbeck et al.
(1998), Electroencephalography (EEG) Jervis et al. (2007); Niedermeyer & Da Silva (1999);
Onton et al. (2006); Rajapakse et al. (2002); Vigário et al. (2000); Wisbeck et al. (1998),
Magnetoencephalography (MEG) Hämäläinen et al. (1993); Mosher et al. (1992); Parra et al.
(2004); Petersen et al. (2000); Tang & Pearlmutter (2003); Vigário et al. (2000).

One of the most practical uses for BSS is in the audio world. It has been used for noise removal
without the need of filters or Fourier transforms, which leads to simpler processing methods.

17Introduction: Independent Component Analysis
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There are various problems associated with noise removal in this way, but these can most
likely be attributed to the relative infancy of the BSS field and such limitations will be reduced
as research increases in this field Bell & Sejnowski (1997); Hyvarinen et al. (2001).

Audio source separation is the problem of automated separation of audio sources present
in a room, using a set of differently placed microphones, capturing the auditory scene. The
whole problem resembles the task a human listener can solve in a cocktail party situation,
where using two sensors (ears), the brain can focus on a specific source of interest, suppressing
all other sources present (also known as cocktail party problem) Hyvarinen et al. (2001); Lee
(1998).

4. Conclusions

This chapter has introduced the fundamentals of BSS and ICA. The mathematical framework
of the source mixing problem that BSS/ICA addresses was examined in some detail, as
was the general approach to solving BSS/ICA. As part of this discussion, some inherent
ambiguities of the BSS/ICA framework were examined as well as the two important
preprocessing steps of centering and whitening. The application domains of this novel
technique are presented. The material covered in this chapter is important not only to
understand the algorithms used to perform BSS/ICA, but it also provides the necessary
background to understand extensions to the framework of ICA for future researchers.

The other novel and recent advances of ICA, especially on Audio and Biosignal topics are
covered in rest of the chapters in this book.
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