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1. Introduction 

The electrostatic repulsion between the phosphodiester anionic charges of nucleic acids 

(NA) and the negatively-charged headgroups of cell membrane phospholipids hinders 

naked NA to permeate the plasma membrane [1, 2]. Additionally, nucleases present in the 

cells and in biological fluids enzymatically degrade NA, limiting their biofunctionality. 

Although many alternative methods have been developed to deliver NA to cells, factors 

such as versatility [3, 4], applicability [5, 6] and efficiency [7, 8] have discouraged their 

disseminated use in gene therapy. 

Given these limitations, the intracellular delivery of genetic material can only be achieved 

through the use of physical, biological or chemical methods that promote gene insertion into 

cells. Physical methods have generally low in vivo applicability and include direct injection 

of NA into organs of live animals, micro projectile biolistics with a gene-propelling gun, cell 

sonication using an ultrasonic transducer and cell electroporation by exposure to an electric 

field. Biological methods rely on attenuated or inactivated versions of adenoviruses, 

lentiviruses and retroviruses, whose deactivated components can be used as gene vectors to 

obtain relatively high in vivo transfection efficiencies (transfection mediated by viral vectors) 

[9, 10]. Viral vectors pose nevertheless important safety, toxicity and immunogenicity issues, 

which greatly limit their use in humans. Chemical methods are based on the use of chemical 

adjuvants with relatively high levels of biocompatibility, such as synthetic polymers 

(polyfection) [11, 12] and cationic liposomes (lipofection) [13-15]. These molecules self-

assemble in highly organized structures capable of complexing the genetic material and 

later releasing it inside the cells. Whereas viruses generally impose issues of mutagenicity 

and immunogenicity [16, 17], polymers such as polyethylenimine (PEI) are known to be 

highly cytotoxic [18, 19]. By exclusion of alternatives, cationic liposomes have emerged as 



 
Cell Interaction 246 

the carriers of excellence for intracellular delivery of nucleic acids due to their high 

versatility [20], reduced cytotoxicity [21], and high transfection efficiency [22]. 

Cationic liposomes are spherical vesicles composed of one or more cationic lipid or 

phospholipid bilayers [23, 24]. They include both cationic and neutral surfactants in their 

composition and may differ in size [25], lamellarity [26] or charge [27]. The cationic 

amphiphiles (which are mainly of synthetic nature) share two common features: the net 

cationic charge on the hydrophilic headgroup, and the hydrophobic tail that anchors the 

molecule to the liposome lipid bilayer [28]. The chemical structure of the cationic lipids 

varies markedly and each molecule can have a single (monovalent surfactant) or multiple 

cationic charges (multivalent surfactant) [29]. The neutral helper lipid also plays an 

important role in lipoplex fate by promoting the formation of inverted non-lamellar 

structures. These structures facilitate lipoplex fusion with the cell membrane and the 

subsequent release of the genetic material in the cytoplasm [30]. In addition, the presence of 

helper lipid reduces the amount of cationic lipid required for NA condensation, which 

reflects itself on a reduction of the toxic effects towards the cells, by decreasing the number 

of positively-charged headgroups in the lipoplex formulation [31, 32]. 

The driving force for lipoplex formation is the electrostatic interaction between the net 

positive charge of the cationic liposomes and the negatively charged DNA at an optimal 

ratio (+/-). This fact also enables the resulting complex to adsorb to the negatively charged 

cell surface [33-36]. After adsorption, cellular uptake of the complexed DNA facilitates 

intracellular DNA delivery and subsequent transgene expression [37]. In the case of 

DODAB/MO formulations, in which DODAB acts as a monovalent cationic surfactant and 

MO as helper lipid, the inclusion of MO leads to a dual-lipoplex phase diagram with lamellar 

structures prevalent at DODAB molar fractions above 0.5 and inverted bicontinuous cubic 

mesophases below 0.5 [38]. 

The high structural dependence of the system on MO content and temperature [39, 40] could 

reveal itself useful for optimizing lipoplex resistance against deleterious interactions with 

biological fluids and cell components, while remaining biocompatible and efficient as 

delivery agent. The presence of MO in these formulations also reduces the net positive 

charge necessary for successful NA complexation, thus reducing transfection-associated 

cytotoxicity [41]. In summary, a multidisciplinary approach to lipofection vectors will lead 

to the development of formulations with the most appropriate characteristics. Careful 

design of liposomal composition is essential for overcoming biological barriers, in order to 

achieve optimal transfection efficiency in vitro and in vivo. 

2. Cationic lipid-mediated gene transfection 

2.1. DODAB:MO liposomes 

When assessing the potential of a new lipofection reagent, it is fundamental to study the 

physicochemical properties of the base liposomal formulation, to better adjust lipoplex 
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morphology (lipoplex size, charge ratio (+/-), fluidity and structure) for optimal transfection 

conditions. In this way, the behaviour of the lipofection reagent (resistance to extracellular 

components, cytotoxicity)  in vitro and in vivo is more predictable [42-44]. 

MO was first proposed as helper lipid for non-viral transfection [45, 46] in a new liposomal 

formulation also including synthetic surfactant Dioctadecyldimethylammonium Bromide 

(DODAB) [41]. DODAB is a bilayer-forming cationic lipid that tends to form large 

unilamellar vesicles (LUV’s) in excess water [47, 48]. It features a hydrophobic moiety 

consisting of a double acyl chain (C18:0) attached to a quaternary ammonium headgroup 

(one single positive charge per molecule) [49, 50]. DODAB’s phase behaviour has been 

extensively studied [51, 52], thus its physicochemical characteristics can be easily 

controlled, making it straightforward to design DODAB-based formulations with specific 

molecular structures. DODAB’s main limitation is the relatively high gel-to-liquid 

crystalline phase transition temperature (TM = 45°C) [53-56], superior to the human 

physiological temperature (TM = 37°C), meaning that DODAB’s bilayers display a strong 

rigidity at normal body temperature which greatly limits its use as a delivery agent. This 

limitation can be counteracted by including a co-lipid with a lower TM value, such as 

DOPE [57, 58], cholesterol [59, 60] or MO [40], which will lower the TM of the lipid 

mixture.  

The use of MO in liposomal formulations brings other advantages apart from the 

fluidization of DODAB’s membranes. MO is a natural-occurring neutral surfactant that has 

the particularity of forming two inverted bicontinuous cubic phases (QIID and QIIG) in excess 

water [61, 62]. It possesses a single unsaturated acyl chain (C18:1) attached to a glycerol 

headgroup [63]. Its tendency to form inverted bicontinuous cubic phases has been explored 

in the past for different applications such as protein crystallization [64, 65] or matrix for gel 

electrophoresis [66], and justifies the structural richness of the liposomal system formed 

with DODAB [40].  

The aggregation behaviour of concentrated DODAB/MO mixtures has been studied 

through different techniques including phase scan imaging (Fig. 1) that reveals a two-

region phase diagram consisting of either DODAB or MO enriched zones [40]. If ΧDODAB ≥ 

0.5, bilayer-based structures dominate (Fig. 1A’, 1B’) and their size and fluidity depend on 

the molar composition of the mixture, with DODAB gel phase appearing as hydrated 

crystals [40]. When ΧDODAB < 0.5, aggregates are dominated by densely packed cubic-

oriented particles, visible as a cubic isotropic phase (Q) associated with high MO contents 

(Fig. 1D’, 1E’) [40]. 

This dual phase behaviour of DODAB/MO lipid mixtures confers a structural complexity to 

the system that extends itself to lipoplex organization, which can be fine-tuned to suit the 

biological application. Additionally, results show that MO has a similar effect on aggregate 

morphology than an increase in temperature, which can be modulated to produce 

formulations more suitable for gene transfection [39, 40]. 



 
Cell Interaction 248 

 

Figure 1. Phase scan imaging of neat DODAB (A, A’); ΧDODAB = 0.7 (B, B’); ΧDODAB = 0.5 (C, C’); ΧDODAB = 

0.2 (D, D’) and neat MO (E, E’) at 25°C. The images on the left side were obtained under polarized light 

and the images on the right side were obtained with normal light, using DIC lenses. Scale Bar: 200 µm. 

Abbreviations: Lα, lamellar liquid crystalline phase; Q, cubic isotropic phase; L, isotropic phase. 

Adapted from [40]. 
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2.2. Role of MO as helper lipid in pDNA/DODAB/MO lipoplexes 

The incubation of nucleic acids with DODAB/MO mixtures or other cationic vesicle 

formulation leads to the formation of lipoplexes [67, 68]. The electrostatic interaction between 

opposite charges is the key factor that determines the adsorption of the cationic vesicles to the 

DNA molecules, a transient state that ends when a critical cationic vesicle concentration is 

reached. This leads to the disruption of the lipid vesicles which allows the formation of highly 

organized structures where the DNA molecules are tightly condensed between adjacent 

bilayers – the so-called lipoplexes [69-71]. The excess of cationic lipid is required for lipoplex 

binding to the cell surface but any subsequent addition of cationic lipid to the complex does 

not enhance DNA delivery and only increases toxicity in the exposed cells [72]. 

Lipoplexes such as the pDNA/DODAB/MO system can be directly visualized by techniques 

such as cryo-TEM imaging (Fig. 2), which also gives information on the structural properties 

of the system (size, compactation, organization) [38]. Cryo-TEM imaging reveals that 

pDNA/DODAB/MO lipoplexes present the same dual phase diagram as obtained for 

DODAB/MO lipid mixtures [38]. pDNA/DODAB/MO lipoplexes at ΧDODAB > 0.5 (Fig. 2A) 

exhibit a multilamellar structure consisting of stacked alternating lipid bilayers and pDNA 

monolayers. The analysis using Fast Fourier Transforms (FFT) corroborates this observation, 

by denoting a mono-orientated organization pattern at repeating distances of about 5 nm 

(Fig. 2A’’, 2A’’’ and 2A’’’’) [38]. 

In contrast, pDNA/DODAB/MO lipoplexes at ΧDODAB ≤ 0.5 (Fig. 2B) show high-curvature 

zones where lipid bilayers intercross each other with pDNA monolayers stacked between 

them. These high-curvature zones have been interpreted as MO-rich domains that alternate 

with DODAB-rich domains presenting multilamellar organization. The FFT diagrams show 

that these MO-rich domains possess a distinct structural organization with bi-orientated 

patterns in angles of 90% between them, consistent with the existence of cubic inverted 

bicontinuous mesophases (Fig. 2B’’, 2B’’’ and 2B’’’’) [38]. 

The DODAB/MO aggregate organization influences the final structural properties of the 

resulting pDNA/DODAB/MO lipoplexes, with MO content having a dramatic effect on how 

DNA is condensed and protected within the membrane. 

By definition, a helper lipid (also termed as co-lipid or simply adjuvant) is any neutral 

surfactant not directly contributing to NA condensation or to targeting of the cell membrane 

by the lipoplex. Helper lipids enhance transfection efficiency by forming non-lamellar 

structures that intervene in several steps of the transfection process [73, 74]. These non-

lamellar structures influence transfection efficiency in at least two ways: i) lipoplex-cell 

membrane fusion promoted by the fusogenic character of the helper; ii) improved endosomal 

escape of NA due to the disruption of the endosomal membrane by these structures prior to 

endosome/lysosome fusion, which would lead to NA degradation [75]. 

Dioleoylphosphatidylethanolamine (DOPE) is the most established helper used in non-viral 

vectors and is known to enhance transfection mediated by different cationic liposomal 

formulations [76-79]. DOPE stimulates the formation of inverted hexagonal structures (HII – 
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Fig 3A) which represent a major structural variation from the classic multilamellar sandwich 

model of lipoplex organization (LαC – Fig. 3B) [80]. However, its application in gene therapy 

has been strongly limited because of the strong cytotoxicity associated with it [81, 82]. 

 

 

Figure 2. Cryo-TEM imaging of pDNA/DODAB:MO lipoplexes at C.R. (+/-) 4.0 (1mM total lipid). 

Panels A and B represent two different DODAB:MO molar fractions (2:1 and 1:1, respectively) from 

which have been selected two distinct zones A’ and B’. The corresponding FFT diagrams A’’ and B’’ are 

shown after the appliance of “Mask” tool in the Digital Micrograph™ (GATAN) software (A’’’ and B’’’). 

The inverse FFT diagrams of the previous images allow the emergence of distinct structural patterns: 

mono-orientated organization consistent with the existence of lamellar structures for high DODAB 

contents (A’’’’, 2:1) and 90° bi-orientated organization associated with inverted bicontinuous cubic 

mesophases for high MO contents (B’’’’, 1:1). Magnification: 50 000x. Adapted from [38]. 
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This evidence has motivated the search for new helpers with higher levels of 

biocompatibility while maintaining the same efficiency as DOPE. Cholesterol is one of such 

molecules due to its ability to modify bilayer fluidity [83]. Inclusion of cholesterol results in 

the formation of complexes that are more stable but less efficient in vitro compared to DOPE- 

containing lipoplexes. In contrast, addition of cholesterol results in more efficient complexes 

for in vivo application [84, 85]. 

MO is another promising alternative to common helper lipids, as it seems to combine 

positive aspects of both DOPE and cholesterol: tendency to promote inverted non-lamellar 

structures similarly to DOPE (although different from the common inverted hexagonal 

structures – Fig. 3C) and the fluidizing effect of cholesterol, which increases the fusogenicity 

of the lipoplexes. 

 

Figure 3. Different types of pDNA/cationic lipid structural organizations: A - inverted non-lamellar 

hexagonal structure characteristic of cationic vesicles containing DOPE at ΧDOPE ≥ 0.5); B - lamellar 

structural characteristic of cationic vesicles containing ΧHelper ≤ 0.5; and C - inverted bicontinuous cubic 

structure characteristic of cationic vesicles containing MO at ΧMO ≥ 0.5. Double-tailed surfactant with 

grey-headgroup represents cationic lipid, double-tailed surfactant with white-headgroup represents 

DOPE and single-tailed surfactant with white-headgroup represents MO. Grey-coloured regions 

represent cationic lipid rich-domains and white-coloured regions represent MO or DOPE rich-domains. 

The fluidizing effect of MO contributes favourably to the complexation efficiency of DNA, 

quickening lipoplex formation [41]. At the same time, the formed inverted bicontinuous 

cubic mesophases improve the resistance of aggregates to extracellular component 
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destabilization, thereby potentially enhancing transfection efficiency [38]. MO-based 

aggregates induce a relatively low cytotoxicity level, which further reinforces its use as a 

new helper lipid in this type of non-viral systems. In vivo evaluation of MO-based lipoplexes 

shall confirm the potential for this neutral surfactant to replace classic helpers in lipofection 

formulations, although some promising results have already been obtained for other 

cationic lipid formulations that also form inverted bicontinuous cubic structures [86-88]. 

Ethylphosphatidylcholines are a family of positively charged membrane lipid derivatives 

that promote the formation of QIIG and QIIP structures, having been linked to high levels of 

transfection efficiency with low cytotoxicity in several animal cell lines [89, 90], 

consubstantiating MO’s potential role in gene delivery. 

2.3. Recent progress in gene delivery with cationic lipids 

The quest for the perfect cationic liposome formulation has been based on empirical testing 

of novel surfactant molecules that had never been previously used for NA delivery [91-93]. 

The only goals for candidate molecules are the attainance of high transfection efficiency with 

low cytotoxicity [94, 95]. 

After the first generation of cationic lipids based on double-chain surfactants with plain 

ammonium headgroups (DODAB, DOTAP, DOTMA or DMRIE) [96, 97], soon came cationic 

lipids with poly-ammonium and multivalent functional radicals (DOGS, DOSPA). The latter 

exhibited higher transfection efficiencies but also higher cytotoxicity due to the 

immunogenicity of the cationic ammonium headgroups [98, 99]. This negative effect was 

balanced with the appearance of helpers (DOPE) [74] and natural lipid-derivatives such as 

cholesterol [100] or glycerol [101], although sometimes compromising transfection 

efficiency. Gemini-dimeric surfactants also presented promising potential but with 

significant toxicological consequences [102-106]. 

Polyethylene glycol (PEG)-based lipids emerged as interesting hydrophilic polymer-based 

surfactants that could provide steric stability to cationic liposomes, increasing lipoplex 

lifetime in the bloodstream and also decreasing the toxic effects observed in vitro and in vivo 

[107-109]. The polymeric counterpart of the PEG-based surfactants (variable both in chain 

length and branching) forms a protective surface coating that inhibits the adhesion of 

plasma components which could promote NA release and particle aggregation [109]. This 

protective effect is enhanced by including up to 5-10% of PEG in the liposomal formulation, 

with no visible effects on lipoplex structure [110]. PEG addition reduces net electric charge 

and increases hydration of the liposome surface, decreasing immunogenicity and 

cytotoxicity elicited by the particles. Nevertheless, at high concentrations, these polymers 

are known to be toxic and of difficult clearance from the organism. Therefore, when 

developing PEGylated particles, one must weigh advantages and disadvantages of 

including PEG, especially when aiming for long-term therapeutic administration [111]. 

Inclusion of pH-sensitive molecules in the formulations has been shown to improve 

transgene expression by favouring DNA release from the endosomal compartment. 

Examples of pH-sensitive molecules used in non-viral gene delivery include polyhistidine, 
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dioleoyldimethylammonium propane (DODAP) or cholesteryl hemisuccinate (CHEMS) 

[112, 113]. 

Another major breakthrough with impact in gene therapy was the possibility of specific cell 

targeting by liposomes. Amphiphiles with hydrophilic headgroups could be chemically 

linked to molecules such as folate, transferrin or the epidermal growth factor that potentiate 

specific delivery to cancer cells, markedly increasing the therapeutic benefits achieved with 

lipoplexes, with little secondary effects [114-118]. 

More recently, cationic lipids with amino acid headgroup (serine, alanine) [119, 120] and 

sugar-based cationic lipids (D-galactose) have appeared as promising families of cationic 

surfactants [121, 122]. Small molecular weight peptides (glutamate, cysteine) augment the 

hydrophilicity of the lipoplex surface, as with small surface sugars (galactose, mannose) that 

additionally allow targetability of the lipoplexes. 

3. Lipoplex interaction with extracellular milieu 

3.1. Resistance to components of biological fluids 

An effective delivery system must confer stability to complexed NA in physiological 

conditions [123, 124]. Systemic delivery of NA requires a stealth carrier that protects NA 

from indiscriminate interaction with complement and coagulation pathways that lead to 

rapid removal from blood circulation of the lipoplexes by opsonization [125-127]. 

pDNA/DODAB/MO lipoplexes were therefore tested regarding their sensitivity when 

simulating their interaction with the body (temperature, salt, exposure to serum, nucleases 

and membrane lipases), to be validated for systemic applications [128].  

Fig. 4 shows the variation of free pDNA fraction after incubation of pDNA/DODAB:MO 

lipoplexes (2:1, 1:1 and 1:2) with different constituents of the plasma. Increasing the 

temperature from 25°C to physiological temperature (37°C) leads to a reduced but visible 

release of pDNA from the lipoplex, more evident for lower MO contents. The gel phase of 

DODAB (ΧDODAB> 0.5) is clearly more disturbed by incubation at higher temperature than 

the liquid-crystalline phase of DODAB/MO lipid mixtures (ΧDODAB ≤ 0.5). This tendency is 

maintained upon NaCl addition at physiological concentration (150mM), showing the 

protective role of MO upon the electrostatic imbalance provoked by salt addition. 

DODAB/MO formulations with varying MO content behave very differently when exposed 

to serum (Fig. 4). Serum may strongly interfere with lipoplexes, both in vitro and in vivo, 

causing lipoplex-protein aggregation that lead to degradation of the genetic material and 

possibly clogging the blood vessels in intravenous application [129]. pDNA/DODAB/MO 

lipoplexes release up to 30% of the initially complexed pDNA when incubated for 30min 

with bovine serum albumin, the major constituent of bovine serum, particularly in the case 

of formulations with low MO content. MO contributes, in fact, to a better resistance of 

pDNA/DODAB/MO to extracellular components, eventually related to the inverted 

bicontinuous cubic structures  present that reduce the exposure of DNA molecules to the 
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plasma constituents. In fact, the results suggest a direct correlation between lipoplex 

stability and MO content. 

Some authors have managed to transiently overcome this inhibitory effect of serum on 

lipofection by increasing the charge ratio (+/-) of cationic liposome to DNA [130, 131]. 

Significantly enhanced gene transfer has also been achieved by pre-incubating the delivery 

system with serum proteins prior to NA complexation [132, 133]. 

 

Figure 4. Resistance of pDNA/DODAB:Monoolein lipoplexes to components of biological fluids. 

Variation on the percentage of free pDNA upon incubation with DODAB:Monoolein liposomes (2:1, 1:1, 

and 1:2) at CR (+/-) 2.0, and subsequently exposed to a temperature increase from 25°C to 37°C in the 

presence of NaCl salt (150mM) and BSA (0.5g/L) at incubation times of 30 min. The values were 

calculated through spectral decomposition of ethidium bromide steady-state fluorescence, as described 

elsewhere [38]. 
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3.2. Lipoplex adhesion to the cell surface 

The adsorption and uptake of lipoplexes may be affected by the presence of proteoglycans 

at the plasma cell membrane surface. It is therefore important to study how lipoplexes 

interact with these extracellular matrix components during cell transfection. Association of 

lipoplexes with negative polyelectrolytes free in solution might also be useful to evaluate 

eventual loss of pDNA at the cell surface [134]. 

Proteoglycans (membrane receptors consisting of a protein core and one or more anionic 

glycosaminoglycan chains including heparin, dermatan and chondroitin sulphates) were 

identified as the mediating agents for cationic liposome/DNA cellular uptake both in vitro 

and in vivo [135]. Lipoplex/proteoglycan interaction is suggested to depend upon three 

major aspects: the ionic strength, the effect of helper lipids and of the glycosaminoglycan 

structure [134, 135]. 

When the lipoplexes interact with heparin and heparin sulphate, the negative charge of the 

polyelectrolytes determines NA release from the lipoplex through the same type of 

cooperative process that is responsible for lipoplex formation [136-138]. 

On subjecting pDNA/DODAB:MO (2:1 and 1:1) lipoplexes to increasing amounts of heparin 

(HEP), the improved resistance and stability of the lipoplexes obtained with increasing 

amounts of MO could be confirmed (Fig. 5). The fact that the system with higher MO 

content (ΧDODAB= 0.5) shows enhanced resistance to heparin relatively to pDNA/DODAB:MO 

(2:1) lipoplexes suggests that pDNA dissociation is mainly dependent on structural 

properties (Fig. 2) rather than physicochemical properties of the lipoplexes. 

4. Modulation of cell behaviour by lipoplexes 

4.1. Cytotoxicity 

In addition to the efficiency of MO based lipoplexes, patient tolerability is determinant for 

therapeutic application of these systems. In vitro toxicity tests are a useful, time and cost-

effective first approach in the validation process of a therapeutic agent. The adverse effects 

of liposomes on cells can be identified through different assays that look at particular 

aspects of cell behavior, such as metabolism, proliferation or cell membrane integrity. To 

determine if liposomal formulations will be well tolerated by all cells it will contact with, it is 

important to test cytotoxicity using different cell types. The cell lines should be selected: i) to 

evaluate how target cells will react; ii) to predict eventual toxicity for the heart and liver, by 

using cardiomyocytes and hepatocytes, respectively; iii) to screen if the liposomes can be 

applied to all types of cells. In the case of DODAB:MO liposomes, four different mammalian 

cell lines (HEK 293, BJ5ta, L929 and C2C12) were exposed for two days to increasing 

concentrations of these systems, after which different analytical methods were applied (Figs. 6 

to 8). 

The cell lines presented here are routinely used for toxicity studies and are commercially 

available. The human Embryonic Kidney (HEK) 293 cell line was originally derived from 
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human embryonic kidney cells grown in tissue culture, from which 293T cell line is derived. 

BJ5ta cells are normal human foreskin fibroblasts immortalized with telomerase. Murine cell 

lines L929 and C2C12 are fibroblasts and myoblasts, respectively. 

 

Figure 5. Resistance of pDNA/DODAB:Monoolein lipoplexes to model proteoglycans. Variation on the 

percentage of free pDNA upon incubation of pDNA/DODAB:Monoolein lipoplexes (2:1, 1:1, and 1:2) at 

CRs (+/-) 2.0/4.0 with increasing amounts of heparin (HEP) at incubation times of 30 min. The values 

were calculated through spectral decomposition of ethidium bromide steady-state fluorescence, as 

described elsewhere [38]. Adapted from [38]. 

Another aspect to be taken into account is the possibility that the liposomes and lipoplexes 

may differently affect parameters such as metabolism, cell membrane structure and 

chemistry, cell proliferation and mobility. For a comprehensive study, a minimum of three 

different methodologies, monitoring at least two of these parameters, should be used. From 

our own results, it was observable that the metabolism of L929 and C2C12 cells was more 

pronouncedly affected by the contact with DODAB:MO liposomes compared to the other 
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cell lines, especially with a lipid concentration ≥ 20 µg/ml (Fig. 6). At these higher 

concentrations, DODAB:MO (1:1) induced lower levels of cytotoxicity in all the cell types, 

which probably reflects the higher content of MO and concomitant lower content of cationic 

lipid. Interestingly, the cell membrane integrity assay did not reveal such obvious, 

concentration-dependent variations in cytotoxicity (Fig. 7). The results obtained with the 

proliferation test (Fig. 8) were quite concordant with those from the metabolic assay (Fig. 6), 

indicating again the L929 and C2C12 cells as more sensitive, while BJ5ta proliferation was 

clearly increased when incubated with up to 20 µg/ml lipid (Fig. 8). 

Lipoplexes prepared from these liposomal formulations, at concentrations typically used in 

transfection experiments, constantly leading to slightly lower viability rates compared to the 

base DODAB:MO liposomes (data not shown). 

The fact that MO-based aggregates cause reduced levels of cytotoxicity for concentrations 

typically used on transfection assays, reinforcing the use of MO as a new helper lipid in this 

type of non-viral systems. Even if there is general agreement in the reduced toxicity of 

liposomes as non-viral vectors, these results emphasize the need for accurate 

liposome/lipoplex evaluation to better assess human risk prior to using them as lipofection 

vectors.  

 

 
 

Figure 6. Evaluation of the cytotoxicity (metabolic assay) in four different mammalian cell lines (BJ5-ta, 

L929, 293 and C2C12) induced by varying concentrations of DODAB:MO-based liposomes after 48 h of 

incubation. C_DMSO: cells incubated with 30 % DMSO; C_Cells: cells alone. The mean (+/−) SD was 

obtained from two independent experiments. MTT assay can be used to estimate cell viability, 

specifically as marker of the cell metabolic capacity. The soluble tetrazolium MTT is reduced by 

metabolically active cells, thus the developed purple color proportional to the number of viable cells. 
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Figure 7. Evaluation of the cytotoxicity (cell membrane integrity) in four different mammalian cell lines 

(BJ5-ta, L929, 293 and C2C12) induced by varying concentrations of DODAB:MO-based liposomes after 48 

h of incubation. C_DMSO: cells incubated with 30 % DMSO; C_Cells: cells alone. The mean (+/−) SD was 

obtained from two independent experiments. The LDH assay is used to estimate cell viability, as the 

intracellular enzyme LDH is released into the extracellular medium when cell membranes are damaged. 

 

Figure 8. Evaluation of the cytotoxicity (proliferation) in four different mammalian cell lines (BJ5-ta, 

L929, 293 and C2C12) of varying concentrations of DODAB:MO-based liposomes after 48 h of 

incubation. C_DMSO: cells incubated with 30 % DMSO; C_Cells: cells alone. The mean (+/−) SD was 

obtained from two independent experiments. Sulforhodamine B (SRB) is considered a proliferation 

assay, used for cell density determination, based on the determination of the cellular protein content. 
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4.2. Cellular uptake and intracellular trafficking 

In spite of extensive efforts to unravel the in vitro/in vivo mechanisms of internalization of 

lipoplexes, doubts remain as to whether the topology of lipoplexes facilitates the entry of 

DNA by fusion with the plasma membrane or with endosomal vesicles. Other studies have 

indicated that endocytosis is possibly the preferred mechanism of lipoplex internalization 

by cells [139, 140]. After the formation of the endocytic vesicle containing the lipoplexes, the 

internal pH of the endosomes decreases to about 5.5 [141].The endosomes then fuse with the 

lysosomes, in which the condensed NA component may be hydrolysed by lysosomal 

enzymes [142, 143]. Endosomal release of the NA should occur, avoiding the lysosomal 

lythic pathway, leading to successful transfection. 

Different mechanisms for complex internalization have been proposed, in particular for 

lipoplexes and polyplexes. Endocytosis at the plasma membrane may be clathrin-dependent 

or -independent. Clathrin-independent mechanisms include fusion of lipoplexes with the 

plasma membrane, phagocytosis, macropinocytosis and caveolae-mediated uptake [144]. In 

vitro cell culture systems provide the opportunity to experimentally address how lipoplexes 

interact with the plasma membrane. Although it is widely accepted that endocytosis is the 

most important route for lipoplex entry, different endocytic pathways may be used in parallel. 

The most likely explanation is that different cell types prefer a particular mechanism but use 

more than one. Therefore, optimization remains largely dependent of trial and error.   

Intracellular trafficking of lipoplexes can be followed by co-localization studies of labeled 

particle components and dyes, or antibodies that recognize cell organelles or molecules 

playing a role in the process (e.g. clathrin coating endocytic pits in the plasma membrane)  

[139, 145] (Fig. 9). Cell lines harboring mutations in some of these molecules may also be 

used to evaluate their importance for the internalization process of specific formulations.  

The use of inhibitors of endocytosis has also been widely used but has two major 

limitations: the significant toxicity induced by the inhibitors themselves and the evidence 

corroborating that internalization can be simultaneously mediated by different pathways. 

The endosomal escape is thought to be the major limitation for efficient gene transfection 

[146]. A number of strategies have been explored to enhance NA endosomal release. For 

example, the incorporation of a non-lamellar forming lipid such as DOPE that disrupts the 

endosome membrane or inclusion of a pH-dependent molecule that senses the acidification 

in the endosome compartment leading to disruption of its membrane [147]. 

Modulation of the endosomal escape during lipoplex intracellular trafficking was replicated 

by exposing pDNA/DODAB:MO (2:1, 1:1 and 1:2) lipoplexes to acidic conditions in the 

presence of increasing amounts of hydrochloric acid (pH ranging from 7.5 to 2.5) (Fig. 10). 

The percentage of released DNA steadily increased upon milieu acidification from pH 7.4 to 

4.5, which is the pH range typical in the endosome. This trend correlates negatively with the 

MO content in the formulation, suggesting that MO’s inverted bicontinuous cubic structures 

may protect more efficiently the lipoplex structure in this environment. More stringent 

acidification of the environment (pH 4.5 to pH 2.5) inverts the release tendency, which can 

be related to degradation of naked pDNA in solution. 
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Figure 9. Visualization of cellular uptake of DODAB:MO lipoplexes by HEK 293T cells. Liposomes are 

labelled with Bodipy-PE (green) and endo-lisosomes with dextran (red). Co-localization (yellow) 

indicates sites of active endocytosis of lipoplexes. DODAB:MO (2:1) (+/-) 4.0, 1 µg pDNA/well, 

amplification 200x.  

Lipoplex charge ratio (+/-) also affects the intensity of pDNA release. Using the same 

DODAB:MO base formulation, increasing charge ratio (+/-) seems to prevent pDNA release 

from the lipoplex. This effect was already visible in the destabilization of 

pDNA/DODAB/MO lipoplexes by plasma constituents such as serum and salt, and probably 

reflects more efficient pDNA condensation in presence of excess cationic lipid. 

Increasing ammonium/phosphate ratio carries the risk of increased cytotoxicity. One 

possible solution may be using increasing amounts of MO in lipoplex formulation for better 

protection of pDNA integrity without imposing major toxic effects to the target cell. 

Non-viral vectors, although less toxic than viral vectors, may still elicit a strong, nonspecific 

immune response. Toxicity frequently results from characteristics of the encapsulating 

polymer or lipid such as the length, saturation, or branching of the polymer. Efforts to 

reduce the toxicity of nonviral vectors have largely resulted in attempts to make the vectors 

more biodegradable and biocompatible. Many of the aforementioned systems (i.e. triggered 

release with disulfides, PEG copolymers) incorporated more biologically active components, 

thereby reducing the elicited immune response. For example, the incorporation in liposomes 

of molecules known to suppress the production of the cytokine tumor necrosis factor (TNF-

α), as compared to lipoplex alone, succeeded in maintain its levels low while achieving 

comparable levels of transgene expression [148]. Another method explored by Tan [149] 

significantly reduced toxicity through the sequential injection of liposome and later of DNA, 

as opposed to using formed lipoplexes. With this approach, cytokine levels (IL-12, TNF-α) 

were reduced by greater than 80% compared to lipoplex delivery [149]. Thus, significant 

advances have been made towards decreasing the toxicity of these non-viral vectors. 
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Interestingly, DODAB:MO based liposomes and lipoplexes were found to induce 

production of low levels of TNF-α by macrophages, comparable or lower than 

DOTMA/DOPE and DOTMA/cholesterol lipoplexes (data not shown) [150]. 

 

Figure 10. Resistance of pDNA/DODAB:Monoolein lipoplexes to pH decrease (modulation of 

endosomal escape). Variation on the percentage of free pDNA upon incubation of 

pDNA/DODAB:Monoolein lipoplexes (2:1, 1:1, and 1:2) at CRs (+/-) 2.0/4.0 with increasing amounts of 

hydrochloric acid at incubation times of 30 min. The values were calculated through spectral 

decomposition of ethidium bromide steady-state fluorescence, as described elsewhere [38]. 

4.3. Transfection efficiency 

Transfection efficiency of plasmid DNA can be directly evaluated by detecting the protein 

encoded by the reporter gene. Examples of reporter genes are: green fluorescent protein 

(GFP) and similar, detectable by techniques as microscopy or flow cytometry; β-

galactosidase, whose activity can be evaluated by a colorimetric assay; luciferase, whose 
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activity can be measured with a luminometer, after a substrate is converted into a 

luminescent form by luciferase.  In Figure 11 is depicted an experiment that allows to 

identify the effect on transfection efficiency of varying the content of MO in the liposomal 

formulations, lipid:DNA charge ratio in the lipoplexes and also the quantity of pDNA 

added to the cells, as pDNA dosage is known to affect transfection efficiency. It can be 

observed that the incorporation of MO in the liposomes resulted in a transfection efficiency 

improvement when compared to the cationic lipid DODAB alone. When using 1 µg 

DNA/well, the transfection levels of pDNA/DODAB:MO systems are of the same order of 

magnitude as Lipofectamine™ LTX. For a lower MO content (pDNA/DODAB:MO (2:1) 

formulation), a dose effect response (0.5 µg and 1 µg of pDNA) was observed. For higher 

MO content (pDNA/DODAB:MO (1:1) formulation), the transfection efficiencies remained 

constant at both CRs. This result strengthens the role of MO as helper lipid in the transfection 

agent. 

 

 
 

Figure 11. Transfection efficiency of HEK 293T cells by MO-based lipoplexes. Transfected pDNA 

encoded the β-galactosidase gene whose activity was evaluated by a colorimetric assay after 48 h of 

incubation. Lipoplexes prepared at charge ratio (+/-) 4.0 or 2.0, 0.5 or 1.0 µg pDNA/well. Controls: cells 

incubated with free pDNA; cells transfected using Lipofectamine® as lipofection agent. The mean (+/−) 

SD was obtained from three independent experiments. Adapted from [38]. 
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5. Conclusions 

The identification of the most important formulation parameters and how they influence 

macromolecule delivery and bioactivity will give direction towards the development of 

novel therapeutic solutions. The morphology and structure of the lipoplex is influenced by 

the surrounding environment and the chemical nature of its constituents. Physicochemical 

properties of the systems define the course of most events when lipoplex interact with the 

body, tissues and cells. The effectiveness of vector internalization, its intracellular trafficking 

and successful transgene expression in target cells, is directly dependent on the helper lipid 

features, net charge of the lipoplex and the degree of NA compactation within the complex. 

Different target cells may impose specific challenges to transfection and many inherent 

factors are unknown. The advent of controlled cell targeting for improved specificity holds 

great promise for application of these formulations in nanomedicine.  

A good lipofection system must protect NA from deleterious interaction with biological 

fluids and cell components, while remaining biocompatible and efficient as delivery agent. 

In summary, with this work we intend to demonstrate that MO can be used safely and 

efficiently as helper lipid in the preparation of non-viral vectors for transfection. The 

presence of this natural lipid in the formulations reduces the net positive charge necessary 

for successful NA complexation, thus decreasing transfection associated cytoxicity.  
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