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1. Introduction 

Vehicle positioning systems are composed of positioning sensors and positioning 

algorithms. Positioning sensors provide direct or indirect position, velocity, attitude and 

timing information. Positioning algorithms transfer sensor direct readings to desired 

positioning information. Positioning sensors are classified into absolute sensors and dead 

reckoning sensors (Sukkarieh, 2000). Absolute sensors directly provide the relationships 

between vehicle position and external positioning references. Dead reckoning sensors 

measure the vehicle’s position and orientation increment to its last moment without external 

references. Global Navigation Satellite System (GNSS) is a widely used absolute positioning 

system using external satellite references. Inertial Navigation System (INS) is an example of 

dead reckoning positioning system. INS uses inertial measurement unit (IMU) to measure 

the self-contained position changing rate, then computes the desired positioning 

information. INS has been employed in navigation for rockets, missiles, aircrafts, land 

vehicles, ocean vessels and robots.  

These two types of positioning sensors have their own characteristics. For example, Global 

Positioning System (GPS), one of the GNSSs, provides positioning and timing information to 

world-wide users. GPS has played an important role in national security, economic growth, 

transportation safety, and critical national infrastructure (GAO, 2009). However GPS 

sometimes suffers accuracy and availability problems. INS provides self-contained high 

frequency positioning information by integration of accelerations and rotation rates. During 

the integration process, any bias and errors in IMU sensors will be amplified over time. This 

results in the unbounded growth of positioning errors in the entire real time computing 

process.  

Considering these sensor characteristics, many efforts have been made to aim for higher 

quality positioning achievement. There are two levels of research efforts. At low level or 
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component level, hardware and infrastructure improvement, sensor error modelling 

techniques have been studied (Nebot et al., 1996; Nebot et al., 1999; Kong et al., 1999). At 

high level or system level, integrations of two types of sensors are developed as positioning 

system architectures (Nebot et al., 1996; Scheding, 1997, Scheding et al., 1997, Sukkarieh, 

2000).  

Research and development efforts on GPS quality improvement include: launching new 

satellites (GAO, 2009; Committee on Oversight and Government Reform, 2009); deploying 

Differential GPS (GPS) and Wide Area Augmentation System (WAAS) infrastructures to 

improve GPS accuracy and availability (Wikipedia Differential GPS, 2012; Federal Aviation 

Administration, 2012); modelling GPS multi path effects (Gaylor et al., 2005; Wu & Hsieh, 

2010); mitigating GPS errors in high-interference environment (Groves, 2005); modelling 

ionospheric effects (Rose et al., 2009); analyzing unintentional interference (Owen & Wells, 

2001); modelling GPS signal blockage (Gaylor et al., 2005); and modelling GPS external 

behaviours (Nebot et al., 1996; Kong et al., 2010).  

Efforts on INS improvements include: developing new types of INS using new mechanisms 

such as developing new optical IMU; developing low cost IMU such as MEMS 

(Microelectromechanical systems) IMU and associated algorithms to extend user services 

(Geiger et al., 2008; Sahawneh & Jarrah 2008); developing high quality IMU testing facilities; 

modelling IMU biases; modelling INS errors in initial alignment stages (Nebot et al., 1996; 

Kong et al., 1999); improving INS error propagation models during positioning missions 

(Kong et al., 1999).  

Besides the positioning sensor research, on system level, integrating two types of sensors to 

form an improved positioning system has been a major effort in positioning research. In 

literature, GPS/INS integration approaches have been widely adopted and can be classified 

to uncoupled, loosely coupled, and tightly coupled integrations (Sukkarieh, 2000). In 

uncoupled systems, GPS and INS work independently. Loosely coupled systems integrate 

GPS and INS provided positioning information without feedback to GPS or INS. In tightly 

coupled system, direct measurements from GPS or INS, and computed information are 

integrated. Real time feedbacks are provided to GPS or INS. Recently, ultra-tight integration 

has emerged. On ultra-tight integration architecture, INS, GPS phase, frequency and code 

tracking loops are integrated deeply to improve GPS performance (Alban et al., 2003; 

Lashley et al., 2010).  

The GPS/INS integration is usually implemented using a filter such as Kalman filter. From 

the view point of filter mechanism, the above GPS/INS integration approaches could also be 

classified to feedforward filter and feedback filter (Maybeck, 1979; Sukkarieh, 2000). In a 

feedforward filter approach, the filter estimates the desired positioning or error states. These 

filter outputs are not fed back to GPS or INS measurements for real time correction. The 

positive aspect of feedforward filter is that if the filter fails, the sensor measurement 

information is still available. But the INS errors will grow over time due to the integration of 

INS bias drift (Maybeck, 1979). A feedback filter allows filter estimations to feedback to 

sensors for measurement correction. The INS information is bounded over time by real time 
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error feedback and correction. Under the feedback and feedforward filter types, there are 

direct filter and indirect filter depending on the filter outputs. Direct filters output 

positioning readings directly. Indirect filters output positioning error estimates. 

We use an entity-relationship model to analyze and classify the GPS/INS integration 

concepts as in Fig. 1. 

 

Figure 1. Classifications of positioning system research using GPS/INS integration  

This chapter presents a GPS/INS integration approach for positioning error de-correlation 

by analyzing system filter structure and performance. It is from the view point of 

implementing feedforward and feedback structures. The aim of this approach is to improve 

the positioning quality of the GPS/INS integration system in accuracy and availability 

aspects. The contributions of this research fill in the gap in the above classification map in 

both positioning sensor level and system level. A new engineering process based on the 

practice in this research is proposed in this chapter. The new engineering process is added 

into the map as a new classification entity.  

To present this research in this chapter, a bottom-top approach is used to describe this 

GPS/INS positioning system integration process. In the following sections, we start from 

component level presentation by analysing sensor models in Section 2. System level design 

and system performance verification are presented in Sections 3 and 4. Section 3 presents the 
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feedforward filter approach in frequency domain and time domain. Feedback filter 

approach is discussed in Section 4. Based on the engineering practices in Sections 2, 3 and 4, 

an engineering process with research activities and associated artifacts is formed and 

summarized. Section 6 draws the conclusion.  

2. Modelling GPS error using shaping filter  

In the GPS/INS integration approach presented in this chapter, GPS is chosen to be the main 

positioning sensor. INS aids GPS. Nowadays GPS receivers are available in market with 

relatively low cost. INS accuracy level and cost level vary in relatively wide range. GPS 

receivers could be purchased first. INS accuracy level could be decided by analyzing 

GPS/INS filter performance before purchasing decision making. Once a GPS receiver is 

ready for system implementation, GPS positioning performance could be analyzed by 

modelling GPS errors. GPS positioning quality could be improved then by using INS aiding.  

In literature, GPS error modelling has been focusing on understanding GPS signal error 

sources. Major efforts are on modelling the characteristics of GPS multi path effects (Gaylor 

et al., 2005; Wu & Hsieh, 2010), ionospheric effects (Rose et al., 2009), unintentional 

interference (Owen & Wells, 2001), high-interference environment (Groves, 2005), and GPS 

signal blockage (Gaylor et al., 2005). These approaches look at the internal aspects of GPS 

errors. We refer to these as “white box” modelling approach. Another type of research looks 

at the external behaviours of GPS errors. GPS errors are modelled using shaping filter in 

frequency domain (Maybeck, 1979; Nebot et al., 1996; Kong et al., 2010). This approach 

could be referred as “black box” approach. In this chapter, we use black-box approach to 

understand GPS errors.  

GPS measured information includes time and pseudo range to satellite. Latitude and 

longitude of GPS receiver’s position are calculated using pseudoranges to a number of 

satellites. It was found that the errors of GPS calculated positions show the characteristics of 

colour noise (Nebot et al., 1996). In the approach of this chapter, we wrap the entire 

calculated position errors as a black-box from external user’s view point. The entire GPS 

calculated position errors are modelled as colour noise using shaping filter.  

Shaping filter models colour noise as a linear system driven by white noise (Maybeck, 1979). 

Measurement errors are the output of the shaping filter. The form of a shaping filter could 

be examined using Power Spectral Density (PSD) in frequency domain. GPS error modelling 

using shaping filter with PSD is explained as follows. 

From external user’s view point, GPS measurement errors include satellite signal biases and 

receiver noises. On satellite bias side, satellite constellation could be changed if some 

satellites are de-orbited or new satellites are lunched (GAO, 2009). Selective Availability 

(SA) was intentionally introduced to degrade positioning accuracy (Wikipedia, Differential 

GPS, 2012). From GPS receiver’s side, user receivers could be purchased from different 

vendors with different quality. The factors from the two sides will affect the GPS 

measurement errors’ frequency characteristics. Therefore GPS errors using shaping filter 
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should be modelled with a particular receiver under the current satellite constellation. We 

take two cases as examples for shaping filter analysis. Stand-alone GPS is considered for 

vehicles in areas without the coverage of DGPS and WAAS. 

Case 1: Stand-alone GPS signal with Selective Availability error; receiver type 1. 

Case 2: Stand-alone GPS signal without Selective Availability; receiver type 2.  

By examine the PSD curves of GPS position errors in Case 1, we found the GPS error shows 

the characteristics of a second order system. Transfer positioning errors to east-north-down 

frame. For axis x (east) as an example, the shaping filter of GPS error can be presented as in 

Fig. 2 (a). 

 

Figure 2. (a) Shaping filter with a second order system (b) Shaping filter with a first order system 

In this shaping filter structure, ωsp is the input of the shaping filter. ωsp is a unity white 

noise. Xs is the output of the shaping filter. Xs represents the GPS colour noise. α, β, γ and k 

are filter parameters obtained by experimental data sets during PSD curve fitting (Kong et 

al., 2010). This shaping filter could be presented in state space as the following second order 

system:  

  
2

( ) 2 ( ) ( ) ( )

( ) ( ) ( )

s s ss sp

ss s sp

X t kX t X t r t

X t X t r t

 

 

   

  




   (1) 

For Case 2, the shaping filter is experimentally obtained as a first order system as in Fig. 2 

(b). The state space form of Case 2 is presented as in Equation (2). 

 ( ) ( )s spX t t   (2) 

The aim of the shaping filter is to duplicate the GPS measurement errors. The GPS 

positioning could be constructed using an augmented system with the shaping filter. The 

(a)

(b) 
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augmented system is constructed with a mx1 state vector x(t), a px1 measurement vector z(t), 

a qx1 white noise vector w(t) on process model. Using the second order shaping filter as an 

example, the augmented system is as Fig. 3. The augmented system is presented using the 

following equation: 

  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )s gps

x t F t x t G t w t

z t H t x t n t t
 
  


  (3) 

where x is the system state. w is white noise. z is the system measurement. z is corrupted by 

colour noise ns and white noise gps . ns is presented as:  

  ( ) ( )s sn t X t   (4) 

where Xs is the output of the shaping filter described in Fig. 2 (a). 

 

Figure 3. Augmented system with shaping filter duplicating GPS measurement noises 

As in Fig. 3, the augmented state xs can be defined as follows: 
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( ) ( )

( )
s s

ss

x t

x t X t

X t
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The process model of the augmented system can be described as: 
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              

  (6) 
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The observation model of the augmented system is:  

  

( )

( ) ( ) 0 ( ) ( )

( )
p p s gps

ss

x t

z t H t I X t t

X t


 
     
  

  (7) 

Once the augmented system is constructed, INS could be used to aid de-correlating the GPS 

errors. In the following sections, de-correlating approach is described using two types of 

filters: feedforward filter and feedback filter.  

3. GPS error de-correlation process using feedforward filter  

INS is chosen to aid GPS to estimate and remove colour noises. We call this process as GPS 

error de-correlation process. INS measurements also contain noises. Feedback filter 

approach uses filter estimation to correct INS noises in real time. Feedforward filter 

approach leaves the INS noises without feedback correction. If the filter fails, INS is able to 

provide positioning independently in feedforward structure. In this section, we consider 

feedforward filter approach first. Feedback approach will be described in the next section. 

3.1. Feedforward filter structure  

Fig. 4 is a GPS/INS integration feedforward filter structure. INS indicated positioning 

information and GPS measurements are integrated into the system integration filter. The 

system filter estimates the velocity errors, position errors, shaping filter states, and outputs 

the position information. There is no feedback of position error estimation to sensors for real 

time correction.  

 

Figure 4. Feedforward filter structure 
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To focus on GPS error de-correlation process using this feedforward filter, we assume that the 

INS coordinate system is already transformed into the GPS coordinate system using gyros’ 

information. The INS positioning reading is computed by integrating acceleration twice. The 

acceleration noise is assumed driven by white noise. Using the case of the second order 

shaping filter as example, Fig. 4 illustrates the filter inputs, outputs and state estimates.  

The state of this feedforward filter is: 

 ( ) [ ( ), ( ), ( ), ( )]Ts ssx t dR t dV t X t X t   (8) 

The velocity error and position error in the filter state are defined as:  

 

~

~

( ) ( ) ( )

( ) ( ) ( )

INS true

INS true

dR t R t R t

dV t V t V t

 

 
  (9) 

where ( ), ( )true trueR t V t  are vehicle true position and velocity. 
~ ~

( ), ( )INS INSR t V t  are INS computed 

position and velocity. 

The filter observation z(t) is the difference between the GPS output and INS output. 

 ( ) ( ) ( )GPS INSz t R t R t     (10) 

 As described in the previous section, GPS outputs are modelled as the true position 

corrupted by colour noise Xs driven by white noise. 

From Fig. 4, the following relationships can be derived: 

 
( ) ( )

( ) ( )ins

dR t dV t

dV t t





   (11) 

And 

   
( ) [ ( ) ( ) ( )] [ ( ) ( )]

( ) ( ) ( )

true s gps true

s gps

z t R t X t t R t dR t

dR t X t t





    

   
  (12) 

The de-correlation filter process model is therefore given by: 
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 


  (13) 

The observation model of the filter is given by: 

  ( ) ( ) ( )f gpsz t H x t t    (14) 
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where  

 1 0 1 0fH       (15) 

The covariance matrices of the process and observation noises are 

  

2

2

0
[ ( ) ( )] ( )

0 1

[ ( ) ( )] ( )

T ins

T
gps gps GPS

q
Q E w t w t

R E t t

  

     

 
    

  
  

  (16) 

with the white noise variance 2
insq  on the acceleration output and the variance 2

GPS  on the 

GPS position observation. 

Equations (13) ~ (16) compose the feedforward de-correlation filter. In the next section, this 

feedforward filter will be analyzed in frequency domain and time domain respectively. 

3.2. Analysis of de-correlation process using feedforward filter  

The GPS/INS integration feedforward filter structure is described in the previous section. In 

this section, the positioning error de-correlation process is demonstrated in frequency 

domain and time domain. The de-correlation process is designed as the following procedure 

in Table 1.  

 

Step Domain Research Details

Step 1 frequency domain
The filter transfer function from the observation z(s) to the 

filter state estimates x(s) is calculated. 

Step 2 frequency domain

Tuning the filter noises levels, the gain of the filter transfer 

function is analysed using bode plots. INS noise levels are 

tuned during this step. 

Step 3 time domain 

The performance of the filter is analyzed at positioning 

system level. The shaping state time series and GPS error 

time series are compared. The system error level is 

examined. 

Step 4 

Iterative in both 

frequency and 

time domains 

Continue tuning of the noise levels at Step 2 and analyzing 

time domain performance at Step 4. The de-correlation 

process is successful until the system error is tuned to the 

required level. 

Table 1. Procedure of the positioning error de-correlation process in frequency domain and time 

domain 

Using the feedforward filter structure in Fig. 4 and following the procedure in Table 1, the 

de-correlation process is demonstrated as below. 
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Step 1: 

As illustrated in Fig. 4, in frequency domain, the transfer function from the observation z(s) 

to the filter state estimate is calculated by: 

 1
4 4

ˆ( )
( )

( ) x f

x s
sI A KH K

z s
     (17) 

where the filter-gain K is determined by the filter parameters and the noises of the filter 

process and observation. 

and  

  

2

0 1 0 0

0 0 0 0

0 0 2 1

0 0 0

A
k



 
 
   
 
  

  (18) 

Step 2: 

The sensor noise levels are tuned in the filter. In the Case 1 for the filter in Fig. 4, a stand-

alone GPS without differential correction is chosen. The variance of the position error is 

about 220 20m . The noise level of INS is tuned during this de-correlation analysis process 

before INS purchasing decision. For the example of Case 1, the range of accelerometer’s 

noise variance is tuned from 2 2 21 10 ( / )m s  to 6 2 21 10 ( / )m s . 

Fig. 5 is the bode plot by tuning an accelerometer with a variance of 2 2 21 10 ( / )m s . The gain 

of the shaping state estimate X̂s  is very small. 

 

Figure 5. Bode plot of the feedforward filter using a low quality accelerometer 

Step 3: 

Switching to time domain, using the parameters in Step 2, the time series of GPS position 

estimates, error estimates, and shaping state estimates are illustrated in Fig. 6.  

In the example of Case 1, the vehicle is in stationary state. The GPS measurement output 

consists of the entire colour noise. As in Fig. 6(a), the shaping state estimates do not follow 
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the shape of the GPS measurements. Fig. 6(b) illustrates the system position estimates follow 

the INS position outputs. The position error estimates grow over time without bound in 

feedforward filter. De-correlation fails using this accelerometer quality level.  

Step 4: 

We iteratively tune the feedforward filter by adjusting sensor noise level using Step 2 and 

Step 3. Until in frequency domain, the gain of the shaping state in bode plot approaches 

0dB, the de-correlation process is successful. 

Fig. 7 is a successful de-correlation example of bode plot using an accelerometer with a 

variance of 6 2 21 10 ( / )m s . The gain for the shaping state estimate X̂s  within 410 / secrad  to 

210 / secrad  is approaching 0dB. Examine the time domain performance for this case, Fig. 8 

shows that the time series of the shaping state estimate X̂s  follows the shape of the GPS 

output. The system position estimate errors are reduced to 4m. 

 

 

 

 

 
 

 

 

Figure 6. Time domain results using a low quality accelerometer (Unit: data iteration – meter) (a)Time 

domain performance of shaping filter estimate and GPS error measurement (b)Time domain 

performance of INS position estimate and system position estimate 

(b)
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Figure 7. Bode plot of the feedforward filter using a high quality accelerometer 

 

Figure 8. Time domain results using a high quality accelerometer (Unit: data iteration – meter) 

During the filter tuning process using Step 2 to Step 4, the INS quality requirement for the 

successful de-correlation can be found from the bode plot of the filter transfer function. 

From the experiments we found that in order to use a feedforward filter to de-correlate GPS 

colour noises using an INS, the accuracy level of the INS should be above 6 2 23.16 10 ( / )m s  

on variance of the accelerometers. 

The feedforward filter is able to output position estimates directly. The GPS and INS are 

integrated loosely. If the system integration filter fails, the INS is still able to provide 

positioning information without the filter. But there is no feedback to correct errors in INS in 

real time. The position outputs will grow over time due to the step by step integration of the 

inertial sensor’s drift errors. Once a feedback scheme is introduced to the filter, the INS error 

could be reduced and the system position outputs could be bound. This feedback scheme is 

implemented in feedback filter.  
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4. GPS error de-correlation process using feedback filter  

4.1. Feedback filter structure  

A feedback scheme for inertial sensor correction is able to overcome the position error 

growth. Fig. 9 is a feedback filter structure. The GPS and INS are integrated tightly. 

 

 

 

 
 

 
 

 

 

 

Figure 9. Feedback filter structure 

In this feedback filter structure, the filter outputs the estimates of position error ˆdR , velocity 

error ˆdV , and shaping state estimation. Using the second order shaping filter as an example, 

the shaping states estimation include two states X̂s  and X̂ss . If using the first order shaping 

filter, the feedback filter will output one shaping state estimate X̂s .  
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INS computes the velocity by integration acceleration. INS position is computed by 

integration the computed velocity. The filter then takes the input from the measurement 

difference between GPS and INS. The filter estimates the errors of velocity, position and GPS 

errors. The estimated velocity error and position error are feedback to INS computing 

process for correction as illustrated in Fig. 9. The filter states are still [ ( ), ( ), ( ), ( )]s ssdR t dV t X t X t

if using the second order shaping filter. The process model remains the same as the 

feedforward filter in Equation (13), and the observation model is the same as shown in 

Equations (14) and (15).  

4.2. Feedback filter analysis in frequency domain and time domain  

Following the same procedures in Table 1, the positioning system error de-correlation 

process using feedback filter is analyzed and implemented as follows.  

In frequency domain, the filter transfer function from the observation to filter states is 

calculated. The filter is tuned using a range of accelerometers’ error levels. Bode plots at 

each level are plotted. The gains of shaping states are analyzed. Fig. 10 shows the bode plot 

using a low quality accelerometer with a noise variance of 2 2 21 10 ( / )m s .  

Fig. 10 shows the gain of the shaping state estimate on the bode plot is very low. The ratio of 

the shaping estimate to the GPS error measurement is lower than 1. Using the parameters of 

this level to calculate the time series of shaping state, position estimates, error estimates, the 

time domain performance are illustrated in Fig. 11. Fig. 11(a) shows the shaping state 

estimates do not follow the shape of GPS errors. Fig. 11(b) shows the INS position estimate 

errors are bound over time due to the error feedback and INS correction. The system error 

de-correlation is unsuccessful using this quality level of accelerometer.  

 

 

 
 

 

Figure 10. Bode plot of the feedback filter using a low quality accelerometer 
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Figure 11. Feedback filter performance in time domain using a low quality accelerometer (Unit: data 

iteration -meter) (a)Time domain performance of shaping filter estimate and GPS error measurement 

(b)Time domain performance of INS position estimate and system position estimate 

Continually tuning the feedback filter by trying different levels of accelerometer variance 

levels following Step 2 and Step 3 in Table 1, the best gain could be found in bode plot of the 

transfer function. Fig. 12 is a bode plot using an accelerometer variance of 6 2 21 10 ( / )m s . 

The gain of the shaping state estimate to observation is approaching 0dB within 
43 10 / secrad  to 210 / secrad . As shown in Fig. 13 in time domain, the shaping state 

estimates track the GPS error shapes and match their magnitudes in time series.  

 

Figure 12. Bode plot of the feedback filter using a high quality accelerometer 

(b)
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Figure 13. Feedback filter time domain performance using a high quality accelerometer (Unit: data 

iteration – meter) 

In this feedback filter tuning process, we found that the accelerometer variance threshold for 

GPS error de-correlation using a stand-alone GPS with error variance of 220 20m  is 
6 2 23.16 10 ( / )m s . 

Compare with the de-correlation threshold finding in the feedforward filter, the quality 

requirements based on accelerometer variance level are the same for both feedforward filter 

and feedback filter. The benefit of the feedback approach is that the position estimates are 

bound over time using the feedback filter structure.  

5. Engineering process of the positioning error de-correlation approach  

To effectively reuse the artifacts and minimize the designing efforts in both feedforward and 

feedback approaches, this GPS error de-correlation approach could be standardized using 

an activity-artifact flow to form a repeatable engineering process. Fig. 14 shows the activities 

and associated artifacts of this engineering process.  
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Figure 14. Activities and associated artifacts in the positioning error de-correlation process 

As demonstrated in the previous sections of this chapter, this process includes the following 

major activities.  

Activity 1: GPS error modelling using shaping filter approach. The associated artifacts of 

this activity include a GPS error shaping filter model and an augmented system diagram 

using this shaping filter.  

Activity 2: GPS/INS integration design by analyzing the feebforward or feedback structures 

and their equations. The artifacts of this design activity are a system filter structure diagram, 

a set of filter equations of the process model and observation model. 

Activity 3: Frequency domain modelling by deriving transfer functions and analyzing bode 

plots. The artifacts in frequency domain are transfer functions of the filter state estimates 

over filter measurement inputs, and bode plots using these transfer functions.  

Activity 4: Time domain analysis by verifying the time series performance. The artifacts of 

this activity include a set of time series plots. These plots illustrate the GPS errors, INS 

errors, system errors, and system positioning estimates over time.  
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During this process, the artifacts in Activity 3 and Activity 4 will be iteratively analyzed 

using filter tuning with the trial of sensor noise levels. The system error de-correlation 

process stops once the threshold of the sensor noise level is found, and the final system 

accuracy level meets the system requirements.  

6. Conclusions  

This chapter presents a positioning system error de-correlation process approach. The 

aim of this approach is to solve the accuracy and availability issues of GPS based 

positioning system. In this chapter, this approach is standardized into an engineering 

process with a number of activities and associated artifacts. This approach starts from 

system component level by modelling GPS errors. GPS error is modelled using shaping 

filter approach. The artifact of GPS error modelling is an augmented system with the 

GPS error shaping filter. Once the component model is understood, the GPS/INS 

integration structures are analyzed at system high level. Feedforward filter and feedback 

filter structures are analyzed, designed and implemented for their benefits. Under each 

feedforward or feedback filter structure, the integrated system performance is analyzed 

both in frequency domain and time domain. The analysis activities are designed in an 

iterative filter tuning process. INS plays a role with its noise level in filter tuning process 

in both feedforward and feedback filter structures. Using the GPS/INS error de-

correlation approach in this chapter, the experiments demonstrate that the final system 

accuracy level is improved.  

This approach is designed for GPS/INS integration system. Further research could be 

extending this engineering process to other positioning sensor integration systems.  
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