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1. Introduction 

The study of the dynamic behaviour of materials falls in a multidisciplinary area where 

many different disciplines converge. The definition of the state of the solid body subject to 

various actions is very different from the conditions of almost static load, or single dynamic 

load.  

Complex dynamic actions (i. e. explosion, travelling waves, etc.) request an approach where 

both inertia and kinetics of the material are fundamental elements to describe the variable 

answer in terms of stress and strain. 

The topics covered in the chapter are the following: 

A first section, where particular attention about the shock waves-induced phase 

transformations and chemical changes will be given. A modelling coupled multifield 

processes will be introduced in the multiphase solids case through constitutive assumption, 

energy balance and mass transfer and a reaction-diffusion model.  

A second part in which some applications of finite element analysis to multi-physics 

dynamic problems is presented and discussed.  

2. Waves equations 

When an elastic media is subject, over one or more points, to fast actions then media 

acceleration results. The strain field resulting is carried out within the media by elastic 

waves, and so the new and variable stress field should be equilibrated [1, 2]. 

Let us call u the displacement field,  and  the Lamè elastic constants,  the media density 

then, in the isotropic, homogeneous and elastic media we have the follow motion equation: 
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 2 ( ) ( )u u u          (1) 

In the Eq. (1) the symbol  represents the nabla differential operator. Under the volume 

forces equal to zero one possible solution to the Eq. (1) has the form: 

 u(x, t) = u(t - nx / c)  (2) 

where n is a constant unit vector and c represents the velocity. Representing the Eq. (2) the 

solution to the Eq. (1) we observe that the Eq. (2) is a plane wave equation scattering in n 

direction, with c velocity. When a direction is fixed, for example x1, then we have: 

 1( , ) [ ( / )]u x t u t x c   (3) 

Generally, an elastic wave can be of two kinds, longitudinal (volume wave) or transversal 

(shear wave), and respective velocities go with the function: 

 [( 2 ) / ]; ( / )sqr sqr          (4) 

As a principle, we have an elastic wave’s emission when a fast, and localized variation on 

the body force exists. 

In this case, the Eq. (1) appears as a Green tensor, that is a second order tensor time 

dependent, Gij (x, t; , ). Neglecting isotropic source, the dynamics source gives out 

longitudinal and transversal waves with various amplitude according to the direction.  

The wave shape represents the signal shape reproduced by the source, in other words the 

temporal course of the source namely, the F(t) function.  

Since the Green tensor calculation appears with difficulty, through known references, it 

becomes possible to proceed by the Helmholtz potential method, and therefore to derive, for 

convolution, the Green tensor final form [3]: 

 

3 1 1

2 1 2 1 1

( , ;0,0) (1 / 4 )(3 ) [ ( ) ( )]

[(1 / 4 ) ( )] [(1 / 4 )( ) ( )]

ij i j ij

i j ij i j

G x t r t H t r H t r

t r r t r

  

  

     

    

    

          
 (5) 

Where i and j are the director cosine of x,  the x varied position and ij the Kronecker 

delta.  

The Eq. (5) is composed by 3 terms, all depending on the distance. We have the first one, 

called close field, while the other two called away fields. We observe not separable waves in 

the close field while, in the away field longitudinal and transversal waves appear distinct. 

All of this allows, in the next modelling to consider only the close field and then 

longitudinal and transversal motions together. 

Here we consider plane waves travelling in an elastic half-space and, without loss of 

generality, we affirm that the wave normal lies in the vertical plane of the half-space. 

Referring to the infinite space case, we assume that the particle motion, due to dilatational 
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effects, belongs to the wave normal direction and therefore lies in the vertical plane. 

Otherwise, the particle motion, due to shear effects, present components in either vertical or 

horizontal plane. Introducing the functions H and , called the Helmholtz potential 

functions, the governing equations related on this approach follow: 

 

( / ) ( / ); ( / ) ( / );

( ) ( / ); ( / ) ( / ) 0.

x z y z

y z y x y

u x H y u y H x

u H y H x H x H x

           

           
 (6) 

The stress-displacement relations are given by: 
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 (7) 

Moreover at Eq. (7) the boundary conditions should be summed: 

 0; 0yy yx yz y       (8) 

In according with [5], we see that the problem above defined can be uncoupled and 

therefore resolve the motion problem into two parts, namely the first one is plane strain, 

such that uz = 0, ux, uy  . The second one is the secondary wave motion where only  

uz  . 

From now on, we wish to study the interaction of elastic waves with discontinuities or 

boundaries of more complex shape than that of the half-space framework.  

Particularly, we focus the attention over the scattering of compression waves against 

absorbed obstacles [3, 5], as well as inclusion, in elastic half-space. The propagation and 

reflection of waves, generated by dynamical forcing over the external surface, against inner 

surfaces or discontinuity [4-6] has, also, great interest in seismology, structural foundations 

since the vibratory phenomenon represents a very important further load condition for 

global stability and strength [7-9]. 

Moreover this building framework picks up more general problems, for example voids, 

flaws or stress raise in half-space constituent materials. The approach adopted follows the 

stated assumptions and hypothesis , that is expansion of the wave fields in series.  

3. Shock waves 

The impact between two solid elements represents the simplified condition for the 

generation of shock waves. In the specific case of parallel impact the two surfaces enter in 

contact simultaneously and all the points of the two surfaces enter in contact at the same 

time.  
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The true profile of a shock wave is complex. In the following Figure 1, it is possible to 

observe the difference between the ideal and the true profile where, for the latter, it is clear 

the dependence form the characteristics of the material and the pressure applied at contact.  

An impulsive stress on contact has an initial, middle and final pressure value. Initially it’s a 

shock wave (discontinuity in compression); the mean reaction is characterized from a slow 

variation of pressure and the final from a dissolution which tends to the undisturbed state. 

 

Figure 1. (a) idealized and (b) generic realistic shock wave profile (from Meyers [10]). 

In a previous paper the authors has investigated the waves generation after the impact on a 

granular plate [9]. The study has been developed, initially from a microscopic point of view 

and subsequently on macroscale.  

The effects are strictly linked with material degradation associated with damage evolution. 

In accordance to [11] the shock waves can induce phase transitions in the solid, (Figure 2), 

then transitions form elastic to plastic response (in our case plasticization of the mixture 

binding component). 

 

Figure 2. Pressure distribution in a pulse propagating through a material undergoing a phase 

transformation and a transition from elastic to inelastic behaviour (from Meyers [10]). 
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On a theoretical point of view, we classify the problem as the propagation of a shock wave, 

where a uniform contact pressure is applied on a plane solid surface in an elastic semi space. 

Given the geometrical origin x = 0 and the beginning of the phenomenon at time t = 0, after a 

laps of time t the shock front divides the space in two regions, one undisturbed, the other 

compressed and accelerated. Therefore the flow equation is reduced to the jump condition: 

 
( )( )s o p s

s

v v v v
P

V

 
   (9) 

with vs the wave propagation speed, vo and vp are the speeds of the particles respectively 

behind and in front of the shock front, and, Vs is the specific volume of the medium.  

The clear result is the introduction of a pressure step which travels across the medium, with 

changes of shape which depend on the mechanical proprieties of the element.  

In the case of impact the contact time tends to zero, therefore ti = tp where ti is the impact 

time and tp is the plasticization time. In theory, the problem can be represented as two 

successive phases. 

First phase: transversal speed at the centre of the body remains constant. This phase is 

necessary to absorb the remaining kinetic energy in the body.  

Second phase: a concentrated plasticization begins which starts to expand from the core to 

the external part of the body. The time it takes is given by the expression:  

 2 / 6o ot v r M   (10) 

Where μ is the Lame’s material constant and the associated maximum permanent 

transversal displacement in the contact zone can be approximated as: 

 2 2
03 / 4 cp r p   (11) 

In regards to the mechanical proprieties of the medium subject to the impact actions in the 

case, the response of solids made of asphalt mixtures can be divided, accordingly to [12, 13] 

in three groups: elastic visco-elastic and visco-plastic. In the one-dimensional case we have: 

 1e
ii iiE T   (12) 

 ( )ve
ii iiE A T t   (13) 

 ( ) ( )vp
ii iiE B T f N t   (14) 

where f(N), A(T), B(T) are functions of the stress in the viscose phase. A, B, ,  and  are 

constants determined at constant temperature. 

In the multidimensional case the equations above become: 
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 [ ] [ ]·[ ]eE K T  (15) 

 [ ] [ ]·[ ]ve hE At H T   (16) 

where K is the deformability matrix, H K   and [ ]h
ijkT T T   

In regard to the visco-elastic part, it has to be specified that the critical points which arise in 

this phase with the load time can be resolved using the Perzyna theory [13]. For an 

associated visco-plastic flow we have: 

 [ ] · ( )· /vpE t F t     (17) 

where:  

-  is a fluidity parameter associated to the loading times and the number of loading 

cycles;  

- (F) is the viscose flow function;  

- F is the plasticity function F(T, k) with k the hardening parameter. 

Passing to the numerical implementation, in the case of reduced load intervals, an iterative 

procedure, as a Newton-Raphson, can be applied.  

 1[ ] [ ][ [ ]] [ ][ ] [ ]vpn n h n nA T K A E A t K T A E    (18) 

and, after the rightful developing, stress and strain in approximated as: 

 1[ ] [ ] [ ]n n nT T A T    (19) 

 1[ ] [ ] [ ]vp vp vpn nE E A E    (20) 

Therefore it follows the link between micro-scale effects and material behaviours at macro-

scale.  

So we focus the micromechanics of the damage processes because the nonlinear response of 

typical engineering materials is almost entirely dependent on the primary change in the 

concentration, distribution, orientation and defects in its structural composition.  

The relation between the continuum damage mechanics and the fracture mechanics is very 

complicated, in essence, a question of scale. The important role of scale can be clarified by an 

energetic point of view.  

In view of an approximated continuum theory with the physical foundation of 

micromechanical models, a promising strategy would consist of combining the best features 

of both models. In this approach we consider only the first layer of the pavement package 

because, at micro-scale, damage distribution at the edge of the body, where surface 

degradation is of importance, is expected to be significantly different from the damage 

distribution far from the edge in the body.  
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We follow the volume element theory RVE, it’s possible to represent a non-homogeneous 

solid with periodic microstructure. Particularly in the transition toward the micro-scale our 

RVE can be represented by more granular elements joint by means of an asphalt mixture, so 

considerations are applied on the contact area among two granular elements. In this manner 

the homogenization problems can be satisfied.  

Following Sneddon’s solution [14] type we model the physics of impact by means of a rigid 

frictionless asymmetric concentrated impact, with generic concave profile described by the 

function f(r). We find respectively, the z pressure distribution under the concentrated 

impact and the displacement on the surface. 

4. Shell structures and blast loading 

To reproduce a possible genuine model becomes fundamental to describe the single load 

conditions since blast action, fundamentally, can be decomposed in thermal and shock 

wave’s loads. Here we develop the theoretical assumptions in both cases just starting with 

some structural considerations about the thick shell behaviour.  

From a structural point of view the tunnel can be considered as well as a half thick-walled 

cylinder subject to internal and external pressures. So we consider a half cylinder of inner 

radius a and outer radius b and subject to an internal pressure pa and an external pressure pb. 

We choose, as the closest to real behaviour, the plane stresses condition so that the ends of 

the cylinder be free to expand. 

Assuming the z-axis as the revolution axis, the deformation becomes symmetrical respect to 

the z-axis. Consequently it’s convenient to use cylindrical coordinates r, , z. 

According to [16-18] the plane stresses conditions involve z   and rz   and the 

equilibrium conditions, without body forces become. 

 0r r

r r

 
 


  

 (21) 

while the deformation field E as the components in the form:  

 
1

; ;r r z
r r

u u u u
E E E

r r r z

  
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

 
 (22) 

where the function u(r, , z) represents the displacements field over the shell.  

Introducing the Lame’s constitutive equations (with  and , respectively, Poisson’s and 

Young’s modulus) after some simple calculations we get the basic equations governing the 

thick-walled half-cylinder: 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2 2

1 1a b a b
r

a b a b
r

p a p b p pa b
u r

rb a b a

p a p b p pb a
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 

 
 
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 
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2 2 2 2

2 2 2 2 2
a b a bp a p b p pb a

b a r b a

 
 

   (23) 

Under these conditions, we recall either of the specific conditions of the internal and 

external pressure loads. In the first case (internal pressure) the above equations becomes: 

 

2 2

2 2 2

2 2

2 2 2

1

1

a
r

a

p a b

b a r

p a b

b a r

 
     

 
     







 (24) 

From the equations above, a consideration can be drawn about the circumferential stress ( 

tensile stress), which is at its greatest on the inner surface and is always greater than pa. In 

the second case (external pressure) the general equations assume the form: 

 

2

2 2 2

2 2

2 2 2

1

1

b
r

b

p a

b a r

p b a

b a r

 
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

 (25) 

The stress paths, when no inner holes were present, are uniformly distributed in the 

cylinder. From now we will be able to describe the coupling actions over the thick-walled 

half-cylinder shell and for this we run recalling some basic thermo-elasticity assumption. 

There is a large literature over the question but we prefer to follow [18-20]. 

We focus the consistence of thermal stresses induced in thick-walled half-cylinder when 

the temperature field is symmetrical about the z-axis. In this case we suppose the 

temperature T as radius function only and independent from z then plane strain Ez = 0. 

With analogous considerations as above, the basic equations, for the coupled problem, can 

be written as. 
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If the temperature T is positive and if the external temperature is equal to zero then the 

radial stress is always compressive, like other stresses in the inner surface.  

After numerous disasters in the building and structures, the fire-structure question was 

developed for many researchers, which has reproduced a large and specific literature. For 

instance it is our opinion, referring at some as important in [16-19]. From now we will 

deepen the other coupled action namely the structural effects after the burst. According to 

[10] the interaction of a detonating explosive with a material in contact with it or in close 

proximity is extremely complex, since it evolves detonation waves, shock waves, expanding 

gases, and their interrelationships.  

The question was developed, principally, by military requirement which study has 

developed the computational apparatus, for instance the Gurney equation [25-26]. 

It’s our interest some basic assumption linked to the effective problem that requires us 

namely, only actions from shock waves. So, we affirm the following basic assumptions: 

a. A shock is a discontinuous surface and has no apparent thickness. 

b. The shear modulus is assumed to be zero and so it responds to the wave as a fluid, and 

the theory can be restricted to higher pressures. 

c. Body forces and heat conduction at the shock front are negligible. 

d. There is no elastic-plastic behaviour. 

e. Material do not undergo phase transformations. 

Now we will consider the dynamic behaviour of thick-wall cylindrical shell under internal 

pressure produced by shock wave.  

Let pc be the collapse pressure, then the shell is subject to a symmetrical internal pressure 

pulse, in the interval time 0  t  , while p = 0 when t  . Again we assume a perfectly rigid 

plastic material behaviour.  

Supposing the pressure load symmetric, then the yielding is controlled by force in the shell 

middle plane. So, let N be the generalized membrane forces, at the yielding point we have 

N = Nc (with Nc the fully plastic membrane forces). Neglecting the elastic effects, the 

dynamics response consist of two phases motion with N = N =Nc.  

For major clarify we consider, as the second phase, the time as   t  t* where t* is the 

response duration time. Let  be the transverse displacement of the shell middle plane and 

let v° be the spherically symmetric outwards impulsive velocity, we then find the radial 

displacement 

 2 / o
cN t r v t    (27) 

After some calculations we have the associated permanent radial displacement field over 

the shell. 

 / 4o
f crv N    (28) 
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5. Applications examples 

In the following, we will give two examples of finite element applications to dynamic 

analysis in particular, interaction problems of structures systems subject to explosion waves 

and impact loads are presented [9] [15]. 

5.1. Impact loads on flexible pavement 

In this example we assessed the effects of a heavy impact caused by aircraft landing gear 

wheels on a flexible airport pavement. 

Flexible pavements are usually idealized as closed systems consisting of several layers; so 

the surface, base, sub-base and sub-grade material were modelled using 3-D finite elements. 

While an elastic constitutive model was assumed for the granular layers and the base 

course, a time hardening creep model was incorporated to simulate the viscoelastic 

behaviour of the HMA surface layer 

The aircraft considered in the model was the Airbus 321 [26]. The most common way of 

applying wheel loads in a finite element analysis is to apply pressure load to a circular or 

rectangular equivalent contact area with uniform tyre pressure [27]. To investigate the 

impact simulation in exceptional condition, the dynamic parameters of an “hard” landing, 

that caused the broken of some gear components, were considered [28]. Starting from this, 

considering the damping effect of the gear system, it is possible to calculate the acceleration 

graph during the landing (Figure 3). 

 

Figure 3. Acceleration graph. 

As shown in Figure 3 the peak acceleration value, during the hard landing, is 1.99 m/s2. This 

value of acceleration was used in the finite element model to calculate the maximum wheel 

load. 

The finite element model has the following dimensions: 10 m in x and y directions and 2.5 m 

in the z- direction. The three-dimensional view of finite element model is shown in Figure 4. 
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Figure 4. Three-dimensional view of the finite element model. 

The degree of mesh refinement is the most important factor in estimating an accurate stress 

field in the pavement: the finest mesh is required near the loads to capture the stress and 

strain gradients. The mesh presented has 126245 nodes and 29900 quadratic hexahedral 

elements of type C3D20R (continuum 3-dimensional 20 node elements with reduced 

integration). Quadratic elements yield better solution than linear interpolation elements [29]. 

The loads (vertical and horizontal) were uniformly applied to the element, which was 

created to be the same size as the wheel imprint of an Airbus A321.  

In this example the surface was considered to be free from any discontinuities (with no 

cracks) or unevenness, and the interface between layers was considered to be fully bonded 

(with no gaps). 

The model was constrained at the bottom (encastre: U1 = U2 = U3 = UR1 = UR2 = UR3 = 0); 

X-Symm (U1 = UR2 = UR3 = 0) on the sides parallel to y-axis; and Y-Symm (U2 = UR1 = UR3 

= 0) on the sides parallel to x-axis. 

The results of the non-linear FE analysis are illustrated in the following figures. Figure 5 

shows the Mises stress distribution for the considered FE model at the landing aircraft 

impact instant and Figure 6 presents the results of pavement surface deflection along 

transversal direction.  

Finally, in the graph of Figure 7 are plotted the predicted transversal surface deflection 

profiles along the transverse center line. 

This example shows how finite element analysis of pavement structures, if validated, can be 

extremely useful, because it can be used directly to estimate pavement response parameters 

without resorting to potentially costly field experiments. 

If accurate correlations between the theoretically-calculated and the field-measured 

response parameters can be obtained, then the finite element model can be used to simulate 

RP 1

RP 2

X
Y

Z
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pavement response utilizing measurements from strain gages. In particular, the proposed 

model has clearly confirmed the need and importance of 3-Dimensional finite element 

analyses on flexible pavements to consider the behaviour of the structure under high stress. 

 

Figure 5. Mises stress at the instant of impact. 

 

Figure 6. Displacement contours at the instant of impact. 

 

Figure 7. Predicted deflection profiles (y-direction). 

(Avg: 75%)

S, Mises
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+9.728e+05
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+1.945e+06
+2.188e+06
+2.430e+06
+2.673e+06
+2.916e+06
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5.2. Confined explosions 

In the following application a 3-D simulation of tunnel structures under Blast loading is 

proposed. 

The Finite Element model was based on a single track railway tunnel system consisting of 

concrete tunnel tube with the section dimensions reported in Figure 8. The tunnel was about 

10 m below the ground surface. The model extended 150 m in the longitudinal direction of 

the tunnel, while the length and height of the model were of 26.8 m. The finite Element 

model was fixed at the base and roller boundaries were imposed to the four side. The 

modelled tunnel structure is surrounded by soil and this load represents the starting state of 

stress. Drucker-Prager elasto-plastic model was used to model the soil. For the 

characterization of the reinforced concrete of the tunnel structure it was considered a C50/60 

class concrete having thermal characteristics according with the indications of the Eurocode 

2 [30]. 

 

Figure 8. Rail tunnel section. 

A fundamental aspect in the study of fire resistance in underground structures is the 

definition beforehand of the fire scenario taken in the analysis, therefore choosing the best fit 

standard curve. A standard curve is the cellulose curve defined in several standards, e.g. 

ISO 834 [23]. Specific temperature curves have been developed in some countries to simulate 

hydrocarbon fires in tunnels. Examples of such curves are the RABT/ZTV Tunnel Curve in 

Germany [31] and the Rijkswaterstaat Tunnel Curve (RWS curve) in The Netherlands (based 

  

5.00
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on laboratory scale tunnel tests performed by TNO in 1979 [32]). In the considered model 

the HC curve was used to simulate the fire action. 

The blast overpressure was generated from an instantaneous release of 50 m3 LPG rail 

tanker at 326K. The pressure-time curve was assumed to be of triangular shape, the duration 

of which was obtained from CONWEB reflected pressure diagram [33]. To calculate the 

decay of blast overpressure during the longitudinal direction of the tunnel the Energy 

Concentration Factor (ECF) method was used [34].  

During the propagation of the blast wave over the first 75 m from the BLAVE to the tunnel 

opening, the blast overpressure falls from 1700 kPa (vapor pressure at 326 K) down to 

approximately 86 kPa. This decay is solely through the intense energy dissipation in the 

strong leading shock of the blast wave. 

The 3-Dimensional model is representative of a tunnel section 300 meters long. This model 

was implemented by quadratic tetrahedral type elements [31] obtaining 95003 elements and 

147528 nodes as shown in Figure 9.  

 

Figure 9. Meshed model. 

The analysis was carried out in two steps [35]. The first step obtained the initial stress 

state caused by soil load and fire and the second step analysed the dynamic response 

under blast loading. Consequently the following load conditions were considered in the 

FE analysis: 

1. from time t = 0 to time t = 120 min the tunnel was subjected to the surrounding soil load 

and to the fire thermal stress; 

2. at the instant t = 2 sec the structure was subjected to the blast over pressure. 

Therefore, on the base of this analysis, the distribution of the temperature inside of the 

structure is known. In Figure 10 the temperature distribution is showed. 

Subsequently, the mechanical behaviour of the models was analysed introducing also to 

thermal stress, the explosion load. Figure 11 shows the deformation and the Mises stress of 

tunnel section, from meddle, where explosion is localized, to the tunnel opening. 
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Figure 10. Temperature distribution (°C) t = 1800 sec. 

 

Figure 11. Mises stress (Pa) of the tunnel at the explosion instant. 

6. Conclusions 

The topics developed in this chapter belong to multi-physics problems and consequently 

represent a great computational weight on the results. Again, further complexities arise in 

the hypothesis of the mechanical process being dynamic.  

In the almost static case the strain, in any instant of time, is in a situation of almost 

equilibrium with the loads; instead in the dynamic case the stress state is variable in space, 

therefore there are portions of the solid under stress against others in almost absence of 

stress. In other words the stress travels inside the solid as a stress-wave and it becomes a 

fundamental parameter for the description of the behaviour of the material. The dynamic 

processes in materials involve different scientific disciplines and areas, as materials science, 

shock physics/chemistry, mechanics combustion, applied mathematics and large scale 

computation.  
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Certainly, in developing this approach we have had the opportunity to deepen analysis 

about strength of materials and structures, and damage and fracture at micro and 

macroscale. 

In the second section of the chapter, two numerical simulations relatively to one impact 

against air field pavements and one explosion in tunnel structures have been presented. 

Both simulations assume the problems as multi-field, and the results are quantitatively 

adequate.  
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